
The Enterprise Engineering Series

Enterprise
Architecture
at Work

Marc Lankhorst et al.

Modelling, Communication and Analysis

Fourth Edition

The Enterprise Engineering Series

Explorations

More information about this series at

http://www.springer.com/series/8371

Series Editors

Jan L.G. Dietz

Erik Proper

José Tribolet

Editorial Board

Terry Halpin

Jan Hoogervorst

Martin Op ’t Land

Ronald G. Ross

Robert Winter

Marc Lankhorst et al.

Enterprise
Architecture
at Work

Modelling, Communication and Analysis

Fourth Edition

Marc Lankhorst
BiZZdesign
Enschede
The Netherlands

ISSN 1867-8920 ISSN 1867-8939 (electronic)
The Enterprise Engineering Series
ISBN 978-3-662-53932-3 ISBN 978-3-662-53933-0 (eBook)
DOI 10.1007/978-3-662-53933-0

Library of Congress Control Number: 2016962186

© Springer-Verlag Berlin Heidelberg 2005, 2009, 2013, 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Foreword to the Fourth Edition

Enterprise architecture faces many challenges as it attempts to gain and expand its

foothold as a formally adopted discipline in organisations worldwide. One such

challenge relates to an organisation’s ability to coalesce myriad enterprise archi-

tecture concepts, approaches and frameworks, across diverse industry and geo-

graphic landscapes, into fully actionable strategies. A second challenge relates to

the difficulty in articulating business value proposition, which stems from the

perception that enterprise architecture is a technical discipline and not a business

discipline. This second issue has resulted in business professionals and executives

ignoring architecture concepts altogether and refusing to sponsor enterprise archi-

tecture in particular because it is viewed as a technical issue that benefits

technologists.

This latest edition of Enterprise Architecture at Work takes steps to address

these challenges by representing an expanded alignment of enterprise architecture

with various business disciplines that include strategy, business models, business

architecture and quality. In addition, the authors provide insights into how to align

various views and frameworks to ensure that organisations adopting a cross section

of frameworks and methodologies can leverage them in coordinated fashion.

The recent emergence of formal business architecture as a unique, yet comple-

mentary, discipline addresses one of the major challenges and misconceptions of

enterprise architecture: that it is a technical concept that delivers limited business

value. When business architecture is incorporated into enterprise architecture on

equal footing, it enables organisations to clearly articulate the interdependencies

among formal representations of the business and related IT solutions. Highlighting

these interdependencies increases a business’s ability to understand enterprise

architecture’s value while clarifying how all of the pieces fit together for practi-

tioners within IT and within the business.

Business architecture is not the only element of business planning, strategy and

execution as the authors demonstrate. But business architecture shares a pedigree

with application, data, solution and technical architecture disciplines insofar as it is

a robust, well-formed, clearly articulated discipline with defined integration points

v

to the other architecture perspectives. Business architecture, therefore, becomes the

lens through which to interpret and deliver strategy, align to various business

models and link to operational business views, such as business process modelling.

Most important is the fact that the authors provide a gateway from business and

other architecture perspectives to the comprehensive universe of enterprise archi-

tecture models and frameworks used in practice. As evidenced throughout the book,

the authors share and detail a wide variety of modelling concepts within the

enterprise architecture discipline. This book, while aimed at practitioners and

students of the discipline, nevertheless provides insights for those business pro-

fessionals that struggle to understand how the elements of enterprise architecture

align.

Finally, enterprise architecture delivers value when it is widely applied and

adopted. This requires not just technical architecture perspectives but also data,

application, solution and business architecture perspectives. Without fully embrac-

ing this diverse view of enterprise architecture and ensuring that this view is easily

digested by adopters, managers, sponsors and beneficiaries, the impact of the

discipline is blunted. And while understanding the big picture is important, the

details are equally critical. Enterprise Architecture at Work provides these perspec-
tives for those that need to clearly see the big picture and also offers a wealth of

detailed content for practitioners and students of the enterprise architecture

discipline.

This book is a good reference point for those engaged in enterprise architecture

directly and for those that benefit from its use overall. I trust readers will enjoy it

and reference it as the discipline of enterprise architecture evolves.

Business Architecture Guild William Ulrich

Soquel, CA, USA

September 2016

vi Foreword to the Fourth Edition

Foreword to the Third Edition

On January 31, 2012, The Open Group published version 2.0 of the ArchiMate®
language for enterprise architecture modelling. This latest technical standard is now

more aligned with TOGAF®, the world’s most popular enterprise architecture

framework. This is an important milestone in the development of the profession,

and this book, now in its third edition, provides much of the background and

foundations of this development.

When Novay and its partners started the ArchiMate R&D project in 2002, they

wanted to develop better means for communicating enterprise architectures. Until

then, architects expressed their architectures either in proprietary tools and frame-

works, with all the ensuing problems of vendor lock-in, or in fuzzy PowerPoint

pictures that you could only understand if the architect was present to explain what

all the boxes and lines meant. A well-founded open standard for architecture

description was sorely needed.

Shortly after the project, consultants and educators began using it, the first

commercial tools started to appear, and an active user community emerged. In

2008, The Open Group had just created a working group to establish a description

language to complement TOGAF, when it was contacted by the ArchiMate Foun-

dation. Since ArchiMate was already developed with TOGAF as one of its inputs,

the match between the two created a great opportunity. In 2008, the ownership of

ArchiMate was transferred to The Open Group and became a standard in 2009.

This proved to be an all-important step. With the rising popularity of TOGAF

and the professional support of The Open Group, ArchiMate adoption figures have

grown rapidly. At the time of writing, The Open Group’s ArchiMate Forum has

some 70 member organisations, over 10 commercial and several open-source tools

support the language, and its active LinkedIn group counts nearly 1700 members.

ArchiMate 2.0 provides a number of important extensions that make the fit

between TOGAF and ArchiMate even closer. It improves collaboration through

clearer understanding across multiple functions, including business executives,

enterprise architects, systems analysts, software engineers, business process con-

sultants and infrastructure engineers. The new standard enables the creation of fully

vii

integrated models of an organisation’s enterprise architecture, the motivation

behind it, and the programs, projects and migration paths to implement

it. ArchiMate already follows terms defined in the TOGAF framework, and version

2.0 of the specification enables modelling through all phases of the TOGAF

Architecture Development Method (ADM).

ArchiMate 2.0 provides enterprise architects with the tools and concepts neces-

sary to create a consistent, integrated model that aligns more closely with TOGAF.

It will increase interoperability and help enterprise architects establish a common

language across the enterprise, raising the value and awareness of the discipline.

The growing use of models and standards is a sure sign of the maturation of any

engineering discipline. This does not mean that enterprise architecture becomes a

deterministic exercise, though. Rather, these instruments help managers and archi-

tects predict the effects of their actions, spot opportunities, and control risk, in the

same way that navigational aids help a ship’s captain steer an optimal course in the

prevailing currents and winds.

The Open Group

Reading, UK

February 2012

Allen Brown

viii Foreword to the Third Edition

Foreword to the Second Edition

Have you ever built a new house, or rebuilt an existing one? If you did, most likely

an architect has been involved guiding you through the whole process of permits,

drawings and construction. In this process, the architect creates insightful two- and

three-dimensional drawings, models and views of the house. These show the

structure of the house, its division into rooms (like the kitchen, living, bedrooms,

and bathroom), its windows with views of the light, the networks of electricity, gas

and plumbing, etc. The architectural design process of a house is a well-established

discipline, using internationally accepted standards for describing and visualising

the design, and various ways to present the design and analyse and calculate the

strength of the proposed construction. The architect is well trained in the design

methods, the modelling language and certain supporting tools.

Building or rebuilding an organisation is a much more complex and challenging

task. First of all because the steps one has to take in order to (re)build an organi-

sation are not standardised. One could start by first (re)designing business pro-

cesses, followed by the application (re)design. Or one could first design generic

application services, followed by designing business processes on top of these.

Since a few years, The Open Group Architectural Framework (TOGAF) defines a

standard way to take these steps. This enables enterprise architects to (re)design an

organisation and its supporting IT systems in a uniform and standard way. The

release of the improved TOGAF 9 version in February 2009 will lead to an even

more uniform and better way to do this.

Secondly, building an organisation is a complex and challenging task because of

the multifarious dependencies within an organisation. Many (often unknown)

dependencies exists between various domains, like strategy, products and services,

business processes, organisational structure, applications, information manage-

ment, and technical infrastructure. Besides a having good overview over these

different domains, one needs to be aware of their interrelationships. Together,

these form the enterprise architecture of the organisation. In many cases, different

languages and concepts are used to describe each domain, with no support for

describing and analysing relationships to other domains.

ix

Until recently, a uniform and easy to use language for modelling and visualising

enterprise architectures was lacking. ArchiMate, the modelling language described

in this book, fills in this gap. It provides instruments to support enterprise architects

in describing, analysing and visualising the relationships among domains in an

unambiguous way. ArchiMate is supported by different tool vendors and service

providers. Many organisations are using it already as their company standard for

describing enterprise architecture and its value has been proven in practice!

Just like an architectural drawing in classical building architecture describes the

various aspects of the construction and use of a building, ArchiMate offers a

common language for describing the construction and operation of business pro-

cesses, organisational structures, information flows, IT systems, and technical

infrastructure. This insight helps stakeholders to design, assess, and communicate

the consequences of decisions and changes within and between these business

domains.

Moreover, ArchiMate is now The Open Group’s open and independent model-

ling language for enterprise architecture. The specification of ArchiMate 1.0 has

been released by The Open Group in April 2009. You can expect an even greater

uptake of this language now that it has become a standard. Moreover, the synergy

with TOGAF will provide enterprise architects with a very powerful approach,

supported by methods, modelling languages and tools. Because ArchiMate is an

open standard, it facilitates (model) interoperability and exchange of best practices.

It is not a proprietary language from one tool vendor or service provider.

This book is about ArchiMate. It explains the background and the results of the

research project that led to the realisation of the ArchiMate language. It also

contains a description of the ArchiMate language itself, and many examples of its

use for modelling, visualising and analysing enterprise architecture. The descrip-

tions are based on the ArchiMate 1.0 specification published by The Open Group,

and this second edition of the book adds more details on the relation between

ArchiMate and TOGAF.

I cordially invite you to read this book. Reaching a second edition already proves

its practical value. Convince yourself and start using ArchiMate!

BiZZdesign

Enschede, The Netherlands

ArchiMate Forum of The Open Group

Reading, UK

February 2009

H.M. Franken

x Foreword to the Second Edition

Foreword to the First Edition

‘Architecture’, in a broad sense, is the synergy of art and science in designing

complex structures, such that functionality and complexity are controlled. The

notion of architecture is used in a wide range of domains, from town planning to

building and construction, and from computer hardware to information systems,

each being characterised by the types of ‘structures’ or ‘systems’ being designed.

However, we can recognise some common concerns in all these approaches.

To begin with, architecture, and hence the architect, is concerned with under-

standing and defining the relationship between the users of the system and the

system being designed itself. Based on a thorough understanding of this relation-

ship, the architect defines and refines the essence of the system, i.e., its structure,

behaviour, and other properties.

This representation of the system’s essence, also called the ‘architecture’ of the
system, forms the basis for analysis, optimisation, and validation and is the starting

point for the further design, implementation, and construction of that system. The

resulting artefacts, be they buildings or information systems, naturally have to

conform to the original design criteria. The definition of the architecture is the

input for verifying this.

During this process, the architect needs to communicate with all stakeholders of

the system, ranging from clients and users to those who build and maintain the

resulting system. The architect needs to balance all their needs and constraints to

arrive at a feasible and acceptable design.

Fulfilling these needs confronts the methodology for defining and using archi-

tectures with demanding requirements. These can only be met if the architects have

an appropriate way of specifying architectures and a set of design and structuring

techniques at their disposal, supported by the right tools. In building and construc-

tion, such techniques and tools have a history over millennia. In information

systems and enterprise architecture, though, they are just arising.

Important for an architecture description language is that the properties of the

system can be represented in their bare essence without forcing the architect to

xi

include irrelevant detail. This means that the description language must be defined

at the appropriate abstraction level.

If the architecture is concerned with the relationship between an enterprise and

its IT support, the architect should be capable of expressing the structure, behav-

iour, and coherence of both the business processes and the IT support, such that one

can use these specifications to get a thorough understanding of the architecture, to

optimise it according to specific business goals, and to develop a strategy for

introducing improvements in the current situation. This implies that the architecture

description language should embrace easily understandable human notions of

business processes and their IT support, far away from low-level implementation

issues. It requires a level of comprehensibility of the description language by a

broader audience than just the few specialists that are capable of understanding the

obscurities of formal, mathematically oriented languages.

The very same applies to the methods that allow the architect to structure and

manipulate architectural specifications such that their complexity can be controlled.

Not in the least, the language and methods are the basis for unambiguous mutual

understanding and successful collaboration between the stakeholders of the archi-

tecture. All stakeholders need to be aware about the implications of the choices in

the architecture, and be capable of possibly influencing such choices.

This book presents the results of a research project that produced just that: a

comprehensible, high-level design language for enterprise architecture, accompa-

nied by a set of techniques and guidelines for visualisation and analysis of archi-

tectures. These results were validated in practice in real-life case studies in

cooperation with several large, information-intensive organisations. Currently,

various companies, ranging from vendors of architecture tools to consultants and

other users of enterprise architecture, are implementing the results of the project.

This project is a prime example of the knowledge transfer for which the

Telematica Instituut was founded. Both government and industry fund this Dutch

national research institute. Its mission is to boost the innovative and competitive

power of society by bridging the gap between academic research and its industrial

application. The ArchiMate project, from which this book results, is a prime

example of fruitful cooperation between these worlds. This proves the success of

this knowledge transfer.

I hope and trust that the ArchiMate project not only proves to be an example of

high-quality research in the important field of enterprise architecture, but also will

have a considerable impact in practice.

Telematica Instituut

Enschede, The Netherlands

December 2004

C.A. Vissers

xii Foreword to the First Edition

Preface

Many stakeholders within and outside the company can be identified, ranging from

top-level management to software engineers. Each stakeholder requires specific

information presented in an accessible way, to deal with the impact of such wide-

ranging developments. To predict the effects of such developments and modifica-

tions of an organisation’s business and IT, it is necessary but very difficult to obtain
an overview of these changes and their impact on each other, and to provide both

decision makers and engineers implementing the changes with the information

they need.

This book is about enterprise architecture, the practice that tries to describe and
control an organisation’s structure, processes, applications, systems, and technol-

ogy in such an integrated way. More specifically, we focus on methods and

techniques for making and using integrated descriptions by means of architecture

models, visualisation of these models for various stakeholders, and analysis of the

impact of changes.

The unambiguous specification and description of components and especially

their relationships in an architecture requires a coherent architecture modelling

language. Such a language must enable integrated modelling of architectural

domains and should be appreciated both by people from IT and by people with a

business background. In this book, we present such an enterprise modelling lan-

guage that captures the complexity of architectural domains and their relations and

allows the construction of integrated enterprise architecture models. We provide

architects with concrete instruments that may improve their architectural practice.

Furthermore, we provide techniques and heuristics for communicating with all

relevant stakeholders about these architectures. Central to the communication of

architectures is the notion of viewpoint. Viewpoints define abstractions on the set of
models representing the enterprise architecture, each aimed at a particular type of

stakeholder and addressing a particular set of concerns.

An architecture model is not just useful to provide insight into the current or

future situation; it can also be used to evaluate the transition from ‘as is’ to ‘to be’.
We therefore provide analysis methods for assessing both the qualitative impact of

xiii

changes to an architecture and quantitative aspects of architectures, such as perfor-

mance and cost issues.

In order to make the approach we envisage practically feasible, architects require

a tool environment, which supports the definition, generation, editing, visualisation,

analysis, and management of architecture models and views. Moreover, such an

environment should work in concert with existing domain-specific modelling tools,

since we cannot expect architects to start using other tools, let alone other lan-

guages, than the ones they are used to. We therefore present the design of a

viewpoint-driven enterprise modelling environment that can provide just this sup-

port and a vision on the future of model-driven enterprise architecture tooling.

The ArchiMate modelling language and the other techniques in the book have

been proven in practice in numerous real-life case studies, and since its transfer to

The Open Group, the language has become the de facto standard for enterprise

architecture modelling. To put these instruments into context, the book also

addresses the use of enterprise architecture models and techniques in governance,

with a focus on alleviating the infamous business–IT alignment problem.

Audience

The intended audience of this book is twofold. On the one hand, we target

enterprise, business, and IT architecture practitioners, especially those who are

looking for better ways of describing, communicating, and analysing (enterprise)

architectures. On the other hand, we aim for students of IT and (IT) management

studying the field of enterprise architecture.

Overview of the Book

In the first chapter, we give an introduction to architecture in general and enterprise

architecture in particular, outline its drivers, and describe the architecture process.

Chapter 2 provides an overview of methods and techniques currently used in this

field. Following this, we outline the foundations of our approach to enterprise

architecture modelling (Chap. 3). We then describe our view of architecture as

being primarily a means of communication with all the stakeholders involved

(Chap. 4).

Architectures are fruitfully used both in requirements analysis and design for

new applications, business processes, etc., and to gain insight into existing systems

(in the broad sense). In our approach, the use of architecture models has a central

role; the ArchiMate modelling language used throughout the rest of the book is

introduced in Chap. 5. In Chap. 6, we show how this modelling language works

together with other management, architecture and modelling standards and

xiv Preface

http://dx.doi.org/10.1007/978-3-662-53933-0_2
http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_4
http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_6

approaches. And having a language is not enough: the architect also needs to be

guided in its use, which is the topic of Chap. 7.

Many stakeholders with different goals or concerns in mind can view architec-

tures. Each of these requires its own depictions of (part of) an architecture model,

and the creation, use of such views and viewpoints is the topic of Chap. 8. Given

that we have accurate models of an architecture, we can subject these models to

various types of analysis, to establish for example what the impact of a change

might be, or whether the performance of the technical infrastructure is sufficient

given the applications and business processes that use it. These analyses are

discussed in Chap. 9.

The practical applications of these modelling, visualisation, and analysis tech-

niques are the topic of the next three chapters. In Chap. 10, experiences and best

practices from case studies regarding the alignment of business, applications, and

infrastructures are presented. These provide the context in which architectures are

designed. Chapter 11 describes our vision on software support for enterprise

architecture. Chapter 12 presents our practical experience with applying ArchiMate

in a number of real-life case studies. Finally, Chap. 13 provides a vision of the

future: what is next; what comes ‘after’ architecture?

Acknowledgements

The first edition of this book was a result from the ArchiMate project, a Dutch

research initiative that developed concepts and techniques to support enterprise

architects in the visualisation, communication and analysis of integrated architec-

tures. The project consortium consisted of the Telematica Instituut, ABN AMRO,

Stichting Pensioenfonds ABP, the Dutch Tax and Customs Administration, Ordina,

Centrum voor Wiskunde en Informatica, Radboud Universiteit Nijmegen and the

Leiden Institute of Advanced Computer Science. Chapter 10 of this book results

from the GRAAL project, a daughter project of ArchiMate that was cofinanced by

the Telematica Instituut and the Centre for Telematics and Information Technology

(CTIT) of the University of Twente, Enschede, the Netherlands.

Since this first version, ArchiMate was developed further under the aegis of The

Open Group and is now in version 3.0. Our special thanks go to Henk Jonkers for

his invaluable assistance in editing the third and fourth editions of this book, to

make it compliant with new versions of the ArchiMate standard.

ArchiMate® is a trademark and standard of The Open Group. More information

on the ArchiMate standard can be found at http://www.archimate.org and

http://www.opengroup.org/archimate.

BiZZdesign Marc Lankhorst

Enschede, The Netherlands

October 2016

Preface xv

http://dx.doi.org/10.1007/978-3-662-53933-0_7
http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_10
http://dx.doi.org/10.1007/978-3-662-53933-0_11
http://dx.doi.org/10.1007/978-3-662-53933-0_12
http://dx.doi.org/10.1007/978-3-662-53933-0_13
http://dx.doi.org/10.1007/978-3-662-53933-0_10
http://www.archimate.org/
http://www.opengroup.org/archimate

Contents

1 Introduction to Enterprise Architecture . 1

1.1 Architecture . 1

1.2 Enterprise Architecture . 2

1.3 The Architecture Process . 4

1.4 Drivers for Enterprise Architecture . 5

1.4.1 Internal Drivers . 6

1.4.2 External Drivers . 9

1.5 Summary . 10

2 State of the Art . 11

2.1 Enterprise Architecture and Other Governance Instruments 11

2.1.1 Strategic Management . 12

2.1.2 Business Model Development 13

2.1.3 Business Architecture . 14

2.1.4 Quality Management . 16

2.1.5 IT Governance . 18

2.1.6 IT Service Delivery and Support 20

2.1.7 IT Implementation . 21

2.2 Architecture Methods and Frameworks 22

2.2.1 The IEEE 1471-2000/ISO/IEC 42010 Standard 22

2.2.2 The Zachman Framework . 24

2.2.3 The Open Group Architecture Framework 25

2.2.4 OMG’s Model-Driven Architecture 28

2.2.5 Other Frameworks . 29

2.3 Description Languages . 31

2.3.1 IDEF . 32

2.3.2 BPMN . 33

2.3.3 UML . 34

2.3.4 Architecture Description Languages 36

2.3.5 Suitability for Enterprise Architecture 37

xvii

2.4 Service-Oriented Architecture . 37

2.4.1 Service-Oriented Technologies 38

2.4.2 Relevance and Benefits for Enterprise Architecture . . . 39

3 Foundations . 41

3.1 Getting to Grips with Architectural Complexity 41

3.1.1 Compositionality . 42

3.1.2 Integration of Architectural Domains 43

3.2 Describing Enterprise Architectures . 45

3.2.1 Observing the Universe . 46

3.2.2 Concerns . 46

3.2.3 Observing Domains . 47

3.2.4 Views and Viewpoints . 48

3.2.5 Ways of Working . 49

3.2.6 Enterprise Architecture Models 50

3.3 Pictures, Models, and Semantics . 51

3.3.1 Symbolic and Semantic Models 52

3.3.2 Symbolic Models . 54

3.3.3 Semantic Models . 55

3.3.4 Semantics in ArchiMate Versus UML 56

3.4 Summary . 57

4 Communication of Enterprise Architectures 59

4.1 Introduction . 59

4.2 System Development as a Knowledge Transformation

Process . 61

4.2.1 System Development Community 61

4.2.2 System Development Knowledge 62

4.2.3 Explicitness of Knowledge . 64

4.2.4 Transformations of Knowledge 65

4.3 Conversation Strategies . 66

4.4 Architectural Conversations . 69

4.4.1 Knowledge Goals . 69

4.4.2 Conversation Techniques . 70

4.5 Summary . 72

5 A Language for Enterprise Modelling . 73

5.1 Describing Coherence . 74

5.2 Service Orientation and Layering . 75

5.3 Three Dimensions of Modelling . 77

5.4 Full Framework . 78

5.5 Composite Concepts . 80

5.6 Motivation Concepts . 80

5.6.1 Stakeholder, Driver and Assessment 81

5.6.2 Goal, Requirement, Constraint and Principle 82

5.6.3 Value and Meaning . 83

xviii Contents

5.7 Strategy Concepts . 84

5.7.1 Defining Capabilities . 86

5.8 Business Layer Concepts . 88

5.8.1 Business Structure Concepts . 88

5.8.2 Business Behaviour Concepts 90

5.8.3 Higher-Level Business Concepts 94

5.9 Application Layer Concepts . 95

5.9.1 Application Structure Concepts 95

5.9.2 Application Behaviour Concepts 97

5.9.3 Business–Application Alignment 98

5.10 Technology Layer Concepts . 99

5.10.1 Technology Structure Concepts 99

5.10.2 Technology Behaviour Concepts 101

5.10.3 Application–Technology Alignment 102

5.11 Physical Concepts . 103

5.12 Implementation and Migration Concepts 105

5.12.1 Implementation-Related Concepts 105

5.12.2 Migration Planning Concepts 106

5.13 Relations . 107

5.14 Language Customisation Mechanisms 110

5.14.1 Adding Attributes to ArchiMate Concepts

and Relations . 111

5.14.2 Specialisation of Concepts . 111

5.15 Modelling Example . 112

5.16 Capabilities, Business Functions and Organisation Structure . . . 112

5.17 Post-Merger IT Rationalisation . 116

5.17.1 New Digital Customer Intimacy Strategy 118

5.18 Transformation Roadmap . 120

5.19 Summary . 121

6 Combining ArchiMate with Other Standards and Approaches 123

6.1 Introduction . 123

6.2 Business Motivation Model . 125

6.3 Balanced Scorecard . 125

6.4 Business Model Canvas . 126

6.5 Value Map . 126

6.6 Customer Journey Map . 130

6.7 Service Blueprint . 131

6.8 BPMN . 133

6.9 Business Logic . 134

6.10 UML . 135

6.11 SysML . 138

6.12 Entity-Relationship Model . 138

6.13 TOGAF . 139

6.14 Summary . 140

Contents xix

7 Guidelines for Modelling . 141

7.1 Introduction . 141

7.2 The Modelling Process . 142

7.2.1 Modelling as a Transformation Process 143

7.2.2 Basic Modelling Activities . 144

7.2.3 Types of Modelling Actions . 146

7.3 Guidelines for Modelling . 149

7.3.1 Before You Start . 152

7.3.2 What to Capture in a Model? 153

7.3.3 Modelling and Abstraction . 155

7.3.4 Structuring Models and Visualisations 156

7.3.5 Constructive Use of Modelling Breakdowns 159

7.4 Readability and Usability of Models . 162

7.4.1 Reducing the Visual Complexity of Models 163

7.4.2 Representation Conventions . 165

7.5 Summary . 170

8 Viewpoints and Visualisation . 171

8.1 Architecture Viewpoints . 172

8.1.1 Origin of Viewpoints . 172

8.1.2 Architecture Viewpoints . 173

8.1.3 Viewpoint Frameworks . 174

8.2 Models, Views, and Visualisations . 176

8.2.1 Example: Process Illustrations 177

8.2.2 Example: Landscape Maps . 178

8.3 Visualisation and Interaction . 181

8.3.1 Actions in Views . 181

8.4 Creating, Selecting, and Using Viewpoints 184

8.4.1 Classification of Viewpoints . 184

8.4.2 Guidelines for Using Viewpoints 187

8.4.3 Scoping . 187

8.4.4 Creation of Views . 188

8.4.5 Validation . 189

8.4.6 Obtaining Commitment . 190

8.4.7 Informing Stakeholders . 191

8.5 Basic Design Viewpoints . 192

8.5.1 Introductory Viewpoint . 194

8.5.2 Organisation Viewpoint . 195

8.5.3 Actor Cooperation Viewpoint 196

8.5.4 Business Function Viewpoint 196

8.5.5 Product Viewpoint . 198

8.5.6 Service Realisation Viewpoint 199

8.5.7 Business Process Cooperation Viewpoint 200

8.5.8 Business Process Viewpoint . 200

8.5.9 Information Structure Viewpoint 201

xx Contents

8.5.10 Application Cooperation Viewpoint 202

8.5.11 Application Usage Viewpoint 204

8.5.12 Application Behaviour Viewpoint 205

8.5.13 Application Structure Viewpoint 206

8.5.14 Technology Viewpoint . 206

8.5.15 Technology Usage Viewpoint 207

8.5.16 Implementation & Deployment Viewpoint 207

8.5.17 Physical Viewpoint . 209

8.6 Motivation Viewpoints . 209

8.7 Strategy Viewpoints . 209

8.7.1 Capability Map Viewpoint . 210

8.8 Implementation and Migration Viewpoints 211

8.9 Combined Viewpoints . 213

8.10 ArchiMate and TOGAF Viewpoints . 213

8.11 Summary . 214

9 Architecture Analysis . 215

9.1 Analysis Techniques . 216

9.2 Quantitative Analysis . 217

9.2.1 Performance Views . 218

9.2.2 Performance Analysis Techniques for Architectures . . . 220

9.2.3 Quantitative Modelling . 222

9.2.4 Quantitative Analysis Technique 227

9.3 Functional Analysis . 231

9.3.1 Static Analysis . 232

9.3.2 Dynamic Analysis . 235

9.4 Risk Analysis . 242

9.5 Portfolio Analysis . 246

9.6 Capability Analysis . 249

9.7 Summary . 251

10 Architecture Alignment . 253

10.1 Introduction . 253

10.2 The GRAAL Alignment Framework . 254

10.2.1 System Aspects . 255

10.2.2 The Aggregation Hierarchy . 256

10.2.3 The System Process . 258

10.2.4 Refinement Levels . 258

10.2.5 Comparison with Other Frameworks 258

10.3 Alignment Phenomena . 260

10.3.1 Service Provisioning Layers . 260

10.3.2 Infrastructure Architecture . 261

10.3.3 Business System Architecture 264

10.3.4 Strategic Misalignment . 267

10.3.5 Conway’s Law . 268

10.3.6 The FMO Alignment Pattern 270

Contents xxi

10.4 The Architecture Process . 270

10.4.1 Methods . 270

10.4.2 IT Governance . 272

10.5 Summary . 274

11 Tool Support . 277

11.1 Reasons for Enterprise Architecture Tooling 277

11.2 The Architecture Tool Landscape . 278

11.3 Tool Infrastructure . 279

11.4 Workbench for Enterprise Architecture 281

11.4.1 Model Integration . 281

11.4.2 Viewpoint Definition . 282

11.4.3 Transparency and Extensibility 283

11.4.4 Software Architecture . 283

11.4.5 Exchange Formats . 284

11.4.6 Workbench at Work . 284

11.5 View Designer Tool . 286

11.5.1 Viewpoint Rules for Creating Views

and Visualisations . 287

11.5.2 Defining Actions in Models and Views 288

11.5.3 Interactive Visualisation . 290

11.5.4 Example: The Landscape Map Tool 291

11.5.5 Comparison with Model–View–Controller

Architecture . 293

11.6 Impact-of-Change Analysis Tool . 294

11.7 Quantitative Analysis Tool . 296

11.8 Commercial Tool Support for ArchiMate 297

11.9 Summary . 298

12 Case Studies . 301

12.1 Process and Application Visualisation at ABP 301

12.1.1 ABP Meta-model . 302

12.1.2 Case Essentials . 302

12.1.3 Concepts . 304

12.1.4 Viewpoints . 304

12.1.5 Design of the Visualiser . 306

12.1.6 Case Study Results . 310

12.2 Application Visualisation at ABN AMRO 310

12.2.1 CITA Meta-model . 312

12.2.2 Case Essentials . 313

12.2.3 Concepts . 314

12.2.4 Visualisation . 316

12.2.5 Tool Design and Results . 321

xxii Contents

12.3 Design and Analysis at the Dutch Tax and Customs

Administration . 322

12.3.1 Case Essentials . 322

12.3.2 Views . 323

12.3.3 Performance Analysis . 330

12.3.4 Case Study Results . 332

12.4 Summary . 333

13 Beyond Enterprise Architecture . 335

13.1 The World Before Enterprise Architecture 335

13.2 The Advent of Enterprise Architecture 337

13.3 The Business Ecosystem . 338

Appendix: Graphical Notation . 341

References . 345

Trademarks . 355

Index . 357

Contents xxiii

List of Contributors

1. Introduction to Enterprise Architecture

M.M. Lankhorst

2. State of the Art

M.M. Lankhorst, M.-E. Iacob, H. Jonkers

3. Foundations

M.M. Lankhorst, L. van der Torre, H.A. Proper, F. Arbab, F.S. de Boer,

M. Bonsangue

4. Communication of Enterprise Architectures

H.A. Proper, S.J.B.A. Hoppenbrouwers, G.E. Veldhuijzen van Zanten

5. A Language for Enterprise Modelling

H. Jonkers, L. Groenewegen, M. Bonsangue, R. van Buuren, D.A.C. Quartel,

M.M. Lankhorst, A. Aldea

6. Combining ArchiMate with Other Standards and Approaches

M.M. Lankhorst, A. Aldea, J. Niehof

7. Guidelines for Modelling

R.J. Slagter, S.J.B.A. Hoppenbrouwers, M.M. Lankhorst, J. Campschroer

8. Viewpoints and Visualisation

M.M. Lankhorst, L. van der Torre, H.A.Proper, F. Arbab,

S.J.B.A. Hoppenbrouwers, M.W.A. Steen

9. Architecture Analysis

M.-E. Iacob, H. Jonkers, L. van der Torre, F.S. de Boer, M.Bonsangue,

A.W. Stam, M.M. Lankhorst, D.A.C. Quartel, A. Aldea

10. Architecture Alignment

R.J. Wieringa, P.A.T. van Eck, D. Krukkert

11. Tool Support

H.W.L. ter Doest, D. van Leeuwen, P. Fennema, L. van der Torre, A.W. Stam,

J. Jacob, F. Arbab

12. Case Studies

H. Bosma, H. Jonkers, M.J. Cuvelier, P.G.M. Penders, S.F. Bekius, M.-E. Iacob

13. Beyond Enterprise Architecture

W.P.M. Janssen, M.M. Lankhorst

xxv

Chapter 1

Introduction to Enterprise Architecture

Marc M. Lankhorst

1.1 Architecture

It is often said that to manage the complexity of any large organisation or system,

you need architecture. But what exactly does ‘architecture’ mean? Of course, we

have long known this notion from building and construction. Suppose you contract

an architect to design your house. You discuss how rooms, staircases, windows,

bathrooms, balconies, doors, a roof, etc., will be put together. You agree on a master

plan, on the basis of which the architect will produce detailed specifications, to be

used by the engineers and builders.

How is it that you can communicate so efficiently about that master plan? We

think it is because you share a common frame of reference: you both know what a

‘room’ is, a ‘balcony’, a ‘staircase’, etc. You know their function and their relation.

A ‘room’, for example, serves as a shelter and is connected to another ‘room’ via a
‘door’. You both use, mentally, an architectural model of a house. This model

defines its major functions and how they are structured. It provides an abstract

design, ignoring many details. These details, like the number of rooms, dimensions,

materials to be used, and colours, will be filled in later.

A similar frame of reference is needed in designing an enterprise. To create an

overview of the structure of an organisation, its business processes, their application

support, and the technical infrastructure, you need to express the different aspects

and domains, and their relations.

But what is ‘architecture’ exactly? Even in building and construction, the term is

not without ambiguity. It can signify the art and science of designing the built

environment, or the product of such a design. Thus, the term architecture can

encompass both the blueprint for a building and the general underlying principles

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_1

1

mailto:m.lankhorst@bizzdesign.com

such as its style, as in ‘gothic architecture’. There are different schools of thought
on this. Some say we should reserve the term ‘architecture’ in the context of IT

solely for such principles and constraints on the design space, as e.g. Dietz argues

(2006), who uses the term ‘enterprise ontology’ for the actual designs. In this book,
we will use the ISO/IEC/IEEE FDIS 42010:2011 standard (ISO/IEC/IEEE 2011)

definition of architecture:

Architecture: fundamental concepts or properties of a system in its envi-

ronment, embodied in its elements, relationships, and in the principles of its

design and evolution.

This definition accommodates both the blueprint and the general principles.

More succinctly, we could define architecture as ‘structure with a vision’. An
architecture provides an integrated view of the system being designed or studied.

As well as the definition of architecture, we will use two other important notions

from the IEEE standard. First, a ‘stakeholder’ is defined as follows:

Stakeholder: an individual, team, or organisation (or classes thereof) with

interests in, or concerns relative to, a system.

Most stakeholders of a system are probably not interested in its architecture, but

only in the impact of this on their concerns. However, an architect needs to be aware

of these concerns and discuss them with the stakeholders, and thus should be able to

explain the architecture to all stakeholders involved, who will often have

completely different backgrounds.

1.2 Enterprise Architecture

More and more, the notion of architecture is applied with a broader scope than just

in the technical and IT domains. The emerging discipline of Enterprise Engineering

views enterprises as a whole as purposefully designed systems that can be adapted

and redesigned in a systematic and controlled way. An ‘enterprise’ in this context

can be defined as follows (The Open Group 2011):

Enterprise: any collection of organisations that has a common set of goals

and/or a single bottom line.

Architecture at the level of an entire organisation is commonly referred to as

‘enterprise architecture’. This leads us to the definition of enterprise architecture:

2 1 Introduction to Enterprise Architecture

Enterprise architecture: a coherent whole of principles, methods, and

models that are used in the design and realisation of an enterprise’s
organisational structure, business processes, information systems, and

infrastructure.

Enterprise architecture captures the essentials of the business, IT and its evolu-

tion. The idea is that the essentials are much more stable than the specific solutions

that are found for the problems currently at hand. Architecture is therefore helpful

in guarding the essentials of the business, while still allowing for maximal flexi-

bility and adaptivity. Without good architecture, it is difficult to achieve business

success.

The most important characteristic of an enterprise architecture is that it provides

a holistic view of the enterprise. Within individual domains local optimisation will

take place, and from a reductionist point of view, the architectures within this

domain may be optimal. However, this need not lead to a desired situation for the

company as a whole. For example, a highly optimised technical infrastructure that

offers great performance at low cost might turn out to be too rigid and inflexible if it

needs to support highly agile and rapidly changing business processes. A good

enterprise architecture provides the insight needed to balance these requirements

and facilitates the translation from corporate strategy to daily operations.

To achieve this quality in enterprise architecture, bringing together information

from formerly unrelated domains necessitates an approach that is understood by all

those involved from these different domains. In contrast to building architecture,

which has a history over millennia in which a common language and culture has

been established, such a shared frame of reference is still lacking in business and

IT. In current practice, architecture descriptions are heterogeneous in nature: each

domain has its own description techniques, either textual or graphical, either

informal or with a precise meaning. Different fields speak their own languages,

draw their own models, and use their own techniques and tools. Communication

and decision making across these domains is seriously impaired.

What is part of the enterprise architecture, and what is only an implementation

within that architecture, is a matter of what the business defines to be the architec-

ture, and what not. The architecture marks the separation between what should not

be tampered with and what can be filled in more freely. This places a high demand

for quality on the architecture. Quality means that the architecture actually helps in

achieving essential business objectives. In constructing and maintaining an archi-

tecture, choices should therefore be related to the business objectives, i.e., they

should be rational.

Even though an architecture captures the relatively stable parts of business and

technology, any architecture will need to accommodate and facilitate change, and

architecture products will therefore only have a temporary status. Architectures

change because the environment changes and new technological opportunities

arise, and because of new insights as to what is essential to the business. To ensure

1.2 Enterprise Architecture 3

that these essentials are discussed, a good architecture clearly shows the relation of

the architectural decisions to the business objectives of the enterprise.

To create an integrated perspective of an enterprise, we need techniques for

describing architectures in a coherent way and communicating these with all

relevant stakeholders. Different types of stakeholders will have their own view-

points on the architecture. Furthermore, architectures are subject to change, and

methods to analyse the effects of these changes are necessary in planning future

developments. Often, an enterprise architect has to rely on existing methods and

techniques from disparate domains, without being able to create the ‘big picture’
that puts these domains together. This requires an integrated set of methods and

techniques for the specification, analysis, and communication of enterprise archi-

tectures that fulfils the needs of the different types of stakeholders involved. In this

book, we will introduce such an approach. Architecture models, views, presenta-

tions, and analyses all help to bridge the ‘communication gap’ between architects

and stakeholders (Fig. 1.1).

Of course, architects play a central role in this process. In this book, we will not

go deeper into the various competencies and skills they need, but we refer the reader

to Wieringa et al. (2008) and Op ’t Land et al. (2008, Chap. 6) for more on this

subject.

1.3 The Architecture Process

Architecture is a process as well as a product. The product serves to guide managers

in designing business processes and system developers in building applications in a

way that is in line with business objectives and policies. The effects of the process

reach further than the mere creation of the architecture product—the awareness of

ModelsModels

ArchitectsArchitects

PresentationPresentation

ViewView

StakeholdersStakeholders
viewpointviewpoint

Analysis

analysis question

Analysis

analysis questionanalysis question

Fig. 1.1 Communicating about architecture

4 1 Introduction to Enterprise Architecture

stakeholders with respect to business objectives and information flow will be raised.

Also, once the architecture is created, it needs to be maintained. Businesses and IT

are continually changing. This constant evolution is, ideally, a rational process.

Change should only be initiated when people in power see an opportunity to

strengthen business objectives.

The architecture process consists of the usual steps that take an initial idea

through design and implementation phases to an operational system, and finally

changing or replacing this system, closing the loop. In all of the phases of the

architecture process, clear communication with and between stakeholders is indis-

pensable. The architecture descriptions undergo a life cycle that corresponds to this

design process (Fig. 1.2). The different architecture products in this life cycle are

discussed with stakeholders, approved, revised, etc., and play a central role in

establishing a common frame of reference for all those involved.

1.4 Drivers for Enterprise Architecture

It need not be stressed that any organisation benefits from having a clear under-

standing of its structure, products, operations, technology, and the web of relations

tying these together and connecting the organisation to its surroundings. Further-

more, there are external pressures to take into account, both from customers,

suppliers, and other business partners, and from regulatory bodies. Especially if

a company becomes larger and more complicated, good architectural practice

becomes indispensable. Here, we briefly outline the most important and com-

monly recognised internal and external drivers for establishing an enterprise

architecture.

Idea

Design

Use

Management

Formal models
Analysis

Napkin
Whiteboard
PowerPoint

Link with
implementation

Maintenance
Version control

Visualisation
for different
stakeholders

Architecture
process

Fig. 1.2 The architecture description life cycle

1.4 Drivers for Enterprise Architecture 5

1.4.1 Internal Drivers

Business–IT alignment is commonly recognised as an important instrument to

realise organisational effectiveness. Such effectiveness is not obtained by local

optimisations, but is realised by well-orchestrated interaction of organisational

components (Nadler et al. 1992). Effectiveness is driven by the relationships

between components rather than by the detailed specification of each individual

component. A vast amount of literature has been written on the topic of alignment,

underlining the significance of both ‘soft’ and ‘hard’ components of an

organisation.

Parker and Benson (1989) were forerunners in using the term ‘alignment’ in this
context and emphasising the role of architecture in strategic planning. The well-

known strategic alignment model of Henderson and Venkatraman (1993) distin-

guishes between the aspects of business strategy and organisational infrastructure

on the one hand and IT strategy and IT infrastructure on the other hand (Fig. 1.3).

The model provides four dominant perspectives that are used to tackle the align-

ment between these aspects. One can take the business strategy of an enterprise as

the starting point, and derive its IT infrastructure either via an IT strategy or through

the organisational infrastructure; conversely, one can focus on IT as an enabler and

start from the IT strategy, deriving the organisational infrastructure via a business

strategy or based on the IT infrastructure. In any of these perspectives, an enterprise

architecture can be a valuable help in executing the business or IT strategy.

Organisational
infrastructure

and processes

Ex
te

rn
al

Business Information Technology

Functional Integration

Strategic Fit

In
te

rn
al IT infrastructure

and processes

Business
Strategy

IT Strategy

Fig. 1.3 Strategic alignment model (Henderson and Venkatraman 1993)

6 1 Introduction to Enterprise Architecture

Nadler et al. (1992) identify four relevant alignment components: work, people,

the formal organisation and the informal organisation. Labovitz and Rosansky

(1997) emphasise the horizontal and vertical alignment dimensions of an organi-

sation. Vertical alignment describes the relation between the top strategy and the

people at the bottom, whereas horizontal alignment describes the relation between

internal processes and external customers. Obviously, the world of business–IT

alignment is as diverse as it is complex. In coping with this complexity, enterprise

architecture is of valuable assistance.

In Fig. 1.4, enterprise architecture is positioned within the context of managing

the enterprise. At the top of this pyramid, we see the mission of the enterprise: why

does it exist? The vision states its ‘image of the future’ and the values the enterprise
holds. Next there is its strategy, which states the route the enterprise will take in

achieving this mission and vision. This is translated into concrete goals that give

direction and provide the milestones in executing the strategy. Translating those

goals into concrete changes to the daily operations of the company is where

enterprise architecture comes into play. It offers a holistic perspective of the current

and future operations, and on the actions that should be taken to achieve the

company’s goals.
Next to its architecture, which could be viewed as the ‘hard’ part of the

company, the ‘soft’ part, its culture, is formed by its people and leadership, and is

of equal if not higher importance in achieving these goals. Finally, of course, we see

the enterprise’s daily operations, which are governed by the pyramid of Fig. 1.4.

To some it may seem that architecture is something static, confining everything

within its rules and boundaries, and hampering innovation. This is a misconception.

A well-defined architecture is an important asset in positioning new developments

Mission

Goals

Strategy

Actions

Vision

as is to be

enterprise architecture culture

domain/aspect
architectures people

leadership

Operations
… peopleprocesses ITproducts

Fig. 1.4 Enterprise architecture as a management instrument

1.4 Drivers for Enterprise Architecture 7

within the context of the existing processes, IT systems, and other assets of an

organisation, and it helps in identifying necessary changes. Thus, good architectural

practice helps a company innovate and change by providing both stability and

flexibility. The insights provided by an enterprise architecture are needed on the one

hand in determining the needs and priorities for change from a business perspective,

and on the other hand in assessing how the company may benefit from technolog-

ical and business innovations.

Moreover, architecture is a strategic instrument in guiding an organisation

through a planned course of development. As Ross et al. (2006) show with

numerous case studies, successful enterprises employ an ‘operating model’ with
clear choices on the levels of integration and standardisation of business processes

across the enterprise (Fig. 1.5). This operating model should fit both their area of

business and their stage of development.

Ross et al. explain the role of enterprise architecture as the organising logic for

business processes and IT infrastructure, which must reflect the integration and

standardisation requirements of the operating model. They also describe the

‘engagement model’, i.e., the governance needed to ensure that business and IT

projects meet local and corporate objectives and conform to the enterprise

architecture.

Finally, in an increasingly networked world, no enterprise can focus solely on its

own operations. To get to grips with the wealth of interconnections with customers,

suppliers, and other partners, an enterprise architecture is a valuable asset. A

prominent example of this is outsourcing part of a company’s business processes
and/or IT operations. For any sourcing project to be successful, it is paramount to

have a clear insight into precisely what the activities and responsibilities are of all

the partners involved, and what the services and interfaces between these

partners are.

Coordination Unification

Diversification Replication

Standardisation of
business processes

D
at

a
in

te
gr

at
io

n
Low High

HighFig. 1.5 Operating model

(Ross et al. 2006)

8 1 Introduction to Enterprise Architecture

1.4.2 External Drivers

Next to the internal drive to execute effectively an organisation’s strategy and

optimise its operations, there are also external pressures that push organisations

towards adopting enterprise architecture practice. The regulatory framework

increasingly demands that companies and governmental institutions can prove

that they have a clear insight into their operations and that they comply with the

applicable laws on, say, financial transactions.

In the USA, the Clinger–Cohen Act (1996), also known as the Information

Technology Management Reform Act, demands that every government agency

must have an IT architecture, which is defined as: ‘an integrated framework for

evolving or maintaining existing information technology and acquiring new infor-

mation technology to achieve the agency’s strategic goals and information

resources management goals’. Section 5125 (b) of the Act assigns the Agency

Chief Information Officer (CIO) the responsibility of ‘developing, maintaining, and

facilitating the implementation of a sound and integrated information technology

architecture.’ The US Department of Defense even requires all IT to comply with

this Act, including that in weapons and weapons system programmes.

The Clinger–Cohen Act has been an important stimulus for the development of

enterprise architecture as a discipline, not just in a government context, but in

general. Although most European governments do not impose such strict require-

ments on their agencies, these architecture practices are making inroads in Europe

as well.

The capital adequacy framework known as Basel II (2004), endorsed in 2004 by

the central bank governors and the heads of bank supervisory authorities in the

Group of Ten (G10) countries, puts requirements on banking organisations with

respect to their financial risk management, to promote stability in the financial

world. The Basel II framework imposes strict regulations on banks in terms of risk

measurement and management, with wide-ranging implications for both their

organisations and their IT systems. The framework provides explicit incentives in

the form of lower capital requirements for banks to adopt more comprehensive and

accurate measures of risk as well as more effective processes for controlling their

exposures to risk. This encompasses both credit risk and operational risk, the latter

being defined as the risk of loss resulting from inadequate or failed internal

processes, people and systems or from external events. Given this wide scope and

the detailed requirements on risk management, compliance with Basel II can hardly

be envisaged without a sound architectural approach.

Another US act, the Sarbanes–Oxley Act (2002), also has a major impact. This

act, formally known as the Public Company Accounting Reform and Investor

Protection Act, was drawn up in the aftermath of the Enron scandal, to force

companies to adopt good corporate governance practices and to make company

executives personally accountable. These accountability regulations make it very

important for a company that it is clear what the responsibilities of each employee

are. IT systems must provide the necessary accounting information to be able to

1.4 Drivers for Enterprise Architecture 9

perform the audits required by the Act, and should enforce their users to have

appropriate authorisation. Again, enterprise architecture may be of assistance in

providing the necessary insight, and many companies are improving their architec-

ture practice to conform to these regulations. And given that this Act applies to all

companies that have their stocks quoted on the US stock exchanges, it has a

worldwide impact.

1.5 Summary

Architecture is the art and science of designing complex structures. Enterprise

architecture, more specifically, is defined as a coherent whole of principles,

methods, and models that are used in the design and realisation of an enterprise’s
organisational structure, business processes, information systems, and infrastruc-

ture. Architecture models, views, presentations, and analyses all help to bridge the

‘communication gap’ between architects and stakeholders.

Architecture is an indispensable instrument in controlling the complexity of the

enterprise and its processes and systems. On the one hand, we see internal drivers

for using an architectural approach, related to the strategy execution of an organi-

sation. Better alignment between business and IT leads to lower cost, higher

quality, better time-to-market, and greater customer satisfaction. On the other

hand, external drivers from regulatory authorities and other pressures necessitate

companies to have a thorough insight into their structure and operations. All of

these drivers make a clear case for the use of enterprise architecture.

10 1 Introduction to Enterprise Architecture

Chapter 2

State of the Art

Marc M. Lankhorst, Maria-Eugenia Iacob, and Henk Jonkers

First, we position enterprise architecture relative to a number of well-known stan-

dards and best practices in general and IT management. Second, we outline the most

important frameworks and methods for enterprise architecture currently in use. Next,

we discuss service orientation, the most important architectural paradigm that has

emerged over the last few years. Finally, we describe a number of relevant languages

for modelling organisations, business processes, applications, and technology.

Based upon this state of the art, in the next chapter we will describe what we see

as missing in current methods and techniques, and how our own approach tries to

fill some of these gaps.

2.1 Enterprise Architecture and Other Governance

Instruments

Enterprise architecture is typically used as an instrument in managing a company’s
daily operations and future development. But how does it fit in with other

established management practices and instruments?

Here, we describe how enterprise architecture is positioned within the context of

corporate and IT governance by relating it to a number of well-known best practices

and standards in general and IT management, as outlined in Fig. 2.1. In the next

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

M.-E. Iacob

University of Twente, Enschede, The Netherlands

H. Jonkers

BiZZdesign, Enschede, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_2

11

mailto:m.lankhorst@bizzdesign.com

subsections, we will outline the relation of enterprise architecture with some

well-known management practices in each of these areas, not to be exhaustive but

to show the position and role of enterprise architecture in a management context:

– Strategic management: Balanced Scorecard

– Business model development: Business Model Canvas

– Business architecture: BIZBOK® Guide and O-BA

– Quality management: EFQM and ISO 9001

– IT governance: COBIT

– IT delivery and support: ITIL

– IT implementation: CMM and CMMI

Others have also written extensively on this role of enterprise architecture as a

governance instrument; see e.g. (Ross et al. 2006).

2.1.1 Strategic Management

Kaplan and Norton (1992) introduced the Balanced Scorecard (BSC) as a manage-

ment system that helps an enterprise to clarify and implement its vision and

strategy. Traditionally, management focus has strongly been on financial aspects.

Kaplan and Norton argue that financial measures alone are inadequate to guide the

future development of an organisation, and that they should be supplemented with

measures concerning customer satisfaction, internal processes, and the ability to

innovate.

The BSC therefore suggests viewing an enterprise from four perspectives. The

Customer perspective asks how the enterprise should appear to its customers, with

measures like customer satisfaction. The Financial perspective is focused on the

business value created by the enterprise, entailing measures such as shareholder

value. The Internal Business Processes perspective looks at the effectiveness and

efficiency of a company’s internal operations, paying special attention to the

primary, mission-oriented processes. Finally, the Learning and Growth perspective
addresses the corporate and individual ability to change and improve, which is

critical to any knowledge-intensive organisation. For each of the four perspectives

the BSC proposes a three-layered structure:

Strategic
Management

Strategic
Management

Strategy
Execution
Strategy
Execution

Quality
Management

Quality
Management

IT GovernanceIT Governance

IT Delivery & SupportIT Delivery & Support

IT ImplementationIT Implementation

General Management IT Management

Fig. 2.1 Management

areas relevant to enterprise

architecture

12 2 State of the Art

1. mission (e.g., to become the customers’ preferred supplier);

2. objectives (e.g., to provide the customers with new products);

3. measures (e.g., percentage of turnover generated by new products).

To put the BSC to work, a company should first define its mission, objectives,

and measures for each perspective, and then translate these into a number of

appropriate targets and initiatives to achieve these goals. Strategy maps (Kaplan

and Norton 2004) are often used as layered depiction of these elements and their

relationships.

What is important in the BSC is the notion of double-loop feedback. First of all,

one should measure the outputs of internal business processes and not only fix

defects in these outputs but also identify and remedy the causes of these defects.

Moreover, such a feedback loop should also be instituted for the outcomes of

business strategies. Performance measurement and management by fact are central

to the BSC approach.

If we look at the role of enterprise architecture as a management instrument, it is

especially useful within the Internal Business Processes perspective of the BSC.

Many operational metrics can be tied to a well-defined enterprise architecture and

various performance analyses might be carried out. However, enterprise architec-

ture has a broader use. In the Learning and Growth perspective, a company’s ability
to evolve, to anticipate, and to respond to a changing environment is vital. To

determine an organisation’s agility, it is important to assess what the impact and

feasibility of future changes might be. Impact analysis of an enterprise architecture

may assist in such an assessment.

In Sect. 6.3, we describe how the ArchiMate modelling language for enterprise

architecture (The Open Group 2016a) introduced in Chap. 5 can be used to describe

the Balanced Scorecard.

2.1.2 Business Model Development

The Business Model Canvas (Osterwalder and Pigneur 2010) is a template to create

high-level descriptions of new or existing business models. It is conceptually rooted

in the business model ontology described in Osterwalder’s PhD thesis (Osterwalder

2004). The Business Model Canvas consists of seven parts:

– Value proposition: the centre of the canvas, describing what products and

services an organisation has to offer to its different customers

– Key activities: what the organisation needs to do to provide its value

propositions

– Key resources: the resources needed for these activities

– Customer segments: the typical customer groups the organisation distinguishes

– Customer relationships: the kind of links the organisation has with its

customers

– Channels: how the organisation gets in touch with its customers.

2.1 Enterprise Architecture and Other Governance Instruments 13

http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_5

– Key partners: others with which the organisation cooperates in delivering value

to its customers

– Cost structure: the financial view of the means employed by the organisation

– Revenue streams: the way the organisation makes money from various revenue

flows from its customer segments

The Business Model Canvas lays out these elements in a user-friendly, intuitive

way. It is often used in a brainstorming or workshop context, sometimes using

simple ‘sticky notes’, sometimes in a tool-supported fashion. Figure 2.2 shows a

small example of such a canvas.

Enterprise architecture is typically used as a next stage in strategic development.

Many of the elements in a canvas can be detailed out using enterprise architecture

models. In Sect. 6.4, we describe how the concepts in the Business Model Canvas

can be mapped onto those of the ArchiMate language introduced in Chap. 5.

2.1.3 Business Architecture

In recent years, business architecture has gained an increasing audience and has

established itself as a distinct discipline. Partially fueled by often rather IT-focused

Fig. 2.2 Example business model canvas

14 2 State of the Art

http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_5

enterprise architecture approaches and efforts, it has developed its own methods

and body of knowledge, exemplified by “A Guide to the Business Architecture

Body of Knowledge®” (BIZBOK®Guide) (Business Architecture Guild 2016) and

the Open Business Architecture (O-BA) method being developed by The Open

Group at the time of writing (2016c).

The Business Architecture Special Interest Group (BASIG) of the OMG has

defined business architecture as follows:

Business architecture: a blueprint of the enterprise that provides a common

understanding of the organisation and is used to align strategic objectives and

tactical demands.

A business architecture provides a business-oriented abstraction of the enterprise

in its ecosystem, which helps to translate strategy into action. The role of model-

based support for design, analysis and decision making is becoming increasingly

important in the business architecture discipline.

Key input for business architecture is the organisation’s strategy, which includes
its business model, for example, described using the Business Model Canvas (Sect.

2.1.2), and its operating model (Sect. 1.4.1). Commonly used design techniques in

business architecture include, among others, describing its value network and value

streams (Sect. 6.5), developing and improving customer journeys (Sect. 6.6) and

creating service blueprints (Sect. 6.7). Analysis and decision making in business

architecture are supported by, for example, risk analysis (Sect. 9.4), portfolio

management (Sect. 9.5) and capability-based planning (Sects. 8.7.1 and 9.6).

Typical concepts and aspects that the domain of business architecture concerns

itself with are shown in Fig. 2.3. Basically all of these can be represented directly or

indirectly in the ArchiMate language, which will also be illustrated in Chap. 6 on

combining ArchiMate with other standards and approaches.

In particular, the focus on the capabilities of the enterprise, with capability-based

planning (Ulrich and Rosen 2011; The Open Group 2016b) as a core technique, is a

key contribution of the business architecture discipline. This allows an organisation

to focus on what the current and desired abilities of the enterprise are, before diving
into the details of how it achieves these. This implementation- and technology-

independent view provides a crucial connection between strategy and realisation: It

links the often rather high-level, coarse-grained descriptions of an organisation’s
strategy and business model with more detail- and technology-oriented other

domains within the EA scope, such as business process, application and infrastruc-

ture architecture.

In the context of this book, we consider business architecture to be an important

domain within the broader scope of enterprise architecture, hence the inclusion of

business architecture concepts such as capability, outcome and course of action in

the current version of the ArchiMate modelling language for enterprise architecture

described in Chap. 5. Others take a more IT-oriented view of enterprise architec-

ture, considering it to be enterprise-wide IT architecture and position business

architecture next to it as a separate discipline. A third group see business and

enterprise architecture as largely synonymous. But no matter which stance you

2.1 Enterprise Architecture and Other Governance Instruments 15

http://dx.doi.org/10.1007/978-3-662-53933-0_1
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_5

take in this debate, the techniques used in the domain are an important addition to

the toolbox you can use in designing and managing your enterprise.

2.1.4 Quality Management

Another important management approach is the EFQM (European Foundation for

Quality Management) Excellence Model (EFQM 2003). This model was first

introduced in 1992 as the framework for assessing applications for The European

Quality Award, and was inspired by the Malcolm Baldridge Model in the USA and

the Deming Prize in Japan.

The EFQM model has a much broader scope than ISO 9001 (discussed later in

this section). It not only focuses on quality management, but provides an overall

management framework for performance excellence of the entire organisation. The

EFQM model consists of nine criteria for excellence, five of which are ‘enablers’,
covering what an organisation does, and four are ‘results’, covering what that

organisation achieves. These criteria and their mutual relationships are shown in

diagrammatic form in Fig. 2.4. Leadership and Policy & Strategy determine the

direction and focus of the enterprise; based on this, the People of the enterprise, its

Partnerships & Resources, and its Processes make it happen; stakeholders of the

results achieved are its Customers, its People, and Society in general; and these

Fig. 2.3 The business ecosystem as represented by business architecture (Business Architecture

Guild 2016)

16 2 State of the Art

stakeholder results contribute to the enterprise’s Key Performance Results, which

comprise both financial and non-financial aspects. The EFQM model provides

principles, measures, and indicators for assessing the performance of an enterprise

in all of these aspects, and these measurements are the basis for continuous

learning, innovation, and improvement.

All this also points to the main difference between the EFQM model and the

BSC: whereas the latter is focused on developing effective strategic management,

the former concentrates on measuring and benchmarking the performance of an

organisation with respect to a number of best practices. Both are complementary:

the BSC helps to make strategic choices, and the EFQMmodel assists in continuous

improvement necessary to execute this strategy.

Positioning enterprise architecture with respect to the EFQM model, we view it

especially as an important instrument for the Policy & Strategy and the Processes

aspects. Based on its mission and vision, an organisation will determine the policies

and strategies needed to meet the present and future needs and expectations of its

stakeholders. An enterprise architecture is a valuable instrument in operationalising

and implementing these policies and strategies. First of all, it offers insight into the

structure and operation of the enterprise as a whole by creating a bird’s-eye view of

its organisational structure, business processes, information systems, and infra-

structure. Such an overview is indispensable when formulating a coherent strategy.

Furthermore, an enterprise architecture helps in developing, managing, and com-

municating company-wide standards of operation, needed to ensure that company

policies are indeed implemented. Finally, by providing a better understanding of the

effects of changes, it is of valuable assistance in creating roadmaps for the future,

needed to assess and execute the longer-term enterprise strategy.

Another important standard in the domain of quality management is the ISO

9001:2000 standard (ISO 2000) of the International Organisation for

Partnerships
& Resources

Leader-
Ship Processes

People

Policy &
Strategy

Key
Performance

Results

People
Results

Customer
Results

Society
Results

Innovation & Learning

Enablers Results

Fig. 2.4 The EFQM excellence model (EFQM 2003)

2.1 Enterprise Architecture and Other Governance Instruments 17

Standardisation (ISO). This outlines criteria for a good-quality management system

(QMS). Based on a quality policy and quality goals, a company designs and

documents a QMS to control how processes are performed. The requirements of

the standard cover everything from how a company plans its business processes, to

how these are carried out, measured, and improved.

Starting from general, overall requirements, the standard states the responsibil-

ities of management for the QMS. It then gives requirements for resources, includ-

ing personnel, training, the facility, and work environment. The demands on what is

called ‘product realisation’, i.e., the business processes that realise the company’s
product or service are the core of the standard. Key processes, i.e., those processes

that affect product or service quality, must be identified and documented. This

includes planning, customer-related processes, design, purchasing, and process

control. Finally, requirements are put on measurement, analysis, and improvement

of these business processes. Once the quality system is installed, a company can

request an audit by a Registrar. If it conforms to all the criteria, the company will be

ISO 9001 registered.

Although the standard has earned a reputation as being very ‘document-heavy’,
this mainly pertains to its previous versions of 1987 and 1994. Notwithstanding

these criticisms, the business value of a good QMS is universally acknowledged. In

Europe, industrial companies increasingly require ISO 9001 registration from their

suppliers, and the universal acceptance as an international standard is growing.

Looking at enterprise architecture from the perspective of quality management

in general and ISO 9001 in particular, we see its main contribution in the integrated

design, management and documentation of business processes, and their supporting

IT systems. A well-designed and documented enterprise architecture helps an

organisation to conform to the ISO 9001 requirements on process identification

and documentation; conversely, the need for a QMS may direct focus to an

enterprise architecture initiative, by putting the emphasis on those processes and

resources that are critical for the company’s product or service quality. In this way,
quality management and enterprise architecture form a natural combination: the

former is concerned with what needs to be designed, documented, controlled,

measured, and improved, and the latter determines how these high-quality pro-

cesses and resources are organised and realised.

2.1.5 IT Governance

The COBIT (Control Objectives for Information and Related Technology) standard

for IT governance was initially published in 1996 by the Information Systems Audit

and Control Association. Now in its fifth edition (Stroud 2012), COBIT is an

internationally accepted IT control framework that provides organisations with

‘good practices’ that help in implementing an IT governance structure throughout

the enterprise. It aims to bridge the gaps between business risks, control needs, and

technical issues. The basic premise of COBIT is that in order to provide the

18 2 State of the Art

http://www.isaca.org/cobit.htm

information that the organisation needs to achieve its objectives, IT resources need

to be managed by a set of naturally grouped processes.

The core of the COBIT framework is the control objectives and management

guidelines for a set of IT processes, which are grouped into five domains:

1. Evaluate, direct and monitor

2. Align, plan and organise

3. Build, acquire and implement

4. Deliver, service and support

5. Monitor, evaluate and assess

Here, ‘control’ is defined by COBIT as the policies, procedures, practices, and

organisational structures designed to provide reasonable assurance that business

objectives will be achieved and that undesired events will be prevented or detected

and corrected. The control objectives can help to support IT governance within an

enterprise. For example, the control objectives of the ‘Assist and advise IT cus-

tomers’ process consist of establishing a help desk, registration of the customer

queries, customer query escalation, monitoring of clearance, and trend analysis and

reporting.

Next to the framework of control objectives, COBIT provides critical success

factors for achieving optimal control over IT processes, key goal indicators, which

measure whether an IT process has met its business requirements, and key perfor-

mance indicators, which define measures of how well the IT process is performing

towards achieving its goals.

COBIT also offers a maturity model for IT governance, consisting of five

maturity levels:

1. Ad Hoc: There are no standardised processes. Ad hoc approaches are applied on

a case-by-case basis.

2. Repeatable: Management is aware of the issues. Performance indicators are

being developed, and basic measurements have been identified, as have assess-

ment methods and techniques.

3. Defined: The need to act is understood and accepted. Procedures have been

standardised, documented and implemented. BSC ideas are being adopted by the

organisation.

4. Managed: Full understanding of issues on all levels has been reached. Process

excellence is built on a formal training curriculum. IT is fully aligned with the

business strategy.

5. Optimised: Continuous improvement is the defining characteristic. Processes

have been refined to the level of external best practices based on the results of

continuous improvement with other organisations.

This maturity model closely resembles the Capability Maturity Model (CMM)

for software development and its successor the CMMI (see Sect. 2.1.7).

According to COBIT, well-defined architectures are the basis for a good internal

control environment. In many enterprises, the IT organisation will be responsible

for establishing and maintaining the enterprise architecture. Whereas COBIT

2.1 Enterprise Architecture and Other Governance Instruments 19

focuses on how one should organise the (secondary) IT function of an organisation,

enterprise architecture concentrates on the (primary) business and IT structures,

processes, information and technology of the enterprise. Thus, enterprise architec-

ture forms a natural complement to COBIT. Relative to the maturity levels of

COBIT, enterprise architecture will of course be most relevant in the upper level. At

the Repeatable level, a first awareness of the value of architecture may arise, but

there is typically no established architectural practice at the enterprise level. Only

from the Defined level upwards is it recognised and used as an important instrument

in planning and managing IT developments in coordination with business needs.

2.1.6 IT Service Delivery and Support

ITIL (IT Infrastructure Library) (Hanna et al. 2008) is the most widely accepted set

of best practices in the IT service delivery domain. It was originally developed by

the UK Office of Government Commerce (OGC), to improve management of IT

services in the UK central government. The OGC’s objectives were on the one hand
to create a comprehensive and consistent set of best practices for quality IT service

management, and on the other hand to encourage the private sector to develop

training, consultancy, and tools that support ITIL. Over the years, ITIL has gained

broad support and has become the worldwide de facto standard for IT service

management. The ITIL users group, the IT Service Management Forum (itSMF1),

actively promotes the exchange of information and experiences to help IT service

providers manage service delivery.

ITIL comprises a series of documents giving guidance on the provision of good

IT services, and on the facilities needed to support IT. ITIL has a process-oriented

approach to service management. It provides codes of practice that help organisa-

tions to establish quality management of their IT services and infrastructure, where

‘quality’ is defined as ‘matched to business needs and user requirements as these

evolve.’ It does this by providing guidance on the design and implementation of the

various processes within the IT organisation. The core of ITIL consists of two broad

groups of processes:

– Service Delivery, comprising service-level management, availability manage-

ment, financial management for IT services, IT service contingency manage-

ment, and capacity management;

– Service Support, covering problem management, incident management, service

desk, change management, release management, and configuration

management.

ITIL is complementary to COBIT. The high-level control objectives of COBIT

can be implemented through the use of ITIL. Its help desk module, for example,

1http://www.itsmf.com

20 2 State of the Art

http://www.itsmf.com

complements and provides details on the help desk process including the planning,

implementation, post-implementation, benefits and costs, and tools. So, COBIT’s
control objectives tell what to do and ITIL explains how to do it, i.e., what the best-

practice processes are to realise these objectives.

Management of the IT assets of an organisation is central to ITIL. This is where a

well-developed enterprise architecture is very valuable. It provides IT managers

with a clear understanding of the IT applications and infrastructure, the related

business processes, and the various dependencies between these domains. Nearly

all of the core processes identified by ITIL will benefit from this.

2.1.7 IT Implementation

The Capability Maturity Model for Software (Paulk et al. 1993), also known as the

CMM and SW-CMM, is a model for judging the maturity of an organisation’s
software engineering processes, and provides organisations with key practices

required to help them increase the maturity of these processes. In 2000, the

SW-CMM was upgraded to CMMI (Capability Maturity Model Integration),

which addresses the integration of software development with other engineering

activities and expands the scope to encompass the entire product life cycle, includ-

ing systems engineering, integrated product and process development, and supplier

sourcing. The CMM’s popularity has sparked off the development of similar

maturity models in other fields, including enterprise architecture; see, e.g., the

NASCIO Enterprise Architecture Maturity Model (NASCIO 2003).

In the CMMI maturity models in their most common form, there are five

maturity levels, each a layer in the foundation for ongoing process improvement,

designated by the numbers 1–5 (CMMI Product Team 2002):

1. Initial: Processes are usually ad hoc and chaotic. The organisation does not

provide a stable environment. Success in these organisations depends on the

competence and heroics of the people in the organisation and not on the use of

proven processes.

2. Managed: The projects of the organisation have ensured that requirements are

managed and that processes are planned, performed, measured, and controlled.

However, processes may be quite different in each specific instance, e.g., on a

particular project.

3. Defined: Processes are well characterised and understood, and are described in

standards, procedures, tools, and methods. These standards are used to establish

consistency across the organisation. Projects establish their defined processes by

tailoring the organisation’s set of standard processes according to tailoring

guidelines.

4. Quantitatively Managed: Quantitative objectives for quality and process per-

formance are established and used as criteria in managing processes. Quantita-

tive objectives are based on the needs of the customer, end users, organisation,

and process implementers.

2.1 Enterprise Architecture and Other Governance Instruments 21

5. Optimising: Process performance is continually improved through both incre-

mental and innovative technological improvements. Quantitative process-

improvement objectives for the organisation are established, continually revised

to reflect changing business objectives, and used as criteria in managing process

improvement.

The CMMI provides numerous guidelines for assessing the maturity of an

organisation and the improvements needed in various process areas to proceed

from one level to the next. Next to this familiar staged representation of the maturity

model in terms of consecutive maturity levels, there is now a continuous represen-

tation as well.

In any software engineering project of substantial size, software architecture

plays an important role. The context of this software architecture may be given by

an enterprise architecture, which provides constraints and guidelines for individual

software projects. As such, enterprise architecture is something that becomes

especially useful (or even necessary) at CMMI Level 3 and beyond, where projects

have to conform to organisation-wide standards and guidelines.

2.2 Architecture Methods and Frameworks

To provide more insight into the different aspects that an enterprise architecture

model may encompass, we will outline a number of well-known architecture

frameworks, standards and approaches. Frameworks structure architecture descrip-

tion techniques by identifying and relating different architectural viewpoints and

the modelling techniques associated with them. They do not provide the concepts

for the actual modelling, although some frameworks are closely connected to a

specific modelling language or set of languages.

Most architecture frameworks are quite precise in establishing what elements

should be part of an enterprise architecture. However, to ensure the quality of the

enterprise architecture during its life cycle the adoption of a certain framework is

not sufficient. The relations between the different types of domains, views, or layers

of the architecture must remain clear, and any change should be carried through

methodically in all of them. For this purpose, a number of methods are available,

which assist architects through all phases of the life cycle of architectures.

2.2.1 The IEEE 1471-2000/ISO/IEC 42010 Standard

In 2000, the IEEE Computer Society approved IEEE Standard 1471-2000 (IEEE

Computer Society 2000), which builds a solid theoretical base for the definition,

analysis, and description of system architectures. IEEE 1471, which has since been

subsumed by the ISO/IEC 42010 standard (ISO/IEC/IEEE 2011), focuses mainly

22 2 State of the Art

on software-intensive systems, such as information systems, embedded systems,

and composite systems in the context of computing. The standard uses the civil

architecture metaphor to describe software system architectures. In this sense, it is

similar to the framework of Zachman (see Sect. 2.2.2), although it does not try to

standardise the system architecture by establishing a fixed number, or the nature of

views (as in the case of the 36 cells of Zachman’s framework). It also does not try to

standardise the process of developing architectures, and therefore does not recom-

mend any modelling languages, methodologies or standards. Instead, it provides, in

the terms of a ‘recommended practice’, a number of valuable concepts and terms of

reference, which reflect the ‘generally accepted trends in practice for architecture

description’ and which ‘codify those elements on which there is consensus’.
First of all, the standard gives a set of definitions for key terms such as acquirer,

architect, architecture description, architectural models, architecture, life cycle

model, system, system stakeholder, concerns, mission, context, architectural

view, architectural viewpoint. As essential ideas we note a clear separation between

an architecture and its architecture descriptions (defined as means to record archi-

tectures), and the central role of the relationship between architectural viewpoint

and architectural view. The standard also provides a conceptual framework, which

is meant:

– To explain how the key terms relate to each other in a conceptual model for

architecture description (this model is shown in Fig. 2.5, using the UML notation

for class diagrams; see also Sect. 2.3.3)

Mission

SystemEnvironment

Stakeholder

Architecture

Architectural
Description Rationale

ViewViewpointConcern

Library
Viewpoint Model

aggregates
1..*

consists of
1..*

participates in
1..*

establish methods for
1..*

has source
0..1

conforms to
used to
cover 1..*

provides

participates
in

organized
by 1..*

selects
1..*identifies

1..*

is addressed
to 1..*

has
1..*

identifies
1..*

has
1..*

has an

is important
to 1..*

described
by 1

fulfills
1..*

inhabits
influences

Mission

SystemEnvironment

Stakeholder

Architecture

Architectural
Description Rationale

ViewViewpointConcern

Library
Viewpoint Model

aggregates
1..*

consists of
1..*

participates in
1..*

establish methods for
1..*

has source
0..1

conforms to
used to
cover 1..*

provides

participates
in

organized
by 1..*

selects
1..*identifies

1..*

is addressed
to 1..*

has
1..*

identifies
1..*

has
1..*

has an

is important
to 1..*

described
by 1

fulfills
1..*

inhabits
influences

Fig. 2.5 Conceptual model of architecture description (based on IEEE Computer Society 2000)

2.2 Architecture Methods and Frameworks 23

– To explain the role of the stakeholders in the creation and use of an architecture

description

– To provide a number of scenarios for the architectural activities during the life

cycle: architectures of single systems, iterative architecture for evolutionary

systems, architecture for existing systems and architectural evaluation

Furthermore, the standard gives six architecture description practices:

– Architectural documentation referring to identification, version, and overview

information.

– Identification of the system stakeholders and of their concerns, established to be

relevant to the architecture.

– Selection of architectural viewpoints, containing the specification of each view-

point that has been selected to organise the representation of the architecture and

the reasons for which it was selected.

– Architectural views corresponding to the selected viewpoints.

– Consistency among architectural views.

– Architectural rationale for the selection of the current architecture from a

number of considered alternatives.

IEEE 1471 also provides a number of relevant architectural viewpoints together

with their specifications in terms of concerns, languages, and modelling and

analysis methods (see Annex D of the standard). It is important to note that

architecture descriptions that are compliant with IEEE 1471 can be used to meet

the requirements of other standards, like the Reference Model of Open Distributed

Processing (described in Sect. 2.2.5).

2.2.2 The Zachman Framework

In 1987, John Zachman introduced the first and best-known enterprise architecture

framework (Zachman 1987), although back then it was called ‘Framework for

Information Systems Architecture’. The framework as it applies to enterprises is

simply a logical structure for classifying and organising the descriptive represen-

tations of an enterprise that are significant to the management of the enterprise as

well as to the development of the enterprise’s systems.

The framework (Fig. 2.6) in its most simple form depicts the design artefacts that

constitute the intersection between the roles in the design process, that is, owner,
designer and builder, and the product abstractions, that is, what (material) it is made

of, how (process) it works and where (geometry) the components are relative to one

another. Empirically, in the older disciplines, some other ‘artefacts’ were observ-

able that were being used for scoping and for implementation purposes. These roles

are somewhat arbitrarily labelled planner and subcontractor and are included in the
framework graphic that is commonly exhibited.

24 2 State of the Art

From the very inception of the framework, some other product abstractions were

known to exist because it was obvious that in addition to what, how, and where, a
complete description would necessarily have to include the remaining primitive

interrogatives: who, when and why. These three additional interrogatives would be

manifest as three additional columns of models that, in the case of enterprises,

would depict: who does what work, when do things happen, and why are various

choices made?

Advantages of the Zachman framework are that it is easy to understand, it

addresses the enterprise as a whole, it is defined independently of tools or method-

ologies, and any issues can be mapped against it to understand where they fit. An

important drawback is the large number of cells, which is an obstacle for the

practical applicability of the framework. Also, the relations between the different

cells are not that well specified. Notwithstanding these drawbacks, Zachman is to be

credited with providing the first comprehensive framework for enterprise architec-

ture, and his work is still widely used.

2.2.3 The Open Group Architecture Framework

The Open Group Architecture Framework (TOGAF) originated as a generic frame-

work and methodology for development of technical architectures, but evolved into

an enterprise architecture framework and method. From version 8 onwards,

TOGAF (The Open Group 2011) is dedicated to enterprise architectures.

TOGAF has the following main components (Fig. 2.7):

– An Architecture Capability Framework, which addresses the organisation, pro-

cesses, skills, roles, and responsibilities required to establish and operate an

architecture function within an enterprise.

Scope
(contextual)

Enterprise model
(conceptual)

System model
(logical)

Technology model
(physical)

Detailed
representations
(out of context)

Scope
(contextual)

Enterprise model
(conceptual)

System model
(logical)

Technology model
(physical)

Detailed
representations
(out of context)

Planner

Owner

Designer

Builder

Sub-
contractor

Planner

Owner

Designer

Builder

Sub-
contractor

Data Function Network People Time MotivationData Function Network People Time Motivation

What? How? Where? Who? When? Why?What? How? Where? Who? When? Why?

Fig. 2.6 The Zachman framework (Zachman 1987)

2.2 Architecture Methods and Frameworks 25

– The Architecture Development Method (ADM), which provides a ‘way of

working’ for architects. The ADM is considered to be the core of TOGAF, and

consists of a stepwise cyclic approach for the development of the overall

enterprise architecture.

– The Architecture Content Framework, which considers an overall enterprise

architecture as composed of four closely interrelated architectures: Business

Architecture, Data Architecture, Application Architecture, and Technology

(IT) Architecture.

– The Enterprise Continuum, which comprises various reference models, such as

the Technical Reference Model, The Open Group’s Standards Information Base

(SIB), and The Building Blocks Information Base (BBIB). The idea behind the

Enterprise Continuum is to illustrates how architectures are developed across a

continuum ranging from foundational architectures, through common systems

architectures and industry-specific architectures, to an enterprise’s own individ-

ual architecture.

TOGAF’s ADM (Fig. 2.8) is iterative, over the whole process, between phases

and within phases. For each iteration of the ADM, a fresh decision must be taken as

to:

– The breadth of coverage of the enterprise to be defined;

– The level of detail to be defined;

– The extent of the time horizon aimed at, including the number and extent of any

intermediate time horizons;

Architecture
Capability

Framework

Architecture
Development Method

Enterprise Continuum
and Tools

TOGAF
Reference Models

Architecture
Content

Framework

ADM Guidelines
and Techniques

Business
Vision and

Drivers

Business
Capabilities

Fig. 2.7 TOGAF 9.1 (The

Open Group 2011)

26 2 State of the Art

– The architectural assets to be leveraged in the organisation’s Enterprise Contin-
uum, including assets created in previous iterations of the ADM cycle within the

enterprise and assets available elsewhere in the industry.

These decisions need to be made on the basis of a practical assessment of

resource and competence availability, and the value that can realistically be

expected to accrue to the enterprise from the chosen scope of the architecture work.

As a generic method, the ADM is intended to be used by enterprises in a wide

variety of different geographies and applied in different vertical sectors/industry

types. As such, it may be, but does not necessarily have to be, tailored to specific

needs. For example:

It may be used in conjunction with the set of deliverables of another framework,

where these have been deemed to be more appropriate for a specific organisation.

(For example, many US federal agencies have developed individual frameworks

that define the deliverables specific to their particular departmental needs).

It may be used in conjunction with the well-known Zachman framework, which

is an excellent classification scheme, but lacks an openly available, well-defined

methodology.

In Sect. 6.13, we will provide more detail on combining the ArchiMate language

defined in Chap. 5 with the TOGAF framework.

Preliminary

D
Technology
Architecture

Requirements
Management

A
Architecture

Vision
B

Business
Architecture

C
Information

Systems
Architectures

H
Architecture

Change
Management

G
Implementation

Governance

F
Migration
Planning E

Opportunities
and

Solutions

Preliminary

D
Technology
Architecture

Requirements
Management

A
Architecture

Vision
B

Business
Architecture

C
Information

Systems
Architectures

H
Architecture

Change
Management

G
Implementation

Governance

F
Migration
Planning E

Opportunities
and

Solutions

Fig. 2.8 TOGAF

architecture development

method (The Open Group

2011)

2.2 Architecture Methods and Frameworks 27

http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_5

2.2.4 OMG’s Model-Driven Architecture

The Model-Driven Architecture (MDA) (Object Management Group 2014; Frankel

2003) aims to provide an open, vendor-neutral approach to interoperability. It

builds upon the Object Management Group’s modelling standards: the Unified

Modeling Language (UML; see also Sect. 2.3.3), the Meta Object Facility (MOF)

(Object Management Group 2015d) and the Common Warehouse Meta-model

(CWM). Platform-independent application descriptions built with these standards

can be realised using different open or proprietary platforms, such as Java, .NET,

XMI/XML and Web services.

MDA wants to raise the level of abstraction at which software solutions are

specified by defining a framework supported by a collection of standards that sets a

standard for generating code from models and vice versa. Now, MDA-based

software development tools already support the specification of software in UML

instead of in a programming language like Java.

MDA comprises three abstraction levels with mappings between them (see

Fig. 2.9):

1. The requirements for the system are modelled in a domain model or business

model, historically called Computation-Independent Model (CIM) in MDA,

Computation
Independent Model

(CIM)

Platform
Independent Model

(PIM)

Platform
Specific Model

(PSM)

m
ap

pi
ng

m
ap

pi
ng

m
ap

pi
ng

m
ap

pi
ng

Business model
Domain model
Business requirements

UML model for a Java
platform

BPMN Model independent
of workflow engine
UML model independent
of computing platform

WS-BPEL process model

Fig. 2.9 MDA framework

28 2 State of the Art

which describes the situation in which the system will be used. It hides much or

all information about the use of automated data processing systems.

2. The Platform-Independent Model (PIM) describes the operation of a system

while hiding the details necessary for a particular platform. A PIM shows that

part of the complete specification that does not change from one platform to

another.

3. A Platform-Specific Model (PSM) combines the specifications in the PIM with

the details that specify how that system uses a particular type of platform.

UML is endorsed as the modelling language for both PIMs and PSMs. At the

CIM level, a language for business process specification such as BPMN (Sect.

2.3.2) may be used, and languages for the description of business rules and business

models are also available.

One of the key features of the MDA is the notion of mapping. A mapping is a set

of rules and techniques used to modify one model to get another model. In certain

restricted situations, a fully automatic transformation from a PIM to a PSM may be

possible, and software development tools will support these automated mappings.

To what extent automation of mappings between CIMs and PIMs is feasible is still a

topic of research. If these mappings are performed in a predefined (formal) way,

relations between models of different abstraction levels can be assured. The

ArchiMate language introduced in Chap. 5 would typically be positioned at the

CIM level of the MDA. In Sects. 6.1.7 and 6.1.8, we describe how several

ArchiMate concepts can be mapped to BPMN and UML, respectively.

The Meta Object Facility (MOF) (Object Management Group 2015c) is a

standard for repositories that plays a central role in the MDA framework. A

MOF-compliant repository makes it possible to manage models in an integrated

fashion, even when the models are expressed in different languages. In order to

make a repository effective for EA, it must be possible to model relations between

models in the repository. MOF in itself does not offer a solution for this, but models

in a modelling language like ArchiMate can be added in order to model these

relations. In addition to MOF, OMG has developed the QVT (Queries, Views, and

Transformations) specification (Object Management Group 2016b), which

addresses the way mappings are achieved between models whose languages are

defined using MOF and defines a standard way of querying MOF models and

creating views of these models.

2.2.5 Other Frameworks

DoDAF/C4ISR The Command, Control, Communications, Computers, Intelli-

gence, Surveillance, and Reconnaissance (C4ISR) Architecture Framework

(C4ISR Architecture Working Group 1997) was originally developed in 1996, for

the US Department of Defense, to ensure a common unifying approach for the

commands, military services, and defence agencies to follow in describing their

2.2 Architecture Methods and Frameworks 29

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_6

various architectures. The framework was retitled Department of Defense Archi-

tecture Framework (DoDAF) in 2003 (Department of Defense 2007). Although

DoDAF has a rather specific target, it can be extended to system architectures that

are more general. DoDAF sees the architecture description as an integration of three

main views: operational view, system view, and technical view. A number of

concepts and fundamental definitions (e.g., architecture, architecture description,

roles, and interrelationships of the operational, systems, and technical architecture

views) are provided. Some framework-compliant guidelines and principles for

building architecture descriptions (including the specific product types required

for all architecture descriptions), and a Six-Step Architecture Description proce-

dure, complement them.

RM-ODP The Reference Model for Open Distributed Processing (RM-ODP) is an

ISO/ITU Standard (ITU 1996) which defines a framework for architecture specifi-

cation of large distributed systems. The standard aims to provide support for

interworking, interoperability, portability and distribution, and therefore to enable

the building of open, integrated, flexible, modular, manageable, heterogeneous,

secure, and transparent systems (see also Putman 1991). The standard has four

parts:

– Part 1: Reference, containing a motivational overview of the standard and its

concepts (ITU 1996).

– Part 2: Foundations, defining the concepts, the analytical framework for the

description of ODP systems, and a general framework for assessment and

conformance (ITU 1995a).

– Part 3: Architecture, describing the ODP framework of viewpoints for the

specification of ODP systems in different viewpoint languages (ITU 1995b). It

identifies five viewpoints on a system and its environment: enterprise, informa-

tion, computation, engineering, and technology.

– Part 4: Architectural semantics, showing how the modelling concepts from Part

2 and the viewpoint languages from Part 3 can be complemented in a number of

formal description techniques, such as LOTOS, Estelle, SDL, and Z (ITU 1997).

GERAM The Generic Enterprise Reference Architecture and Methodology

(GERAM) (IFIP-IFAC Task Force 1999) defines the enterprise-related generic

concepts recommended for use in enterprise engineering and integration projects.

These concepts can be categorised as:

– Human-oriented concepts to describe the role of humans as an integral part of

the organisation and operation of an enterprise and to support humans during

enterprise design, construction, and change.

– Process-oriented concepts for the description of the business processes of the

enterprise;

– Technology-oriented concepts for the description of the supporting technology

involved in both enterprise operation and enterprise engineering efforts (model-

ling and model use support).

30 2 State of the Art

The model proposed by GERAM has three dimensions: the life cycle dimension,

the instantiation dimension allowing for different levels of controlled

particularisation, and the view dimension with four views: Entity Model Content

view, Entity Purpose view, Entity Implementation view, and Entity Physical Man-

ifestation view. Each view is further refined and might have a number of

components.

Nolan Norton Framework (Zee et al. 2000) This framework is the result of a

research project of the Nolan Norton Institute (which involved 17 Dutch large

companies) on current practice in the field of architectural development. Based on

the information collected from companies the authors have defined a five-

perspective vision of enterprise architecture:

– Content and goals: which type of architecture is developed, what are its com-

ponents and the relationships between them, what goals and requirements has

the architecture to meet? More precisely, this perspective consists of five

interconnected architectures (they correspond to what we have called architec-

tural views): product architecture, process architecture, organisation architec-

ture, functional information-architecture, and technical information architecture.

– Architecture development process: what are the different phases in the develop-

ment of an architecture, what is their sequence and what components have to be

developed in each phase?

– Architecture process operation: what are the reasons for the change, what

information is needed, and where do the responsibilities lie for decision making?

– Architectural competencies: what level of expertise should the organisation

reach (and how) in order to develop, implement, and use an architecture?

– Cost/Benefits: what are the costs and benefits of developing a new architecture?

2.3 Description Languages

In subdomains such as business process design and software development, we find

established description languages for modelling these domains. For software

modelling, UML (described in Sect. 2.3.3) is of course the single dominant lan-

guage. In organisation and process modelling, on the other hand, a multitude of

languages are in use: there is no standard for models in this domain.

Here, we describe a number of languages for modelling business and IT We do

not describe ‘languages’ that are merely abstract collections of concepts, such as the

RM-ODP viewpoint languages, but focus on languages that either find widespread

use or have properties that are interesting from the perspective of our goals in

developing an enterprise architecture language.

2.3 Description Languages 31

2.3.1 IDEF

IDEF is the name of a family of languages used to perform enterprise modelling and

analysis (see http://www.idef.com/ and Mayer et al. 1995; IDEF 1993; Menzel and

Mayer 1998). The IDEF (Integrated Computer-Aided Manufacturing (ICAM)

DEFinition) group of methods have a military background. Originally, they were

developed by the US Air Force Program for Integrated Computer Aided

Manufacturing (ICAM). The numbers of participants in the meetings of the IDEF

user group are evidence of the widespread usage of IDEF.

Currently, there are 16 I.E. methods. Of these methods, IDEF0, IDEF3, and

IDEF1X (‘the core’) are the most commonly used. Their scope covers:

– Functional modelling, IDEF0: The idea behind IDEF0 is to model the elements

controlling the execution of a function, the actors performing the function, the

objects or data consumed and produced by the function, and the relationships

between business functions (shared resources and dependencies).

– Process modelling, IDEF3: IDEF3 captures the workflow of a business process

via process flow diagrams. These show the task sequence for processes

performed by the organisation, the decision logic, describe different scenarios

for performing the same business functions, and enable the analysis and

improvement of the workflow.

– Data modelling, IDEF1X: IDEF1X is used to create logical data models and

physical data models by the means of logical model diagrams, multiple IDEF1X

logical subject area diagrams, and multiple physical diagrams.

There are five elements to the IDEF0 functional model (see Fig. 2.10): the

activity (or process) is represented by boxes, inputs, outputs, constraints, or
controls on the activities, and mechanisms that carry out the activity. The

inputs, control, output and mechanism arrows are also referred to as

ICOMs. Each activity and the ICOMs can be decomposed (or exploded) into

more detailed levels of analysis. The decomposition mechanism is also indicated

as a modelling technique for units of behaviour in IDEF3.

The IDEF3 Process Description Capture Method provides a mechanism for

collecting and documenting processes. There are two IDEF3 description modes:

process flow diagrams and object state transition network diagrams. A process flow

Perform
Activity

Input Output

Constraint

Mechanism
(Resource)

Fig. 2.10 IDEF0

representation

32 2 State of the Art

http://www.idef.com/

description captures knowledge of ‘how things work’ in an organisation, e.g., the

description of what happens to a part as it flows through a sequence of manufactur-

ing processes. The object state transition network description summarises the

allowable transitions an object may undergo throughout a particular process. The

IDEF3 term for elements represented by boxes is a Unit Of Behaviour (UOB). The

arrows (links) tie the boxes (activities) together and define the logical flows. The

smaller boxes define junctions that provide a mechanism for introducing logic to the

flows.

The IDEF family provides support for the modelling of several architectural

views. However, there are no communication mechanisms between models. The

fact that they are isolated hinders the visualisation of all models as interrelated

elements of an architectural system. This also means that a switch between views is

not possible.

IDEF is widely used in the industry. This indicates that it satisfies the needs of

the users within acceptable limits. The IDEF family is subject to a continuous

process of development and improvement. Still, IDEF0, IDEF1X, and IDEF3 are

rather stable and rigid languages, and IDEF0 and IDEF1X have been published as

standards of the National Institute of Standards and Technology.

2.3.2 BPMN

The Business Process Modelling Notation (BPMN) was developed by the Business

Process Management Initiative (BPMI), which has since merged with the Object

Management Group. The BPMN standard (Object Management Group 2013)

specifies a graphical notation that serves as a common basis for a variety of business

process modelling and execution languages.

As the name already indicates, BPMN is restricted to process modelling; appli-

cations or infrastructure are not covered by the language. The main purpose of

BPMN is to provide a uniform notation for modelling business processes in terms of

activities and their relationships (Fig. 2.11).

The first version of BPMN only defined a concrete syntax, i.e., a uniform

(graphical) notation for business process modelling concepts. However, there is a

formal mapping to the XML-based business process execution language

WS-BPEL. BPMN 2 (Object Management Group 2013) provides a semantics for

execution of these models, and many business process management tool suites now

support this.

2.3 Description Languages 33

2.3.3 UML

The Unified Modeling Language (UML) (Booch et al. 1999; Object Management

Group 2015a) is currently the most important industry-standard language for

specifying, visualising, constructing and documenting the artefacts of software

systems. The language’s development is managed by the Object Management

Group (OMG). It emerged from the combination of three existing notations,

Booch, OMT, and Objectory, authored by the ‘three amigos’ Booch, Rumbaugh,

and Jacobson. Other influences came from Harel’s state charts and Shlaer-Mellor’s
object life cycles.

UML is intended to be used by system designers. Consequently, UML models

are only clear to those who have a sound background in computer science, in

particular in object orientation (see Fowler and Scott 1999). However, leaving out

the more technical details, UML models should be sufficiently understandable for

illustrative and explanatory purposes to business engineers and organisation spe-

cialists. Although UML was originally developed for the design of object-oriented

software, its use has expanded to other areas, including architecture modelling. In

its current version, UML 2 (Object Management Group 2015a), several architec-

tural concepts are included.

Through object orientation, UML covers all possible modelling domains one can

think of. From the point of view of UML, the world consists of only one kind of

component-like thing, called object, together with a connection-like thing, called

link. Examples of objects are persons, organisational units, products, projects,

archives, and machines. The objects consist of a static part and a dynamic part.

The dynamic part is a description of how such an object does what it should do.

The links reflect any kind of connection or relation between objects, varying

from concrete (‘is-boss-of’) to abstract (‘might-be-relevant-for’). In this way links

Fig. 2.11 Example model in BPMN

34 2 State of the Art

can express relations, connections, dependencies, relevancies of a physical, logical,

temporal, structural, behavioural, similar, or complementary character, to mention

a few examples.

UML is a disturbingly rich combination of 13 sublanguages each having its own

(sub)scope of the complete UML scope, and each with its own diagram to model a

specific aspect of a (software) system. The 13 diagrams can be grouped in three

categories:

– structure: package diagrams, class diagrams, object diagrams, composite struc-

ture diagrams;

– behaviour: use case diagrams, state diagrams, sequence diagrams, timing dia-

grams, communication diagrams, activity diagrams, interaction overview

diagrams;

– implementation: component diagrams, deployment diagrams.

Each diagram type describes a system or parts of it from a certain point of view,

and contains its own symbols. However, the diagram types and UML meta-model

are interrelated; no strict separation between views and meta-model concepts has

been made. Consequently, the relations between modelling concepts in different

diagrams are often ill-defined. We will not show the notation of all these diagrams

and modelling concepts here; a good overview is given in Fowler and Scott (1999).

Moreover, apart from the package, component, and deployment diagrams, each

of the other languages is in itself a disturbingly rich combination of visual building

blocks. Some of these languages have large mutual overlap, e.g., activity diagrams

and state chart diagrams. The advantage of such richness is the expressiveness of

the language; a serious disadvantage is the readability and accessibility of the

language. The large numbers of symbols and diagrams make the learning curve

of UML pretty steep for new users.

Next to the graphical notation, UML contains the Object Constraint Language

(OCL), a textual language for specifying constraints on model elements. The

meaning of UML diagrams is not always very intuitive and sometimes requires

quite careful study. For an experienced UML user, however, the language is not too

difficult to use.

To extend the modelling vocabulary or give distinctive visual cues to certain

kinds of abstractions that often appear, UML offers three kinds of mechanisms:

– A ‘stereotype’ is an extension of the vocabulary of UML that allows the creation

of new kinds of building blocks, based on existing ones. A stereotype is used to

define specialisations of existing elements of UML meta-model.

– A ‘stereotype attribute’ is an extension of the properties of a UML element that

allows the creation of new information in that element’s specification. Stereo-
type attributes can be added to all existing meta-model elements.

– UML offers the possibility to define so-called profiles attuned to certain problem

domains. A profile is a kind of dialect of the original modelling language, better

suited to reflect the characteristics of a certain problem domain. A profile uses

tagged values and stereotypes to express a specific and precise model.

2.3 Description Languages 35

Although these extension mechanisms give UML considerable flexibility, they

also are a weak point of the language. Stereotypes, especially when applied too

much, can confuse readers who are not familiar with them. In such cases stereo-

types take away one of the strong points of UML, which is standardisation.

UML partially has a formal basis. Semantics for individual diagram types exist,

in a more or less formal manner. However, a formalised integrated semantics for the

whole language is still lacking. This lack of an integrated semantics makes it

difficult to define rigorous analysis techniques.

Perhaps UML’s most important asset is its broad tool support: there are many

commercial as well as public domain modelling environments. As many of these

environments offer means to translate a model into executable code, e.g. Java, some

form of analysis is being provided: through the execution. Often also other means of

analysis and verification are being provided, through partial consistency checking,

or forms of animation or explicit translation to a different domain where a particular

verification can be performed.

2.3.4 Architecture Description Languages

The term ‘Architecture Description Language‘ (ADL) is used to refer to a (usually

formal) language to describe a software architecture in rather general terms. A wide

variety of ADLs exist, with several differences in the exact concepts that they offer:

some focus on structural aspects of an architecture, while others pay more attention

to the dynamic aspects. In general, their concepts are defined at a rather generic

level: although they are usually intended for modelling the application level, the use

of the concepts is not restricted to this. As a result of this high abstraction level,

constructing and reading ADL specifications may be difficult for non-expert users.

An advantage is the precise definition and formal foundation of the languages,

which may make them suitable as an underlying language for more specific

concepts. In Medvidovic and Taylor (2000) the basics of ADLs are described,

and a large number of ADLs are compared.

Although the concepts used in ADLs are very generic, they are mainly applied in

the field of software architecture. In addition to ADLs with a general applicability,

there are ADLs with a much more specific application area (e.g., MetaH, for the

guidance, navigation, and control domain). Because of the formal nature and high

abstraction level of the concepts, ADLs are mainly suitable for users with a

technical background. They are unsuitable as a means for communication at the

organisational level.

In principle, ADL concepts are sufficiently flexible to create models in several

domains. However, they are mainly applied, and are most suitable, for the applica-

tion domain (i.e., to describe software architectures). As Acme (1998) is claimed to

be suitable as a general architecture description and interchange language, we

believe its concepts can be used as a representative for ADLs. The core concepts

are:

36 2 State of the Art

– component;

– connector;

– system (a configuration of components and connectors);

– port (a point of interaction with a component);

– role (a point of interaction with a connector);

– representation (used to model hierarchical composition);

– rep-map (which maps a composite component or connector’s internal architec-
ture to elements of its external interface).

ADLs like Acme generally have an academic background, and limited usage.

However, some of these concepts have been included in UML and SysML (Object

Management Group 2015e). In this way, these concepts are made available to a

large user base and will be supported by a wide range of software tools.

2.3.5 Suitability for Enterprise Architecture

In the previous sections, we have given an overview of several languages for

modelling in the area of organisations, business processes, applications and tech-

nology. It is clear that none of these has succeeded in becoming ‘the language’ that
can cover all domains. In general, there are a number of aspects on which almost all

of these languages score low:

– The relations between domains (views) is poorly defined, and the models created

in different views are not further integrated.

– Most languages have a weak formal basis and lack a clearly defined semantics.

– Most languages miss the overall architectural vision and are confined to either

the business or the application and technology subdomains.

In contrast to organisation and business process modelling, for which there is no

single dominant language, in modelling applications and technology UML has

become a true world standard. UML is the mainstream modelling approach within

ICT. This makes UML an important language not only for modelling software

systems, but also for business processes and for the general business architecture.

However, UML is not readily accessible and understandable for managers and

business consultants; therefore, special visualisations and views of UML models

should be provided.

2.4 Service-Oriented Architecture

The emergence of the service-oriented computing (SOC) paradigm and Web

services technology, in particular, has aroused enormous interest in service-oriented

architecture (SOA). Probably because such hype has been created around it, there

2.4 Service-Oriented Architecture 37

are a lot of misconceptions about what SOA really is. Numerous Web services

evangelists make us believe that if you could divide the world into service

requestors, service providers and a service registry, you would have an SOA

(e.g., Ferris and Farrell 2003). Others emphasise that SOA is a way to achieve

interoperability between distributed and heterogeneous software components, a

platform for distributed computing (e.g., Stevens 2002).

Even though dynamic discovery and interoperability are important benefits of

Web services, a purely technological focus would be too limited and would fail to

appreciate the value of the (much more general) service concept. SOA represents a

set of design principles that enable units of functionality to be provided and

consumed as services. The interesting thing is that the service concept applies

equally well to the business as it does to software applications. Services provide

the ‘units of business’ that represent value propositions within a value chain or

within business processes. This essentially simple concept can and should be used

not just in software engineering, but also at all other levels of the enterprise

architecture, to achieve ultimate flexibility in business and IT design.

The idea of systems (applications or components) delivering services to other

systems and their users has really caught on in software engineering. Moreover, in

other relevant disciplines there is also an increasing focus on services. In fact,

economic development is to an increasing extent driven by services, not only in

traditional service companies but also in manufacturing companies and among

public service providers (Illeris 1997). In the service economy, enterprises no

longer convert raw materials into finished goods, but they deliver services to their

customers by combining and adding value to bought-in services. As a consequence,

management and marketing literature is increasingly focusing on service design,

service management, and service innovation (e.g., see Fitzsimmons and

Fitzsimmons 2000, or Goldstein et al. 2002).

Another area in which the service concept plays a central role is IT service

management. This discipline is aimed at improving the quality of IT services and

the synchronisation of these services with the needs of their users (Bon 2002). The

ITIL approach described in Sect. 2.1.6, for example, puts great emphasis on

services and service-level agreements.

The service concept is the result of a separation of the ‘external’ and ‘internal’
behaviour of a system. As such, it should be self-contained and have a clear purpose

from the perspective of its environment. The internal behaviour, on the other hand,

represents what is required to realise this service. For the ‘consumers’ of a service,
the internal behaviour of a system or organisation is usually irrelevant: they are only

interested in the functionality and quality that will be provided.

2.4.1 Service-Oriented Technologies

Web services are a large body of industry standards developed and managed by

organisations such as W3C, UN-CEFACT, OMG, The Open Group and OASIS.

38 2 State of the Art

Next to these ‘classical’ and rather heavy-weight standards-based Web services,

lighter service-oriented protocols based on Representational State Transfer (REST)

have become widely used.

A parallel development in service orientation is the ability to access ICT

resources, such as computing power, storage capacity, devices, and applications

as services over the Internet. This provisioning of commoditised computing and

storage capabilities over the Internet is collectively called Cloud Computing, with

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-

a-Service (IaaS) as important categories. This gives large and small organisations

access to ICT resources otherwise out of reach and provides advantages regarding

cost and scalability. This development has its origin in e-science environments

(computing grids), but has found extensive usage for a variety of other application

areas like healthcare, education, finance, life sciences, industry and entertainment.

These service developments strengthen the impact of service orientation on

business architectures, because they extend the application of service-oriented

technology to the domain of utility computing and ASP, while its focus on sharing

of ICT resources has additional impact on the way ICT infrastructure services are

managed within organisations.

Several tool vendors recognise the importance of integrating real-time IT service

management with operational business processes and customer services. They

provide tools that propagate events at the IT level to process owners and customers;

conversely, problem reports from users and customers can be propagated to the IT

service level. Such integration should offer operational business–IT alignment

giving insight into real-time performance and service levels. These developments

create a strong case for service-oriented methods, since they apply service orienta-

tion in real-time operational service management allowing services to be used for

on-line decision making and problem solving.

2.4.2 Relevance and Benefits for Enterprise Architecture

One might ask why we should focus on services for architecting the enterprise and

its IT support. What makes the service concept so appealing for enterprise archi-

tecture practice? First, there is the fact that the service concept is used and

understood in the different domains making up an enterprise. In using the service

concept, the business and IT people have a mutually understandable ‘language’,
which facilitates their communication. Second, service orientation has a positive

effect on a number of key differentiators in current and future competitive markets,

i.e., interoperability, flexibility, cost effectiveness, and innovation power.

Of course, Web services and the accompanying open, XML-based standards are

heralded for delivering true interoperability at the information technology level

(Stevens 2002). However, service orientation also promotes interoperability at

higher semantic levels by minimising the requirements for shared understanding:

a service description and a protocol of collaboration and negotiation are the only

2.4 Service-Oriented Architecture 39

requirements for shared understanding between a service provider and a service

user. Therefore, services may be used by parties different from the ones originally

perceived, or used by invoking processes at various aggregation levels.

Interoperability and separation of internal and external behaviour provide new

dimensions of flexibility: flexibility to replace or substitute services in cases of

failure, flexibility to upgrade or change services without affecting the enterprise’s
operations, flexibility to change suppliers of services, flexibility to reuse existing

services for the provision of new products or services. This will create new

opportunities for outsourcing, rendering more competition and more efficient

value chains.

By focusing on services, many opportunities for reuse of functionality will arise,

resulting in more efficient use of existing resources. In addition, outsourcing and

competition between service providers will also result in a reduction of costs. From

a macroscopic point of view, costs will be reduced as a result of more efficient

distribution of services in value chains.

The ability to interoperate and collaborate with different partners, including

partners not familiar with the enterprise, provides new opportunities for innovation.

Existing services can be recombined, yielding new products and services, ad hoc

liaisons with new partners become possible that exploit emerging business oppor-

tunities, and newly developed services can easily be advertised and offered all over

the world, and integrated in the overall service architecture.

Finally, service orientation stimulates new ways of thinking. Traditionally,

applications are considered to support a specific business process, which in turn

realises a specific business service. Service orientation allows us also to adopt a

bottom-up strategy, where the business processes are just a mechanism for instan-

tiating and commercially exploiting the lower-level services to the outside world. In

this view, the most valuable assets are the capabilities to execute the lower-level

services, and the business processes are merely a means of exploitation.

Some organisations have already started to implement service-oriented enter-

prise architectures, but the future will determine whether service orientation really

can deliver on all its promises of increased interoperability, flexibility, and inno-

vation power.

40 2 State of the Art

Chapter 3

Foundations

Marc M. Lankhorst, Leon van der Torre, H.A. (Erik) Proper,

Farhad Arbab, Frank S. de Boer, and Marcello Bonsangue

3.1 Getting to Grips with Architectural Complexity

Companies have long recognised the need for an integrated architectural approach,

and have developed their own architecture practice. Nevertheless, they still expe-

rience a lack of support in the design, communication, realisation, and management

of architectures. Several needs can be categorised as follows with respect to

different phases in the architecture life cycle:

– Design: When designing architectures, architects should use a common, well-

defined vocabulary to avoid misunderstandings and promote clear designs. Such

a vocabulary must not just focus on a single architecture domain, but should

allow for the integration of different types of architectures related to different

domains. Next to a common language, architects should be supported in their

design activities by providing methodical support, general and organisation-

specific guidelines, best practices, drawing standards, and other means that

promote the quality of the architectures. Furthermore, to facilitate the design

process, which is iterative and requires changes and updates to architectures,

support for tracking architectural decisions and changes is desirable.

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

L. van der Torre

University of Luxembourg, Luxembourg, Luxembourg

H.A. Proper

Luxembourg Institute of Science and Technology, Luxembourg, Luxembourg

F. Arbab • F.S. de Boer • M. Bonsangue

University of Leiden, Leiden, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_3

41

mailto:m.lankhorst@bizzdesign.com

– Communication: Architectures are shared with various stakeholders within and

outside the organisation, e.g., management, system designers, or outsourcing

partners. To facilitate the communication about architectures, it should be

possible to visualise precisely the relevant aspects for a particular group of

stakeholders. Especially important in this respect is to bring about a successful

communication on relations among different domains described by different

architectures (e.g., processes vs. applications), since this will often involve

multiple groups of stakeholders. Clear communication is also very important

in the case of outsourcing of parts of the implementation of an architecture to

external organisations. The original architect is often not available to explain the

meaning of a design, so the architecture should speak for itself.

– Realisation: To facilitate the realisation of architectures and to provide feedback

from this realisation to the original architectures, links should be established

with design activities on a more detailed level, e.g., business process design,

information modelling, or software development. Companies use different con-

cepts and tools for these activities, and relations with these should be defined.

Furthermore, integration with existing design tools in these domains should be

provided.

– Change: An architecture often covers a large part of an organisation and may be

related to several other architectures. Therefore, changes to an architecture may

have a profound impact. Assessing the consequences of such changes before-

hand and carefully planning the evolution of architectures are therefore very

important. Until now, support for this has been virtually non-existent.

3.1.1 Compositionality

In current practice, enterprise architectures often comprise many heterogeneous

models and other descriptions, with ill-defined or completely lacking relations,

inconsistencies, and a general lack of coherence and vision. The main driver behind

most of the needs identified above is the complexity of architectures, their relations,
and their use. Many different architectures or architectural views co-exist within an

organisation. These architectures need to be understood by different stakeholders,

each at their own level. The connections and dependencies that exist among these

different views make life even more difficult. Management and control of these

connected architectures is extremely complex. Primarily, we want to create insight
for all those that have to deal with architectures.

The standard approach to dealing with the complexity of systems is to use a

compositional approach, which distinguishes between parts of a system, and the

relations between these parts. To understand how a car functions, we first describe

the parts of the car such as the engine, the wheels and the air conditioning system,

and then we describe the relationship among these parts. Likewise, we understand

the information system of a company as a set of systems and their relations, and we

understand a company as a set of business processes and their relations.

42 3 Foundations

Compositionality also plays a central role in the architectural approach. For

example, the IEEE 1471 standard defines architecture as the fundamental organi-

sation of a system embodied in its components, their relationships to each other, and

to the environment (together with principles guiding its design and evolution).

Moreover, compositionality also plays a role when varying viewpoints on a system

are defined. The latter type of decompositions are usually functional, in the sense

that the functionality of an architecture is decomposed in the functionality of its

parts and their relations.

3.1.2 Integration of Architectural Domains

The main goal of our approach is the integration of architectural domains, to deal

with the complexity of architecture as a discipline, and to provide insight for all

those that have to deal with architectures. There are many instances of this

integration problem, of which we discuss two examples below. These examples

also play their role in the remaining chapters of this book. In general, some

integration problems can be easily solved: for example, by using an existing

standard; others are intrinsic to the architectural approach and cannot be ‘solved’
in the usual sense. These hard cases are intrinsic to the complexity of architecture,

and removing the problem would also remove the notion of architecture itself. We

cannot get rid of the integration problems; we can only develop concepts and tools

to make it easier to deal with these issues. This is illustrated by Example 1 below.

Example 1 As a first example of an integration problem, consider Fig. 3.1, which

contains several architectures. The five architectures may be models expressed in

UML, or models from cells of Zachman’s architectural framework, or any kind of

combination. For instance, there may be a company that has modelled its applica-

tions in UML and its business processes in BPMN. In all these cases, it is unclear

how concepts in one view are related to concepts in another view. Moreover, it is

unclear whether views are compatible with each other.

The integration of the architectures in Fig. 3.1 is problematic because these five

architectures are developed by distinct stakeholders with their own concerns.

Relating architectures means relating the ideas of these stakeholders, most of

which remain implicit. A consequence is that we often cannot assume to have

complete one-to-one mappings, and the best we can ask for is that views are in some

sense consistent with each other. This is often called a problem of alignment, and
the UML–BPMN example is called a business–IT alignment problem.

In complex integration cases that involve multiple stakeholders, it is clear that

integration is a bottom-up process, in the sense that first concepts and languages of

individual architectural domains are defined, and only then is the integration of the

domains addressed. We can summarise Example 1 by observing that the integration

of architectures is hard due to the fact that architectures are given and used in

3.1 Getting to Grips with Architectural Complexity 43

practice, and cannot be changed. It is up to those who integrate these architectures

to deal with the distinct nature of architectural domains.

When we talk about the integration of architectural domains, we need a language

in which we can describe these domains. For example, some sources refer to entities

and relations, as in entity–relationship diagrams. Others refer to classes and objects,

like in object-oriented modelling and software engineering. And yet others refer to

concepts and instances; for example, in the area of conceptual modelling. These

abstract concepts have been defined at a high level of abstraction, but often they

also contain some implicit assumptions. For example, entities and relations are

assumed to be finite, because databases are finite, which is not the case with

concepts. There are many architecture languages, some of which we have discussed

in Chap. 2, but here also terminology varies.

An architecture language is not only needed for the description of integrated

architectures, but also a prerequisite for linking the different tools used in the

various architectural domains (Lankhorst et al. 2005). Furthermore, an integrated

language facilitates the analysis of architectures across domains and the reuse of

analysis results from specific domains on an integrated level.

It would be foolish to suggest an entirely new architecture language that is built

from scratch and ignores already existing developments. In this book we therefore

take a pragmatic approach, and reuse elements from other languages, approaches,

and techniques whenever possible.

When looking at everyday architectural practice, it is clear that some integration

problems occur more frequently than others. A typical pattern is that some archi-

tectural models describe the structure of an architecture at some point in time,

whereas other models describe how the architecture changes over time. The second

example that we discuss in this chapter addresses this issue.

Process architectureProcess architecture

Application architectureApplication architecture Technical architectureTechnical architectureTechnical architecture

Information architectureInformation architecture Product architectureProduct architecture

??

??

??

??

??

Fig. 3.1 Heterogeneous architectural domains

44 3 Foundations

http://dx.doi.org/10.1007/978-3-662-53933-0_2

Example 2 As a second example of an integration problem, consider the first two

viewpoints of the IEEE 1471 standard (IEEE Computer Society 2000): the struc-

tural viewpoint and the behavioural viewpoint. How are structure and behaviour

related?

The second example touches on a problem that has been studied for a long time:

the integration of structural and behavioural models. One instance of this problem is

how structural concepts like software components are related to behavioural con-

cepts like application functions. Another area where this issue has been studied is in

formal methods and in simulation.

The enterprise modelling language described in Chap. 5 shows a strong sym-

metry between the behavioural and the structural aspects. A service is an ‘external’
reflection of the ‘internal’ behaviour that realises it, analogous to the way in which

an interface is an ‘external’ reflection of the ‘internal’ structure behind it. For the

internal behaviour, we distinguish between individual behaviour assigned to an

individual structural element and collective behaviour assigned to a collaboration

of structural elements.

In the next sections, we will go deeper into the foundations of our approach to

modelling enterprise architectures, and in particular into the integration of archi-

tectures. However, just like architectural diagrams are often misinterpreted due to

the fact that each stakeholder interprets the picture in its own way, architectural

concepts also are often misinterpreted. This has led to the IEEE 1471 standard

which had the ambition to resolve these ambiguities. Despite the fact that there

seems to be increasing consensus on the terminology used, in practice one still finds

many distinct definitions of relevant architectural concepts, such as model, meta-

model, and view.

In this chapter we define the notions we need in the remainder of the book. These

definitions are based on several standards, most importantly the IEEE 1471 stan-

dard, the conventions in UML, and other conventions used in daily practice. In

general, we develop a language to talk about the integration of architectural

domains, and we have to be precise as all concepts have been used in other areas

too, and typically are already overloaded. In the architectural definitions we incor-

porate fundamental notions of architecture; for example, that an architecture never

refers to reality, but only to some abstraction of it.

3.2 Describing Enterprise Architectures

To cope with the complexity of enterprise architecture, the representation of the

essence of an architecture in the unambiguous form of a model can be of great

value. We do not want to define the details of the individual architectural domains

themselves. That would be the task of the architecture discipline within that

particular field. Instead, we concentrate on what is essential for enterprise archi-

tecture, and therefore we limit ourselves to the core elements of these domains and

3.2 Describing Enterprise Architectures 45

http://dx.doi.org/10.1007/978-3-662-53933-0_5

focus especially on the relations and interactions between them. Precise definitions

and constraints will help us to create insight into the complexity of the enterprise

architecture and to evade conflicts and inconsistencies between the different

domains. For this, we use models.
A model is an abstract and unambiguous conception of something (in the real

world) that focuses on specific aspects or elements and abstracts from other

elements, based on the purpose for which the model is created. In this context,

models are typically represented using a formalised graphical or textual language.

Because of their formalised structure, models lend themselves to various kinds of

automated processing, visualisation, analysis, tests, and simulations. Furthermore,

the rigour of a model-based approach also compels architects to work in a more

meticulous way and helps to dispel the unfavourable reputation of architecture as

just drawing some ‘pretty pictures’.
Different stakeholders, however, have a different view of the world. Not every-

one’s needs can be easily accommodated by a single model. Let us therefore first

consider what happens if some viewer observes ‘the universe’ around him or her.

3.2.1 Observing the Universe

We assume that any viewer that perceives the world around him or her first

produces a conception, i.e., a mental representation, of that part he or she deems

relevant. The viewer cannot communicate directly about such a conception, unless

it is articulated it somehow. In other words, a conception needs to be represented.

Peirce (1969a–d) argues that both the perception and conception of a viewer are

strongly influenced by the viewer’s interest in the observed universe.

In our case, the viewer is a stakeholder of (part of) the organisational, technical,

or other systems that make up the enterprise, i.e., the universe that the viewer

observes. The conception of this universe then is the architecture of the enterprise.

The representation of this architecture is an architecture description, which may

contain models of the architecture, but also, for example, textual descriptions.

The underlying relationships between stakeholder, enterprise, architecture and

architecture description can be expressed in the form of a tetrahedron, as depicted in

Fig. 3.2, which is based on the FRISCO tetrahedron (Falkenberg et al. 1998).

3.2.2 Concerns

So in conceiving a part of the enterprise, stakeholders will be influenced by their

particular interest in the observed enterprise, i.e., their concerns. Note that stake-

holders, as well as their concerns, may be regarded at an aggregated as well as at an

individual level. For example, a single business manager conceiving an information

system is a stakeholder. The collective business management, however, can also be

seen as a stakeholder of the information system.

46 3 Foundations

Yet concerns are not the only factors that influence a stakeholder’s conception of
a domain. Another important factor is the preconceptions a stakeholder may

harbour as they are brought forward by his or her social, cultural, educational,

and professional background. More specifically, in the context of system develop-

ment, architects will approach a domain with the aim of expressing the domain in

terms of some set of concepts, such as classes, activities, constraints, etc. The

concepts an architect is used to using (or trained to use) when modelling some

(part of a) domain, will strongly influence the conception of that architect. As

AbrahamMaslow said: ‘If the only tool you have is a hammer, you tend to see every

problem as a nail.’
We therefore presume that when architects model a domain, they do so from a

certain perspective. In general, people tend to think of the universe (the ‘world
around us’) as consisting of related elements. In our view, however, to presume that

the universe consists of a set of elements is already a subjective choice, made

(consciously or not) by the viewer observing the universe. The choice being made is

that ‘elements’ (or ‘things’) and ‘relations’ are the most basic concept for modelling

the universe. In this book, we will indeed make this assumption, and presume that

an architect’s conception of the universe, i.e., an architecture, consists of such

elements.

3.2.3 Observing Domains

Viewers may decide to zoom in on a particular part of the universe they observe, or,

to state it more precisely, they may zoom in on a particular part of their conception

of the universe, in our case the enterprise. This allows us to define the notion of a

domain as:

enterprise

architecture

architecture
description

stakeholder

Fig. 3.2 Relationship

between enterprise,

stakeholder, architecture,

and architecture description

3.2 Describing Enterprise Architectures 47

Domain: any subset of a conception (being a set of elements) of the universe

that is conceived of as being some ‘part’ or ‘aspect’ of the universe.

In the context of (information) system development, we have a particular interest

in unambiguous abstractions from domains. This is what we refer to as a model:

Model: a purposely abstracted and unambiguous conception of a domain.

Note that both the domain and its model are conceptions harboured by the same

viewer. We are now also in a position to define more precisely what we mean by

modelling:

Modelling: the act of purposely abstracting a model from (what is conceived

to be) a part of the universe.

For practical reasons, we will understand the act of modelling also to include the

activities involved in the representation of the model by means of some language

and medium. We presume architects not only to be able to represent (parts of) their

conceptions of the enterprise, but also to be able to represent (parts of) the

perspectives they use in producing this conception. This requires architects to be

able to reflect on their own working process. When modelling a domain in terms of,

say, UML class diagrams, we presume that they are able to express the fact that they

are using classes, aggregations, associations, etc., to describe the domain being

modelled.

3.2.4 Views and Viewpoints

Very often, no stakeholder apart from perhaps the architect is interested in the

architecture in its full scope and detail. As we observed in Sect. 3.2, different

viewers have different conceptions of the universe they perceive. Their concerns

dictate which parts of an enterprise architecture they deem relevant.

Stakeholders therefore require specific views of an architecture that focus on

their concerns and leave out unnecessary information. Since we put models central

in our description of architectures, this implies that we have to provide different

views of these models to accommodate the stakeholders’ needs.
A view is specified by means of a viewpoint, which prescribes how views that

address particular concerns of the stakeholders are constructed, given the architec-

ture under consideration. What should and should not be visible from a specific

viewpoint is thus entirely dependent on the stakeholder’s concerns.

48 3 Foundations

The ISO/IEC/IEEE 42010:2011 standard (ISO/IEC/IEEE 2011) defines views

and viewpoints as follows:

View: expresses the architecture of the system of interest from the perspec-

tive of one or more stakeholders to address specific concerns, using the

conventions established by its viewpoint

Viewpoint: a specification of the conventions for constructing, interpreting,

using and analysing one type of architecture view

Simply put, a view is what you see, and a viewpoint tells from where you are

looking. For example, you might define a ‘financial viewpoint’ that tells you how to

show, say, the costs for building certain applications. Applying that viewpoint to a

model of the new customer relationship management (CRM) system of your

company results in a financial view of that system which shows its costs.

3.2.5 Ways of Working

Creating and using architecture models typically involves several related ‘ways of
working’ (Wijers and Heijes 1990):

– A way of thinking: articulates the assumptions about the kinds of problem

domains, solutions, and modellers involved.

– A way of modelling: identifies the core concepts of the language that may be

used to denote, analyse, visualise, and/or animate architecture descriptions.

– A way of communicating: describes how the abstract concepts from the way of

modelling are communicated to human beings, e.g., in terms of a textual or a

graphical notation (syntax, style, medium).

– A way of working: structures (parts of) the way in which a system is developed.

It defines the possible tasks, including subtasks, and ordering of tasks, to be

performed as part of the development process. It furthermore provides guide-

lines and suggestions (heuristics) on how these tasks should be performed.

– A way of supporting: the support that is offered by (possibly automated) tools

for the handling (creating, presenting, modifying, etc.) of models and views. In

general, a way of supporting is supplied in the form of some computerised tool.

– A way of using: identifies heuristics that:

• define situations, classes of stakeholders, and concerns for which a particular

model or viewpoint is most suitable;

• provide guidance in tuning the viewpoint to specific situations, classes of

stakeholders, and their concerns.

In this book, we try to give attention to each of these ‘ways’, since in our view

they are all essential to the effective use of architectures.

3.2 Describing Enterprise Architectures 49

3.2.6 Enterprise Architecture Models

In an ideal situation, we would have a single model for an enterprise architecture, to

ensure coherence and consistency between all its different parts. In reality, such a

model will probably never exist, especially when we talk about multiple architec-

tural domains. However, it is something we may ‘think into existence’ without
actually constructing the model. In practice, an architecture (and especially an

enterprise architecture) will arise in a bottom-up fashion. Partial models from

different domains will be constructed according to the needs in those domains.

Where these touch upon each other, inconsistencies may appear, which need to be

resolved eventually since the real-world system being designed must of course be

consistent. In this way, we slowly move towards this Platonic underlying model,

and the partial models from which it is constructed can be seen as views of the total

architecture.

Having such a single underlying model makes it possible to create powerful

techniques for visualisation and analysis of enterprise architectures, even if this

model is incomplete and not fully consistent. Currently, if a stakeholder requires

information on some aspect of an architecture that crosscuts several domains, a

specialised view of the architecture will probably be patched together manually by

integrating information from many different sources in these domains.1 If we

suppose that there is this single underlying model of an architecture, a view of

this architecture can be expressed as a projection or subset of this model. Appro-

priate software tools can then automatically generate these views.

Consider the example in Sect. 3.1 on the integration of structural and

behavioural views. To relate the two, we have to consider models and transitions

of models. But in relating static and dynamic aspects, a new distinction appears. Are

we talking about changes within a model, or changes of the modelling concepts, i.e.,

the conception of the universe? That is, is the change exogenous or endogenous?

This distinction reveals itself only when we relate the structural and behavioural

descriptions, not when we consider them in isolation.

As another example, consider the change from batch processing systems to

service-oriented architectures. Someone working with batch processing systems

20 years ago could not explain to us today why they do not use service-oriented

architecture, because the concept of service-oriented architecture did not yet exist.

Since the concept had not been invented yet, it is not just a structural change within

the model, but a change at the meta-level of the concepts underlying the model.

The importance of the set of concepts which are used to describe an architecture

is acknowledged in the frequent use of ‘ontology’ within modelling. In our case, we

refer to the set of concepts as the signature of the architecture. Moreover, the

change of signatures and models leads to our notion of actions in views. This is
explained in more detail in Sect. 3.3.

1One of the ArchiMate project partners has in the past invested more than one man-year in creating

one specific view of an existing architecture. . .

50 3 Foundations

3.3 Pictures, Models, and Semantics

In many engineering disciplines, modelling a system consists of constructing a

mathematical model that describes and explains it. In the fields of enterprise and

software architecture, however, there is an overwhelming tendency to see pictures

and diagrams as a form of model rather than as a form of language, or, to be more

precise, as a form of structure that helps in visualising and communicating system

descriptions. In other words, in architecture there is a tendency to replace mathe-

matical modelling by ad hoc visualisations.

In this book we follow the standard practice in engineering disciplines. Conse-

quently, when we compare architectures like the ones in Fig. 3.1, we ignore

irrelevant issues that have to do with arbitrary visualisation. We therefore distin-

guish between the content and the visualisation of a model or view, where the first

refers to the concepts involved, and the second refers to the form in which these are

presented.

For example, in one visualisation of an architecture a process may be visualised

as a circle, and in another one by a square. Moreover, the content may express that

one concept is more important than another one, which is visualised by drawing the

first concept above the second one. The same relation of importance can also be

visualised by the intensity of the colour which is used to visualise the concepts. The

architect is motivated to make explicit whether visual information like ‘above’ or
‘red’ has a meaning in the model, or is incidental. When something is incidental the

architect is motivated to remove it from the picture, as it only distracts from the

message of the picture. When it is meaningful, its meaning has to be made explicit.

When a new viewpoint is defined, the content and its visualisation can be defined in

two separate phases.

The ‘content’ and ‘visualisation’ should be interpreted here in a loose way. For

example, the visualisation may also include input devices such as menus or buttons,

and the content may also include actions that change the model by for example

adding or deleting concepts. Actions in models are used here to deal with interac-

tion with the user.

Our motivation to stress the importance of modelling is that there is something

about architecture independent of visualisation. Two distinct views, which are

based on viewpoints from stakeholders with distinct concerns, still have something

in common. This is called the semantics of the architecture. Semantics does not

have to be explicitly given, it can also be an unspoken common understanding

among the users of the architecture. It does not have to be one unified semantics, as

there can also be several semantics for different purposes and uses of the architec-

ture. But in the latter case, these semantics again have something in common.

Perhaps they just have to be consistent.

The importance of semantics has been emphasised in several other areas too,

with a related motivation. In some parts of computer science, the term ‘semantics’
of something in a model is used to refer to the ‘effect’ of that something in the

model, referring to the dynamics within that model. In linguistics there is a much

3.3 Pictures, Models, and Semantics 51

older distinction between syntax, semantics, and pragmatics. Another example is in

the meaning of information on the Web: Web pages have traditionally been used to

describe all kinds of issues, but they often refer to the same objects using distinct

terminology. This led Tim Berners-Lee to the invention of the semantic Web, in

which ontologies play a crucial role.

3.3.1 Symbolic and Semantic Models

To make the notion of semantics explicit, we distinguish between a symbolic model

and a semantic model (Arbab et al. 2007). A symbolic model expresses properties of
architectures of systems. It therefore contains symbols that refer to reality, which

explains the name of this type of model.

A symbolic model expresses properties of architectures of systems by

means of symbols that refer to reality.

The role of symbols is crucial, as we do not talk about systems without using

symbols. The reason is that systems are parts of reality, and we can only talk about

reality by using some symbolic form of communication.

When stakeholders refer to architectures and systems, they can do so only by

interpreting the symbols in the symbolic models. We call such an interpretation of a

symbolic model a semantic model.

A semantic model is an interpretation of a symbolic model, expressing the

meaning of the symbols in that model.

A semantic model does not have a symbolic relation to architecture, as it does

not contain symbolic references to reality.

However, there is a relation between semantic model and reality, because a

semantic model is an abstraction of the architecture. To understand this relation

between semantic model and architectures, one should realise that an important

goal of modelling is to predict reality. When a symbolic model makes a prediction,

we have to interpret this prediction and test it in reality. The relevant issue in the

relation between a system and semantic models of it is how we can translate results

such that we can make test cases for the symbolic model.

There are various ways in which we can visualise the relation between the four

central concepts of enterprise, architecture, symbolic model, and semantic model.

We put the concept of architecture central, as is illustrated in Fig. 3.3.

There are three important observations we have to make here. First, the above

four concepts and their relations are used in engineering both for informal as well as

52 3 Foundations

formal models. The relevant distinction we emphasise between symbolic and

semantic models is the distinction between using symbols to refer to reality, and

abstractions of reality that only refer to reality by interpreting the symbols of the

symbolic model. Note that this is not the same distinction as that between informal

and formal models: within the class of informal models, expressed for example in

natural language, both kinds exist, as well as within the class of formal models,

expressed for example in first-order logic.

Second, an architecture may be expressed by multiple symbolic models, and one

symbolic model may in turn be interpreted by several semantic models. For

example, we might define separate semantic models for performance and for cost

of a system that is expressed by one symbolic model, e.g., in UML.

Third, in architecture often a distinction is made between the architectural
semantics and the formal semantics of a modelling language. As explained in

Sect. 3.2.1, the enterprise under consideration is thought of in terms of architecture

concepts, which exist in the minds of, for instance, the enterprise architect. These

concepts can be represented in models, which are expressed in a modelling lan-

guage. Architectural semantics is defined as the relationship between architectural

concepts and their possible representations in a modelling language (Turner 1987).

To understand this distinction, consider Venn diagrams. They are useful structures

for the visualisation of the language of Boolean logic, but they are not a model

themselves. Their semantic model is given by the set-theoretical explanation of

their meaning. The formal semantics of a model or language, on the other hand, is a

mathematical representation of specific formal properties of that model or lan-

guage. The formal semantics of a computer program, for example, expresses the

possible computations of that program. Different branches of formal semantics

Symbolic
Models

Architecture

Enterprise

Semantic
Models

interpreted by

abstracted byexpressed by

has

Fig. 3.3 The enterprise, its

architecture, symbolic and

semantic models

3.3 Pictures, Models, and Semantics 53

exist, such as denotational, operational, axiomatic, and action semantics. Harel and

Rumpe (2004) give a clear explanation of the need for rigorously defining the

semantics of modelling languages.

There are two kinds of abstraction we use in creating a model of reality. The first

is abstracting from (properties of) the precise entity in reality to which a concept

refers. This occurs for example when we make a model of the static structure of an

application in terms of its components, leaving out (i.e., abstracting from) their

behaviour. The second kind is abstraction from differences between entities in

reality by grouping them into a single concept. This is sometimes referred to as

generalisation, and occurs for example when we use the concept ‘employee’, which
groups the individuals in a company. This is related to the notion of ‘sorts’
discussed below.

3.3.2 Symbolic Models

A symbolic model is the formalisation of one or more aspects of the architecture of

a concrete system. It comprises those parts of an architecture that can be modelled

mathematically, as opposed to the more pragmatic aspects of an architecture that

are concerned with characteristic notions like rationale, goals, and plans.

A symbolic model is expressed using a description language, a representation of

the model that is often confused with its interpretation. For example, the expression

3 + 5 may be intended to mean a particular natural number, but here is just notation

for the syntactic model of the natural numbers. Strictly speaking, a description

language describes both the syntactic structure of the model and its notation, i.e.,
the words or symbols used for the concepts in the language. As we explained in

Sect. 3.3.1, we make a strict separation between structure and the notation, and we

will use the term ‘model’ to refer to the structure.

The core of every symbolic model is its signature. It categorises the entities of
the symbolic model according to some names that are related, linguistically or by

convention, to the things they represent. These names are called sorts. Relations
between entities of some sorts and operations on them are also declared as relation

symbols in the signature. After the relations have been specified, they can be used in

languages for constraining further or analysing the nature of the symbolic model.

An example is in order here, before we go any further.

Fig. 3.4 exhibits a structural description of the employees of a company.

We need to recall that the above is a syntactic structure; that is, a description of a

symbolic model with a signature whose sorts are Employee and Director, and with

respective entities related by a relation named Responsible_for. As yet we have

DirectorDirector EmployeeEmployee
Responsible_ for

Fig. 3.4 Symbolic model

of the director–employee

relationship

54 3 Foundations

assigned no meaning to it; we have only categorised the entities of the symbolic

model into two categories and named a relation between the entities belonging to

two sorts. The syntactic names used for the sorts and relations push our intuition

some steps ahead: we know what an employee is, what a director is, and what

responsible for means. However, while these syntactic names help us in our

understanding, they are also the main source of confusion in the communication

and analysis of an architecture. We could have named the above sorts X and Y

better to retain the meaningless quality of the syntax, and avoid confusion with

semantics.

A signature thus provides a conceptual glossary in whose terms everything else

in the symbolic model must be described, similar to an English dictionary for the

English language. Additionally, a signature comprises information to capture

certain aspects of the ontology of an architecture. For example, it may include

hierarchical information between sorts in terms of an ‘is-a’ relationship, or con-
tainment information in terms of an ‘includes’ relationship, or dependency infor-

mation in terms of a ‘requires’ relationship. Signatures that contain this additional

information are more general than a glossary. They provide a conceptual schema,

similar to the schema provided to biologists by the species classification.

For example, Fig. 3.5 extends the previous signature with an ‘is-a’ relationship
between the sorts Director and Employee (denoted by a UML inheritance relation),

intuitively suggesting that every director is also an employee.

Moreover, the symbolic model may also contain a set of actions, and the

signature a set of action symbols, the meaning of which we discuss below.

3.3.3 Semantic Models

The formalised meaning of a symbolic model is given by a semantic model, an

interpretation of the symbolic model. A semantic model usually assumes the

existence of some mathematical objects (sets, for example), used to represent the

basic elements of a symbolic model. Operations and relations of a symbolic model

are mapped to usually better understood operations and relations amongst the

mathematical objects.

DirectorDirector EmployeeEmployee
Responsible_ for

DirectorDirector EmployeeEmployee
Responsible_ for

Fig. 3.5 Extended

symbolic model

3.3 Pictures, Models, and Semantics 55

As an example, the formal semantics of a signature is provided by a collection of

sets (one for each sort of the signature), and a set of relations and functions among

them, one for each relation symbol and function symbol in the signature. Hierar-

chical information between sorts is captured by the ordinary subset inclusion,

whereas containment information is denoted by the usual element-of relation.

It is clear that, in general, there can be a large number of different interpretations

for the same symbolic model. This reflects the intuition that there can be many

architectures that fit a specific architecture description. In fact, the signature of a

symbolic model of an architecture specifies only some basic building blocks by

means of which the architecture is described.

In other words, we see the formal semantics of a symbolic model as a concrete

collection of mathematical objects interpreting a system according to a specific

architecture description. As such, it involves concrete components and their con-

crete relationships which may change in time because of the dynamic behaviour of

a system. Concrete situations of a system are described by means of variables typed

according to the sort of the individuals they are referring to. More concretely, for a

symbolic model, we will denote by x:T a variable xwhich ranges over individuals of
sort T. For example, we could use the logical sentence

∃ x : Director. 8y : Employee. Responsible_ for(x, y)
to constraint the interpretation of the sort Director to be a non-empty set. Note

that since Director is_a Employee, also the interpretation of the latter sort will be

non-empty.

The actions occurring in a symbolic model are interpreted as changes of the

model based on interaction with the user. To define actions, we have to define the

input variables of the action, and how we can retrieve these input variables from the

user. In Chap. 8 we discuss the use of actions in models in viewpoints and

visualisation, and in Chap. 11 we describe some technical aspects of implementing

these actions in models.

Finally, in our approach described more explicitly in Chap. 9, the formal

semantics is rich enough to capture the dynamics of a system by interpreting the

symbolic (and often pictorial) information available for describing business and

software processes in the ArchiMate language discussed in Chap. 5.

In the remainder of the book, whenever we use the unqualified terms ‘model’ or
‘semantics’ of an architecture, we refer to its symbolicmodel and formal semantics,

which is the common interpretation of these terms in the architecture discipline.

3.3.4 Semantics in ArchiMate Versus UML

The ArchiMate approach can be contrasted with the original approach in UML,

which we described in Chap. 2. In this approach, semantics was explicitly left out of

the program. People who used the models could develop semantics for them, but a

general semantics was not supplied. This approach also stemmed from the origins

56 3 Foundations

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_11
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_2

of UML as a combination of three existing notations that did not have formal

semantics. Hence, the focus of UML was and is on notation, i.e., syntax, and not on

semantics. Although some of the diagrams of the more recent versions of UML

have a formal semantics (see, e.g., the token-based Petrinet-like semantics of

activity diagrams in UML 2), there is no overall semantics for the entire language.

We have taken the opposite approach. We do not put the notation of the

ArchiMate language central, but rather focus on the meaning of the language

concepts and their relations. Of course, any modelling language needs a notation

and we do supply a standard way of depicting the ArchiMate concepts, but this is

subordinate to the architectural semantics of the language.

3.4 Summary

An integrated architectural approach is indispensable to control today’s complex

organisations and information systems. It is widely recognised that a company

needs to ‘do architecture’; the legacy spaghetti of the past has shown us that

business and ICT development without an architectural vision leads to uncontrol-

lable systems that can only be adapted with great difficulty. However, architectures

are seldom defined on a single level. Within an enterprise, many different but

related issues need to be addressed. Business processes should contribute to an

organisation’s products and services, applications should support these processes,

systems and networks should be designed to handle the applications, and all of these

should be in line with the overall goals of the organisation. Many of these domains

have their own architecture practice, and hence different aspects of the enterprise

will be described in different architectures. These architectures cannot be viewed in

isolation.

For example, architectural domains are related, and structural and behavioural

viewpoints are related. The integration has to deal with the fact that the various

viewpoints are defined by stakeholders with their own concerns.

The core of our approach to enterprise architecture is therefore that multiple

domains should be viewed in a coherent, integrated way. We provide support for

architects and other stakeholders in the design and use of such integrated architec-

tures. To this end, we have to provide adequate concepts for specifying architec-

tures on the one hand, and on the other hand support the architect with visualisation

and analysis techniques that create insight into their structure and relations. In this

approach, relations with existing standards and tools are to be emphasised; we aim

to integrate what is already available and useful. The approach that we follow is

very generic and systematically covers both the necessary architectural concepts

and the supporting techniques for visualisation, analysis, and use of architectures.

We adopt a framework around a stakeholder, enterprise, architecture, and

architecture description as a viewer with universe, conception, and representation.

The view and viewpoint of the stakeholder are the result of modelling, an act of

purposely abstracting a model from reality, i.e., from a domain that is conceived to

3.4 Summary 57

be a part of the universe. These views consist of a set of enterprise architecture

models.

Within this framework, a distinction is made between the content of a view and

its visualisation, and a distinction is also made between a symbolic model, which

refers to the enterprise architecture, and a semantic model as an abstraction from the

architecture and which interprets the symbolic model. The core of every symbolic

model is its signature, which categorises the entities of the symbolic model.

58 3 Foundations

Chapter 4

Communication of Enterprise Architectures

H.A. (Erik) Proper, Stijn J.B.A. Hoppenbrouwers, and Gert E. Veldhuijzen

van Zanten

4.1 Introduction

Describing architectures is all about communication. If some architecture descrip-

tion is not used as a means of communication in some shape or form, then this

description should not have been created in the first place. Whatever the role of an

architecture description is, it always involves some communicative aspect. Con-

sider, as an illustration, the potential uses of architecture descriptions as identified
in the IEEE 1471 standard (IEEE Computer Society 2000):

– Expression of the system and its (potential) evolution.

– Analysis of alternative architectures.

– Business planning for transition from a legacy architecture to a new architecture.

– Communications among organisations involved in the development, production,

fielding, operation, and maintenance of a system.

– Communications between acquirers and developers as a part of contract

negotiations.

– Criteria for certifying conformance of implementations to the architecture.

– Development and maintenance documentation, including material for reuse

repositories and training material.

– Input to subsequent system design and development activities.

– Input to system generation and analysis tools.

H.A. Proper (*)

Luxembourg Institute of Science and Technology, Luxembourg, Luxembourg

S.J.B.A. Hoppenbrouwers

Radboud University Nijmegen, Nijmegen, The Netherlands

G.E. Veldhuijzen van Zanten

Dutch Tax and Customs Administration, Apeldoorn, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_4

59

– Operational and infrastructure support; configuration management and repair;

redesign and maintenance of systems, subsystems, and components.

– Planning and budget support.

– Preparation of acquisition documents (e.g., requests for proposal and statements

of work).

– Review, analysis, and evaluation of the system across the life cycle.

– Specification for a group of systems sharing a common set of features, (e.g.,

product lines).

Each of these uses of architecture involves forms of communication. In this vein,

in this chapter we present a ‘communication-aware’ perspective of enterprise

architectures. In doing so, we provide both a theoretical and a practical perspective

of the issues involved in the communication of enterprise architectures. The

theoretical perspective will focus on communication during system development

in general, where the word system should be interpreted as any open and active

system, consisting of both human and computerised actors, that is purposely

designed. The practical perspective will take shape as a set of practical guidelines

that should aid architects in the selection (and definition) of architecture description

languages and approaches that are apt for a specific (communication) situation.

Architecture descriptions are used to communicate the architecture of a planned

or pre-existing system. This could be a system that is part of an enterprise, an

organisation, a business, an information system, a software system, or the hardware

infrastructure. The communication about the system and its architecture is likely to

take place between different stakeholders of that system.

In this book, the primary focus is on architectural models of a graphical

(as opposed to a textual or verbal) nature. One may refer to these as architectural

models ‘in the narrow sense’. In this chapter, however, we are concerned with

architecture descriptions in ‘the broader sense’. In other words, textual, verbal, or

any other types of architecture descriptions are included.

At present, many description languages are already available to architects, while

many more are being created by both academia and industry. Why all these

languages? How does one select the language that is most apt in a given situation?

Such questions beg for a well-conceived answer. In line with the old adage ‘practice
what you preach’, we argue that just as proper requirements engineering is needed

for the development of systems, proper requirements should also be formulated for

languages and approaches that are to be used as vehicles for communication during

system development. In formulating these requirements, several factors should be

taken into account, such as the development goals, the communication goals, the

concerns, personal goals, abilities, and attitudes of the actors involved, etc.

We set out to provide a theoretical underpinning of the issues involved, as well

as practical guidelines that will aid architects in selecting the best approach for their

architectural communicative needs. We will therefore start out with a theoretical

exploration of the issues involved in communication during system development

(Sects. 4.2 and 4.3), followed by the application of this exploration to the field of

enterprise architecture (Sect. 4.4).

60 4 Communication of Enterprise Architectures

4.2 System Development as a Knowledge Transformation

Process

In essence, we regard system development as a knowledge transformation process

whereby conversations are used to share and create knowledge pertaining to both

the system being developed, as well as the development process itself. The notion

of ‘conversation’ should be interpreted here in the broadest sense, ranging from a

single person producing an (architectural) description, via a one-on-one design or

elicitation session, to a workshop with several stakeholders, and even the wide-

spread dissemination of definitive architectures. This way of thinking provides a

frame of thought with which one can better understand the (communicative)

requirements posed on architecture description languages.

4.2.1 System Development Community

Given our focus on communication, it is important to identify the actors that can

play a role in the communication that takes place during the system development

process. These actors are likely to have some stake with regards to the system being

developed. Examples of such actors are problem owners, prospective actors in the

future system (such as the future ‘users’ of the system), domain experts, sponsors,

architects, engineers, business analysts, etc.

These actors, however, are not the only ‘objects’ playing an important role in

system development. Another important class of objects are the many different

documents, models, forms, etc., that represent bits and pieces of knowledge

pertaining to the system that is being developed. This entire group of objects, and

the different roles they can play, is what we shall refer to as a system development

community.

System development community: a group of objects, such as actors and

representations, which are involved in the development of a system.

(We will clarify below why we regard documents as being part of the

community.)

The actors in a system development community will (typically as a consequence

of their stakes) have some specific interests with regards to the system being

developed. This interest implies a sub-interest with regard to (the contents of) the

system descriptions that are communicated within the community. This interest, in

line with the ISO/IEC/IEEE 42010:2011 standard (ISO/IEC/IEEE 2011), is referred

to as the concern of stakeholders.

4.2 System Development as a Knowledge Transformation Process 61

Concern: an interest of a stakeholder with regards to the architecture

description of some system, resulting from the stakeholder’s goals, and the

present or future role(s) played by the system in relation to these goals.

Some examples of concerns are:

– The current situation with regards to the computerised support of a business

process.

– The requirements of a specific stakeholder with regards to the desired situation.

– The improvements, which a new system may bring, to a pre-existing situation in

relation to the costs of acquiring the system.

– The potential impact of a new system on the activities of a prospective user.

– The potential impact of a new system on the work of the system administrators

that are to maintain the new system.

4.2.2 System Development Knowledge

The system development community harbours knowledge about the system being

developed. The communication occurring within a system development community

essentially is aimed at creating, furthering, and disseminating this knowledge.

Depending on their concerns, stakeholders will be interested in different knowledge

topics pertaining to the system being developed.

We will now briefly explore the kinds of knowledge that are relevant to a system

and its development; in other words, the knowledge topics that can be distin-

guished. In the next subsections, we will discuss in more detail in what ways this

knowledge can be made (more) explicit.

During system development, members of the system development community

will create and exchange knowledge pertaining to different topics. We can make a

first distinction between the target domain pertaining to the system being developed

and the project domain, about the development process itself. We have borrowed

these terms from the Information Services Procurement Library (ISPL) (Franckson

and Verhoef 1999). For both of these knowledge domains, further refinements can

be made with regards to the possible topics. We identify the following additional

characterisations:

– Perspective: Artefacts, such as systems, can be considered from different

perspectives. Some examples are:

• business, application, and technology aspects of a (computerised) informa-

tion system;

62 4 Communication of Enterprise Architectures

• social, symbolical, and physical aspects of a system;

• process, information, actors, and technology featuring in a system.

In Chap. 8, the notion of ‘viewpoint’ will be discussed in depth. A viewpoint

takes a specific perspective of a system. The concept of viewpoint is, however,

not synonymous with perspective as the former includes some additional items,

such as the modelling language that is to be used to describe the system from the

given perspective. In contrast, a perspective is purely ‘topical’.
– Scope: Given a domain, such as a system or a development project, we can

identify several scopes when approaching the domain: enterprise-wide, depart-

ment-specific, task-specific, etc.

– Design chain: When considering the design of some artefact, a distinction can

be made between:

• Purpose: to what purpose the artefact is needed.

• Functionality: what functionality the artefact should provide to its

environment.

• Design: how it should realise this functionality.

• Quality: how well it should do so.

• Costs: at what cost it may do so, and may be constructed.

This distinction applies to the target domain as well as the project domain. In the

latter case, the project’s execution plan/strategy is the designed artefact.

Based on the above distinction, knowledge topics can be characterised in terms

of their focus on, for example, functionality or quality in isolation, or their focus

on bridging the gaps between purpose, functionality, and design in terms of

design rationale.

– Historical perspective: Given an artefact with a design, one may consider

different versions of this artefact’s design over time.

In the case of a system, one may consider the current version, the version that

will be in existence after the development project has finished, and the (sketchy)

version of the ‘future’ system that serves as a navigational beacon in a sea of

possibilities to guide future development. In the case of a development process,

one may consider the execution plan/strategy that is being used at the moment,

or the plan/strategy that was used before.

– Abstraction level: When considering a domain, one may do so at several levels

of abstraction. Various forms of abstraction can be distinguished: for example,

type-instance, generalisation/is-a, encapsulation, and hiding of implementation

details.

As mentioned before, depending on their concerns, stakeholders may be inter-

ested in different knowledge topics. For example, a financial controller will be

interested in an investment perspective of the overall scope of a future system, a

designer will be interested in all aspects of the design chain from different

perspectives, etc.

4.2 System Development as a Knowledge Transformation Process 63

http://dx.doi.org/10.1007/978-3-662-53933-0_8

4.2.3 Explicitness of Knowledge

The actors in a system development community have a need to communicate

system development knowledge among each other. In the field of knowledge

management, a key distinction is made between explicit and tacit knowledge

(Nonaka and Takeuchi 1991). Explicit knowledge refers to knowledge that can be

externalised in terms of some representation. With representation of knowledge, we

refer to the process of encoding knowledge in terms of some language on some

medium, e.g., creating an architecture model.

However, not all forms of knowledge lend themselves well to explicit represen-

tation. For example, the ability to maintain one’s balance on a bicycle is learned by
(painful) trial and error rather than reading instructions. This knowledge is actively

and personally passed on from generation to generation: parents assist their children

in this process by encouraging them and by protecting them from serious injury

during the trial-and-error process. In Nonaka and Takeuchi (1991), this is referred

to as socialising as a means to transfer knowledge that cannot be made explicit. The

type of knowledge concerned, which cannot easily be represented on a medium, is

referred to as tacit knowledge.
Our focus is on the communication of system development knowledge by way of

explicit representations, in other words explicit knowledge. In the context of this

book, these representations mainly take the form of architecture descriptions. As

discussed in Sect. 4.1, our initial theoretical considerations cover development of

systems in general. In accordance with this generalisation we will, for now, use the

terms systems description and system description language rather than the terms

architecture description and architecture description language.
System descriptions are essentially forms of explicit knowledge pertaining to an

existing/future system: its design, the development process by which it was/is to be

created, the underlying considerations, etc. Given this focus, we can make a more

precise classification with regards to what we mean by ‘explicitness’. Based on

Franckson and Verhoef (1999) and Proper (2001), we identify the following

dimensions of explicitness for representations of system development knowledge:

– Formality: The degree of formality indicates the type of language used to

represent the knowledge. Such a language could be formal, in other words a

language with an underlying well-defined semantics in some mathematical

domain, or it could be informal—not mathematically underpinned, typically

natural language, graphical illustrations, animations, etc.

– Quantifiability: Different aspects of the designed artefact, be it (part of) the

target or the project domain, may be quantified. Quantification may be expressed

in terms of volume, capacity, workload, effort, resource, usage, time, duration,

frequency, etc.

– Executability: The represented knowledge may, where it concerns artefacts

with operational behaviour, be explicit enough so as to allow for execution.

This execution may take the form of a simulation, a prototype, generated anima-

tions, or even fully operational behaviour based on executable specifications.

64 4 Communication of Enterprise Architectures

– Comprehensibility: The knowledge representation may not be comprehensible

to the indented audience. Tuning the required level of comprehensibility of the

representation, in particular the representation language used, is crucial for

effective communication. The representation language may offer special con-

structs to increase comprehension, such as stepwise refinements, grouping/

clustering of topically related items/statements, etc.

– Completeness: The knowledge representation may be complete, incomplete, or

overcomplete with regards to the knowledge topic (see previous subsection) it

intends to cover.

4.2.4 Transformations of Knowledge

During the development of a system, the knowledge about the system and its

development will evolve. New insights emerge, designs are created, views are

shared, opinions are formed, design decisions made, etc. These all lead to trans-

formations of the ‘knowledge state’ of the development community as a whole. The

transformations of this ‘knowledge state’ are brought about by conversations. This

immediately raises the question: what are these ‘knowledge states’?
The discussion above already provides us with some insight into the answer to

this question. The representations and the actors in a development community can

both be seen as harbouring certain knowledge topics. As such, both representations
and actors are (potential) knowledge carriers. Knowledge topics refer to some

subdomain of the system being developed and/or its development process. The

knowledge topics can therefore be classified further in terms of their focus, scope,

etc., as discussed in Sect. 4.2.2.

The actual knowledge that is harboured by a knowledge carrier is not explicitly

taken into account. The knowledge that is available from/on/in a knowledge carrier

is a subjective notion. An aspect of this knowledge that we can reason about more

objectively is its level of explicitness, as we have seen in Sect. 4.2.3.

The knowledge as it is present in a development community can be seen to

evolve through a number of states. Knowledge first needs to be introduced into the

community, either by creating the knowledge internally or importing it from

outside the community. Once the knowledge has been introduced into a commu-

nity, it can be shared among members of that community. Sharing knowledge

between different actors may progress through a number of stages. We distinguish

three major stages:

– Aware: An actor may become aware of (possible) knowledge by way of the

sharing by another actor.

– Agreed: Once knowledge is shared, an actor can make up his or her own mind

about it, and decide whether or not to agree to the knowledge shared.

– Committed: Actors who agree to a specific knowledge topic may decide

actually to commit to this knowledge. In other words, they may decide to

adapt their future behaviour in accordance with this knowledge.

4.2 System Development as a Knowledge Transformation Process 65

There is no way to determine objectively and absolutely the level of awareness,

agreement, or commitment of a given set of actors. It is in the eyes of the beholder.

Since these ‘beholders’ are actors in the system development community, we can

safely assume that some of them will be able to (and have a reason to) judge the

level of sharing of knowledge between sets of actors, and communicate about this.

4.3 Conversation Strategies

The knowledge transformations as discussed in the previous section are brought

about by conversations. These conversations may range from ‘atomic’ actions

involving a small number of actors, via discussions and workgroups, to the devel-

opment process as a whole. This has been illustrated informally in Fig. 4.1.

Each conversation is presumed to have some knowledge goal: a knowledge state
which the conversation aims to achieve (or to maintain). In achieving this goal, a

conversation will follow a conversation strategy. Such a strategy is needed to

achieve the goal of the conversation, starting out from the current state.

Conversations take place in some situation that may limit the execution of the

conversation. We may characterise such a situation further in terms of situational

factors:

– Availability of resources: Refers to the availability of resources that can be

used in a conversation. The availability of resources can be refined to more

specific factors such as time for execution, actors, intellectual capacities needed

from the actors, or financial means.

– Complexity: The resources needed for the conversation, the knowledge being

conversed about, etc., will exhibit a certain level of complexity. This complexity

also influences the conversation strategy to be followed. Examples of such

complexity factors, inspired by Franckson and Verhoef (1999), are the hetero-

geneity of the actors involved, the quantity of actors, complexity of the technol-

ogy used, the complexity of the knowledge being conversed about, and the size

of the gap between the initial knowledge state and the desired knowledge state.

– Uncertainty: If you want to determine a conversation strategy fit for a given

situation, you have to make assumptions about the knowledge goal, the initial

Fig. 4.1 Example sequence

of conversations

66 4 Communication of Enterprise Architectures

state, the availability of resources, as well as the complexities of these factors.

During the execution of a conversation, some of these assumptions may prove to

be wrong. For example, the commitment of certain actors involved may be lower

than anticipated (initial state); materials needed for a workshop may not be

available on time (resources); during a requirements elicitation session it may

come to the fore that the actors involved do not (yet) have enough knowledge

about the future system and its impact to formulate/reflect on the requirements of

the future system (initial state).

Note that it may actually be part of a conversation strategy to first initiate

conversations that aim to reduce these uncertainties, in order to reduce potential

adverse consequences.

If you formulate a conversation strategy, you should take all of the above-

mentioned factors into account. A conversation strategy should typically cover at

least the following elements:

– Execution plan: As we said before, a conversation can be composed of

subconversations. Each of these subconversations focuses on a sub-goal, but

they all contribute towards the goal of the conversation as a whole. The execu-

tion plan of a (composed!) conversation consists of a set of subconversations,

together with a planned execution order.

– Description languages: The description languages to be used in the conversa-

tion(s).

– Media: The kind of media to be used during the conversation(s).

– Cognitive mode: The cognitive mode refers to the way in which knowledge is

gathered or processed by the actors involved in a conversation. We distinguish

two options:

• Analytical approach: When information is processed analytically, the avail-

able information is simplified through abstraction in order to reach a deeper

and more invariant understanding. An analytical approach is typically used to

handle complexity.

• Experimental approach: When using an experimental approach, the project

actors learn from doing experiments. The purpose is to reduce uncertainties

by generating more information. Experiments can, for example, be based on

prototypes, mock-ups, benchmark tests of migrated components, or other

kinds of techniques which make the results of migration scenarios visible.

You may need to combine the two cognitive modes in specific situations, in

particular in the case of conversations that are composed of several smaller

subconversations.

– Social mode: The social mode is the way in which the actors executing the

system development process collaborate with the actors from the business

domain. We distinguish two options:

• Expert-driven: In an expert-driven approach, project actors (the experts) will

produce descriptions on the basis of their own expertise, and interviews and

4.3 Conversation Strategies 67

observations of business actors. The descriptions can then be delivered to the

business actors for remarks or approval.

• Participatory: In a participatory approach, the project actors produce the

descriptions in close cooperation with some or all the business actors, e.g.,

in workshops with presentations, discussions and design decisions. A partic-

ipatory approach may allow the acquisition of knowledge, the refinement of

requirements and the facilitation of organisational change.

– Communication mode: We can distinguish a small number of basic patterns of

communication here, as covered by combinations of the following five factors:

• Speaker–hearer ratio: Most typically many to one, one to many, one to one,

many to many.

• Response: Simply whether or not an answer is expected from the hearer; if a

response is indeed expected, one response may lead to a further response,

leading to dialogue and turn taking.

• Time lag: Whether or not communication takes some time between ‘speak-
ing’ and ‘hearing’. Consider the difference between a telephone call and an

e-mail message.

• Locality: Whether or not there is a perceived distance between participants.

Note that this is a relative notion; two people communicating via videophone

between Tokyo and Amsterdam may feel ‘close’, while two people from

different departments housed in the same building may feel ‘distant’. Dis-
tance can be not only physical, but also cultural.

• Persistency: Whether or not a message can be kept after communication, i.e.,

can be ‘reread’. This is of course closely linked to the medium used, but it

may also be related to the status of a document: persistency of a ‘temporary

document’ or intermediary version may actually be counterproductive.

We can use combinations of these factors to typify many different modes of

communication, which can have a major impact on the resources required for

communication and the likelihood that a knowledge goal is reached. For exam-

ple, one-to-many communication is relatively efficient and effective, assuming

that no immediate (n:1) response is given; however, if a time lag is added, n:1
responses become possible but the one participant will have to invest much time

to digest all these responses. Also, if n:1 responses are given rapidly, but the

communication is persistent (e.g., people respond through altered copies of a

file), then these responses are no problem except for the load on the recipient.

And if many relatively distant people participate, in-depth and context-

dependent communication will be difficult.

In a modelling context, not all combinations (communication modes) will be

relevant, but it is still vital to consider things like ‘Do I expect anyone to respond
to this model?’; ‘How many people will have to respond?’; ‘How distant are

they?’; ‘How quick will the response (have to) be?’; ‘How long will it take me to

process responses?’, etc.

68 4 Communication of Enterprise Architectures

A summary of this discussion is provided in Fig. 4.2. Given a knowledge goal, an
initial state, and conversation situation, a conversation strategy can be determined,

which should lead us from the initial state to the knowledge state as desired by the

knowledge goal, taking into account the conversation situation at hand.

4.4 Architectural Conversations

After the theoretical discussions of the previous sections, we now return to the

practice of communicating enterprise architectures. The situation as depicted in

Sect. 4.2 may indeed portray the underlying mechanics in theory, but it still leaves

practitioners with the question of how actually to produce such a conversation

strategy. In all fairness, current research into these matters is still in its initial stages.

The theoretical model as discussed above will have to be scientifically validated

and refined. In addition, practical heuristics should be formulated, matching ele-

ments from conversation strategies to conversation situations and thus addressing

the gap between the knowledge goal and the initial state.

Even so, we can already provide practitioners with some guidance in selecting

conversation strategies to communicate about enterprise architectures, by reducing

the discussion of selecting a conversation strategy to the selection of a class of

architectural conversation in conjunction with an appropriate architectural view-

point. To direct this selection, we will define a number of classes of architectural

knowledge goals. The selected viewpoints identify what shall be conversed about,

and what language (and language conventions) shall be used to do so, while the

selected conversation technique identifies the style of conversation that is to

be used.

So this section provides a discussion of the classes of architectural knowledge

goals and conversation techniques that we distinguish within the context of enter-

prise architecture, as well as their relationship. In Chap. 8, the notion of viewpoint

will be discussed in more detail, and additional heuristics on the selection of

viewpoints and conversation types will be given.

4.4.1 Knowledge Goals

In Sect. 4.2.4, we identified three major stages in communicating knowledge:

awareness, agreement, and commitment. Based on these and on the levels of

sharing of knowledge and explicitness of knowledge as identified in Sect. 4.2.3,

Knowledge goal
Initial state

Conversation situation
Conversation strategy⇒ ? ⇒

Fig. 4.2 From knowledge

goal to conversation

strategy

4.4 Architectural Conversations 69

http://dx.doi.org/10.1007/978-3-662-53933-0_8

we can identify the following classes of knowledge goals that you may want to

achieve in a conversation:

– Introduction of knowledge: This refers to situations where there is a need to

introduce into or create new knowledge in a (part of a) development community.

These kinds of knowledge goals typically lead to training or awareness sessions.

– Agreement to knowledge: With this class of knowledge goals, we refer to

situations in which the mutual agreement of different stakeholders (with their

own specific stakes and concerns!) needs to be improved or validated.

– Commitment to knowledge: In these cases, the knowledge goal goes beyond

that of achieving agreement. Stakeholders should be willing to act upon the

knowledge they agree to.

Note that the introduction of knowledge, as described above, may pertain to a

subset of the development community. At the start of a system development project,

the development team may not (yet!) have knowledge pertaining to the specific

application domain. Domain experts and other informants, by nature of their roles,

do have this knowledge. The development community as a whole comprises at least

both the development team and the domain experts. A domain analysis session

involving, for example, a business analyst and a domain expert introduces (part of)
the domain knowledge of the domain expert into the development team.

4.4.2 Conversation Techniques

In architecture development, we find a number of common conversation techniques

where it concerns the communication of architectural models:

– Brown-paper session: Structured brainstorm-like group session (up to about

15 people) in which items (keywords or short phrases) are elicited from the

individuals in the group in answer to a question such as: ‘What are the key

functionality issues in our current IT architecture?’ Typically, every individual

item is written on a small adhesive note (‘PostIt’). The items are then collected

on a sheet of paper (traditionally of the cheap brown kind) and, by means of an

open and creative group process, structured and categorised. This may involve

adding, deleting, merging, or changing items. Usually, a mediator or facilitator is

involved.

– Elicitation interview: An interview where an analyst puts informative questions

to the informants. The aim is to gather knowledge from the informants. Inter-

views can be more or less ‘open’: they can be strictly focused or guided, but the

conversation can also be left open to go where the interest of the interviewer or

informants leads it.

– Workshop: Involves one to, say, 15 people, working on a model or view

interactively, mediated by an architect or analyst. This class also encompasses

so-called joint modelling sessions. A popular, effective, and realistic technique

70 4 Communication of Enterprise Architectures

is to project a view or model and have a facilitator adapt it in full view of the

participants, thus generating immediate feedback. With a few participants, a

workshop can of course simply take place behind a screen and keyboard.

– Validation interview: An interview where an analyst will aim to find out if the

view or model matches the views and expectations of an informant. This could

be a view or model that has been communicated to the informants beforehand, or

during the interview. A validation interview will typically be much more

‘closed’ than an elicitation interview: there will have to be some systematic

approach by which validity of the view or model is checked.

– Committing review: A group of stakeholders are presented with a number of

alternative models or views and their impact. They are requested to select one

alternative and commit to this alternative based on their insights into the

potential impact. This typically involves a formal decision-making processes

(Franckson and Verhoef 1999).

– Presentation: Involves one to three people presenting a model or view to a

group of, say, up to a hundred people. One may decide to elicit feedback, but this

is usually gathered afterwards, in a more personal way, or at least 1:1

(e.g. through a round of feedback).

– Mailing: A form of ‘mass’ communication, where a model or view is presented

or handed over to a large number of people. Feedback may or may not be

encouraged.

Even though we have not yet discussed viewpoints, we can already relate the

identified knowledge goals to the conversation techniques. This is shown in

Table 4.1, which is based on interviews and discussions with many architects

from industry.

Table 4.1 Knowledge goals and conversation techniques

Knowledge Goal

Conversation Technique Introduce Agree Commit

Brown-paper session

Elicitation interview

Workshop +

Validation interview +

Committing review ++

Presentation

Mailing

++

++

+

++

+

–

–

+

+

++

++

–

–

–

–

–

–

–

A + indicates that a certain conversation class is well suited for the selected technique of

knowledge goals, while ++ indicates that it is particularly well suited. On the other hand, a �
indicates that a certain conversation technique is ill-suited for the selected class of knowledge

goals

4.4 Architectural Conversations 71

This table can fruitfully be used in practice to choose the conversation technique

for the task and knowledge goal at hand. In Chap. 8, we will have a more in-depth

look at the use of viewpoints to assist communication between the different

stakeholders.

4.5 Summary

In the previous sections, we have presented both a theoretical and a practical

perspective of the issues involved in the communication of enterprise architectures.

The theoretical perspective described the communication during system develop-

ment in general. Based on the one hand on this theoretical view and on the other

hand on the experiences of architects, the practical perspective presented a number

of practical guidelines and conversation techniques that should aid architects in the

selection and definition of architecture description approaches that are fit for a

specific communication situation.

72 4 Communication of Enterprise Architectures

http://dx.doi.org/10.1007/978-3-662-53933-0_8

Chapter 5

A Language for Enterprise Modelling

Henk Jonkers, Luuk Groenewegen, Marcello Bonsangue, René van Buuren,

Dick A.C. Quartel, Marc M. Lankhorst, and Adina Aldea

Architecture provides a means to handle the complexity of modern information-

intensive enterprises. To this end, architects need ways to express architectures as

clearly as possible: both for their own understanding and for communication with

other stakeholders, such as system developers, end users, and managers. Unfortu-

nately, the current situation is that architects in different domains, even within the

same organisation, often use their own description techniques and conventions. To

date, there is no standard language for describing enterprise architectures in a

precise way across domain borders. They are often described either in informal

pictures that lack a well-defined meaning, or in detailed design languages (such as

UML) that are difficult to understand for non-experts. This frequently leads to

misunderstandings that hinder the collaboration of architects and other stake-

holders. Also, it makes it very difficult to provide tools for visualisation and

analysis of these architectures.

The description of the ArchiMate language in this section is based on the official

ArchiMate 3.0 Specification as published by The Open Group (2016a), which

describes ArchiMate in much more detail and precision. The ideas behind of

ArchiMate’s construction are further elaborated by Lankhorst et al. (2010). We

refer the interested reader to these publications for more information and back-

ground on the language and its construction.

H. Jonkers • D.A.C. Quartel • A. Aldea

BiZZdesign, Enschede, The Netherlands

L. Groenewegen • M. Bonsangue

University of Leiden, Leiden, The Netherlands

R. van Buuren

Thales, Huizen, The Netherlands

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_5

73

mailto:m.lankhorst@bizzdesign.com

5.1 Describing Coherence

In information and ICT-intensive organisations, several types of architects and

architectural practice can be found, ranging from product and process architectures

to the more technically oriented application and infrastructure architectures.

The ICT-related disciplines already have a somewhat longer architectural tradi-

tion, although there the distinction between architecture and design is not always

sharp. Application architects, for example, describe the relations between the many

software applications used within the enterprise, as well as the global internal

structure of these applications. Presently, UML is usually the language of choice

for this purpose, although there are still organisations using their own proprietary

notation. The architecture of the technical infrastructure, describing, among others,

the layout of the computer hardware and networks hardware in the company, is

generally captured in informal drawings of ‘clouds’ and ‘boxes’, if at all.
In the more business-oriented disciplines, ‘working under architecture’ is a more

recent development. Since the advent of process orientation in the 1990s [e.g.,

Business Process Redesign (Davenport and Short 1990)], more and more organi-

sations have started to document their business processes in a more or less formal

way. However, these descriptions do not focus on the architectural aspects, i.e., they

do not provide an overview of the global structure within processes and the

relationships between them. Some organisations have a description of their product

portfolio, which is generally text based, however.

Thus, we can say that within many of the different domains of expertise that are

present in an enterprise, some sort of architectural practice exists, with varying

degrees of maturity. However, due to the heterogeneity of the methods and tech-

niques used to document the architectures, it is very difficult to determine how the

different domains are interrelated. Still, it is clear that there are strong dependencies

between the domains. For example, the goal of the (primary) business processes of

an organisation is to realise their products; software applications support business

processes, while the technical infrastructure is needed to run the applications;

information is used in the business processes and processed by the applications.

For optimal communication between domain architects, needed to align designs in

the different domains, a clear picture of the domain interdependencies is

indispensable.

With these observations in mind, we conclude that a language for modelling

enterprise architectures should focus on inter-domain relations. With such a lan-

guage, we should be able to model:

– Any global structure within each domain, showing the main elements and their

dependencies, in a way that is easy to understand for non-experts of the domain.

– The relevant relations between the domains.

Another important property of an enterprise modelling language—and of any

modelling language—is a formal foundation, which ensures that models can be

interpreted in an unambiguous way and that they are amenable to automated

74 5 A Language for Enterprise Modelling

analysis. Also, it should be possible to visualise the same model in different ways,

tailored towards specific stakeholders with specific information requirements.

In this chapter, we present the enterprise modelling language that we use

throughout this book. Although, in principle, the concepts of this language are

sufficiently generic and expressive to model many of the aspects within specific

domains, it is clearly not our intention to introduce a language that can replace all

the domain-specific languages that exist. For specific (detailed) designs of, for

example, business processes or applications, the existing languages are likely to

be more suitable. We do, however, conform as much as possible to the modelling

standards that exist in the different domains.

In Fig. 5.1, the role that the enterprise architecture modelling language plays in

our approach is summarised. It provides a means for integration, by allowing the

creation of models that show high-level structures within domains and the relations

between domains. Also, it occupies a central spot in the approach in that it provides

the basis for the visualisation and analysis techniques described elsewhere in this

book.

5.2 Service Orientation and Layering

In the enterprise modelling language that we propose, the service concept plays a

central role. A service is defined as a unit of functionality that some entity (e.g., a

system, organisation, or department) makes available to its environment, and which

has some value for certain entities in the environment (typically the ‘service users’).
Service orientation supports current trends ranging from the service-based network

economy to ICT integration with Web services. These examples already show that

services of a very different nature and granularity can be discerned: they can be

High-level modelling
within a domain

Modelling relations
between domains

Basis for
visualisation

Basis for
analysis

Fig. 5.1 The role of the ArchiMate language

5.2 Service Orientation and Layering 75

provided by organisations to their customers, by applications to business processes,

or by technological facilities (e.g., communication networks) to applications.

Service orientation may typically lead to a layered view of enterprise architec-

ture models, where the service concept is one of the main linking pins between the

different layers. Service layers with services made available to higher layers are

interleaved with implementation layers that realise the services. Within a layer,

there may also be internal services, e.g., services of supporting applications that are
used by the end-user applications. How this leads to a stack of service layers and

implementation layers is shown in Fig. 5.2. These are linked by serving relations,

showing how the implementation layers make use of the services of other layers,

and realisation relations, showing how services are realised in an implementation

layer.

Although, at an abstract level, the concepts that are used within each layer are

similar, we define more concrete concepts that are specific for a certain layer. In this

context, we distinguish three main layers:

1. The business layer offers products and services to external customers, which are

realised in the organisation by business processes (performed by business actors

or roles).

2. The application layer supports the business layer with application services

which are realised by (software) application components.

3. The technology layer offers infrastructural services (e.g., processing, storage,

and communication services) needed to run applications, realised by computer

and communication devices and system software.

Technical infrastructure

Infrastructural services

Application components

Application services

Business processes

Business services

CustomersCustomers

Supporting application
components

Internal application
services

Primary application
components

Supporting application
components

Internal application
services

Primary application
components

Fig. 5.2 Layered view

76 5 A Language for Enterprise Modelling

5.3 Three Dimensions of Modelling

A premise of the ArchiMate language is that the general structure of models within

the different layers is similar. The same types of concepts and relations are used,

although their exact nature and granularity differ. As a result of this uniformity,

models created for the different layers can quite easily be aligned with each other.

To identify the concepts that make up this general structure, we start from the three

dimensions shown in Fig. 5.3.

The core concepts that are found in each layer of the language are depicted in

Fig. 5.4. First, we distinguish the structural or static aspect (right side of Fig. 5.4)
and the behavioural or dynamic aspect (centre of Fig. 5.4). Behavioural concepts

are assigned to structural concepts, to show who or what displays the behaviour.

In addition to active structural elements (the business actors, application com-

ponents and devices that display actual behaviour, i.e. the ‘subjects’ of activity), we
also recognise passive structural elements (left side of Fig. 5.4), i.e. the objects on
which behaviour is performed. In the domain of information-intensive organisa-

tions, which is the intended application area of our language, these are usually

information objects, but physical objects can be modelled in the same way.

collective

external

structure

individual

internal

behaviour

collective

external

structure

individual

internal

behaviour

Fig. 5.3 Three dimensions of architectural concepts

Internal

External

Passive structure Behaviour Active structure

Active
structure
element

Passive
structure
element

Service Interface

Behaviour
element

Fig. 5.4 The core concepts of the ArchiMate language

5.3 Three Dimensions of Modelling 77

These three aspects—active structure, behaviour, and passive structure—are

derived from natural language: they correspond to the subject-verb-object elements

that all human languages exhibit (Crystal 1997) (although their grammatical order

may vary between different languages). Thus, these aspects are fundamental to the

way in which we describe the world. Having a similar structure in the modelling

language therefore enhances its ease of use.

Next, we make a distinction between an external view (top layer of Fig. 5.4) and

an internal view of systems (bottom layer). When looking at the behavioural aspect,

these views reflect the principles of service orientation as introduced in the previous

section. The service concept represents a unit of essential functionality that a

system exposes to its environment. For the external users, only this external

functionality, together with non-functional aspects such as the quality of service,

costs, etc., are relevant. If required, these can be specified in a contract or service-

level agreement. Services are accessible through interfaces, which constitute the

external view of the structural aspect.

Third, for the internal realisation of services and interfaces, we distinguish

between behaviour that is performed by an individual structural element (e.g.,

actor, role component, etc.), and collective behaviour (interaction) that is performed

by a collaboration of multiple structural elements. An interaction can be treated as a

specialisation of a behaviour element: it can trigger or be triggered by other

behaviour elements (including other interactions), and it can be part of a process.

Similarly, a collaboration can be treated as a specialisation of a structure element.

This introduces the possibility of recurrence: next to individual structure elements,

a collaboration may also aggregate other, more fine-grained collaborations.

The core of the ArchiMate language consists of these concepts, specialised for

the three layers identified in the previous section. For example, at the business layer,

we have business services, business processes and business functions as speciali-

sations of behaviour element; actors and roles as business-specific active structure

elements; and business objects as passive structure elements. Although these layer-

specific concepts follow the general structure shown in this section, they differ with

respect to, for example, their granularity. Also, some of the layers have a number of

additional concepts.

5.4 Full Framework

The modelling concepts of the core language as introduced in the previous section

can be used to describe or design actual architectures. The full ArchiMate language

(The Open Group 2016a) adds a number of concepts to this core to provide more

complete support for the architecture development process:

– Motivation concepts, to model the reasons behind the choices made in the

architecture. It corresponds to the ‘Why’ column of the Zachman framework

78 5 A Language for Enterprise Modelling

(Zachman 1987; Sowa and Zachman 1992). This includes modelling of stake-

holders, drivers for change, business goals, principles, requirements and

outcomes.

– Strategy concepts, for modelling the enterprise at a strategic level with its

capabilities, resources and the courses of action (strategies, tactics) it may take.

– Physical concepts, to describe the physical world of equipment, materials and

transport.

– Implementation and migration concepts, to support project portfolio manage-

ment, gap analysis and transition and migration planning. This includes model-

ling of work packages (e.g. projects), deliverables, plateaus and gaps.

The structure of the language and the most important concepts are summarised

in Fig. 5.5. A full overview of the language meta-model can be found in the official

specification document (The Open Group 2016a) and the notation is given in

Appendix A.

In the following sections, we discuss the concepts within the three layers of the

ArchiMate core language, as described in the previous sections, followed by a

description of the additional concepts mentioned above. We use simple example

models to illustrate the use of the concepts. More elaborate examples can be found

in Sect. 5.15 and in some of the other chapters of this book.

Strategy

Implementation
& migration

Physical

Application

Technology

Business

MotivationPassive
structure

Behavior Active
structure

business objects

data objects

artifacts

material

business services,
functions and

processes

application services,
functions and

processes

technology services,
functions and

processes

business actors
and roles

application components
and interfaces

devices,
system software,

communication
networks

facilities, equipment,
distribution networks

deliverables work packages plateaus

stakeholders,
drivers, goals,
principles and
requirements

courses of action,
capabilities resourcesresources

Fig. 5.5 Main concepts of the ArchiMate language

5.4 Full Framework 79

5.5 Composite Concepts

Before we address the concepts in the different layers and aspects, we first need to

discuss a number of generic, composite elements that are not layer-specific. The

grouping element is used to aggregate or compose an arbitrary group of concepts,

which can be elements and relationships of the same or of different types.

Grouping: aggregates or composes concepts that belong together based on

some common characteristic.

The grouping element is used to aggregate or compose an arbitrary group of

concepts, which can be elements and/or relationships of the same or of different

types. Concepts may be aggregated by multiple (overlapping) groups. One useful

way of using grouping is for modelling Architecture and Solution Building Blocks

(ABBs and SBBs), as described in the TOGAF framework (The Open Group 2011).

Another type of use is for modelling various kinds of architecture or business

domains.

In some cases, it is relevant to model the (logical or physical) distribution of

structural elements such as business actors, application components or nodes in the

technology layer. For this purpose, the location concept can be used, which may be

assigned to these structural elements.

Location: a place or position where structure elements can be located or

behaviour can be performed.

The location element is used to model the places where structure elements such

as business actors, application components and devices are located and where, for

example, business processes or application functions are performed. This element

corresponds to the “Where” column of the Zachman framework (Zachman 1987).

An example is shown in Fig. 5.10 later in this chapter.

5.6 Motivation Concepts

Motivation concepts are used to model the motivations, or reasons, that underlie the

design or change of an enterprise architecture. They influence, guide and constrain

the design. These concepts were partly inspired on previous work on goal-oriented

requirements engineering (Yu 1997; Lamsweerde 2004) and architecture principles

(Greefhorst and Proper 2011).

80 5 A Language for Enterprise Modelling

An example of a motivation model is shown in Fig. 5.6. The example illustrates

the use of the central concepts and relations. In the following subsections, we will

explain the motivation concepts in more detail.

5.6.1 Stakeholder, Driver and Assessment

A stakeholder has one or more interests in, or concerns about, the organisation and

its enterprise architecture. In order to direct efforts to these interests, stakeholders

change, set and emphasise goals.

Stakeholder: the role of an individual, team or organisation (or classes

thereof) that represents their interest in the outcome of the architecture.

Fig. 5.6 Example of a motivation model

5.6 Motivation Concepts 81

Drivers model factors that drive the change in an organisation.

Driver: an external or internal condition that motivates an organisation to

define its goals and implement the changes necessary to achieve them.

These may be internal drivers (also called ‘concerns’), in which case they are

usually associated with a stakeholder. Drivers may also be external, for example,

economic changes or changing legislation.

The analysis of the situation in the enterprise from the perspective of a driver

results in an assessment. An assessment may reveal strengths, weaknesses, oppor-

tunities or threats for some area of interest.

Assessment: the result of an analysis of the state of affairs of the enterprise

with respect to some driver.

These assessments need to be addressed by adjusting existing goals or setting

new ones, which may trigger changes to the enterprise architecture.

5.6.2 Goal, Requirement, Constraint and Principle

A goal represents anything a stakeholder may desire, such as a state of affairs, or a

produced value.

Goal: a high-level statement of intent, direction or desired end state for an

organisation and its stakeholders.

Goals are generally expressed using qualitative words, for example, ‘increase’,
‘improve’ or ‘easier’. However, it is also very common to associate concrete,

quantifiable objectives with goals. In the end, a goal must be realised by a plan or

concrete change goal, which may or may not require a new system or changes to

existing systems. Requirements model the properties of the elements in the archi-

tecture that are needed to achieve the ‘ends’ that are modelled by the goals.

Requirement: a statement of need that must be met by the architecture.

A requirement can be realised by any applicable core element of the language.

82 5 A Language for Enterprise Modelling

In contrast to a requirement, a constraint does not prescribe some intended

functionality of the system to be realised, but imposes a restriction on the way in

which the system may be realised.

Constraint: a factor that prevents or obstructs the realisation of goals.

This may be a restriction on the implementation of the system (e.g. specific

technology that is to be used) or a restriction on the implementation process

(e.g. time or budget constraints).

Principles are strongly related to goals and requirements. Similar to require-

ments, principles define intended properties of the architecture. However, in con-

trast to requirements, principles are broader in scope and more abstract. While a

requirement relates to a specific need that the architecture must address, a principle

refers to the general intent (of some stakeholder) that the architecture should meet.

Principle: a qualitative statement of intent that should be met by the

architecture.

A principle must be made specific for a given solution by means of one or more

requirements or constraints, in order to enforce that the solution conforms to the

principle.

The results achieved by the architecture are modelled as outcomes.

Outcome: an end result that has been achieved.

Note that not all outcomes have to be intended, i.e. be tied to some goal.

Unexpected and undesired outcomes may also be relevant in an architecture model.

5.6.3 Value and Meaning

The value of an element of the core architecture is that which makes some party

appreciate it.

Value: the relative worth, utility or importance of a core element or an

outcome.

Value can go two ways: it may apply to what a party gets by selling or making

available some product or service or to what a party gets by buying or obtaining

5.6 Motivation Concepts 83

access to it. Value is often expressed in terms of money, but it has long been

recognised that nonmonetary value also is essential to business: for example,

practical/functional value (including the right to use a service) and the value of

information or knowledge. Although value can be internally relevant for some

system or organisational unit, it is most typically applied to external appreciation
of goods, services, information, knowledge or money, normally as part of some sort

of customer–provider relationship. Although the name of a value can be expressed

in many different ways (including amounts, objects), when the ‘functional’ value of
a service is concerned, it is recommended to try and express it as an action or state

that can be performed or reached as a result of the corresponding service being

available.

Similar to the way in which we associate a value with a product, we can associate

a meaning with a business object or its representation.

Meaning: the knowledge or expertise present in a business object or its

representation, given a particular context.

In other words, meaning represents the informative value of a business object for

a user of such an object. It is through a certain interpretation of a representation of

the object that meaning is being offered to a certain user or to a certain category of

users. The name of a meaning should preferably be a noun or noun phrase

expressing this and distinguishing it from the business object or representation

being interpreted.

5.7 Strategy Concepts

Next to the motivation concepts described in Sect. 5.6, which focus on what the

enterprise wants to achieve, the language includes a number of strategy concepts,

used to express the high-level direction setting of the enterprise, for example, in

approaches such as capability-based planning.

A course of action represents what an enterprise has decided to do to realise its

goals. It can be used to model a high-level strategic plan or direction, or more

concrete lower-level tactics. Courses of action are typically realised by capabilities

and resources, as shown in Fig. 5.7.

Course of action: an approach or plan for configuring some capabilities and

resources of the enterprise, undertaken to achieve a goal.

This concept corresponds directly with the course of action element in the

Business Motivation Model (BMM) (Object Management Group 2015b).

84 5 A Language for Enterprise Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_1

Capabilities define what an organisation needs to be able to do, in order to

successfully achieve the outcomes that are defined as part of the corporate strategy.

They are the key building blocks of the business, unique and independent from each

other, and tend to be stable over time.

Capability: an ability that an active structure element, such as an organisa-

tion, person or system, possesses.

A capability defines what the business does or can do, not how it does that or who

is doing it. They are different from business processes, functions, services, organi-

sation units or IT systems, although these may all contribute to a capability. The

same capability may be implemented in different ways, e.g. manually, IT-supported

or fully automated. Capabilities are typically aimed at achieving some goal or

delivering value by realising an outcome and are themselves realised by core

elements of ArchiMate.

Resources are structure elements that are assigned to capabilities (Fig. 5.8),

which in turn are realised by the active and passive structure elements from the

other layers of the architecture. These may include, for example, business actors,

application components, devices, equipment, data objects or material, defined in

other sections in this chapter.

Resource: an asset owned or controlled by an individual or organisation.

Capabilities and resources are often considered to be sources of competitive

advantage for organisations. They are analysed in terms of strengths and weak-

nesses, and they are considered when implementing strategies. Since resources are

limited, they can often be a deciding factor in choosing which strategy, goal and

project to implement and in which order.

Fig. 5.7 Course of action and outcomes realised by capabilities

5.7 Strategy Concepts 85

By putting it all together, this provides a line of sight from the different assets of

the enterprise upwards to the capabilities they support and to the strategies, goals

and outcomes that the enterprise aims to achieve. This way, you can gain insights

into the effects of strategic decisions and, vice versa, uncover new options and

innovations provided by the capabilities you possess and the resources you employ.

5.7.1 Defining Capabilities

To help you define capabilities, the following guidelines may be helpful:

– A capability defines what the business does or can do, not how it does that or

who is doing it. They are different from business processes, functions, services,

organisation units or IT systems, although these may all contribute to a capabil-

ity. The same capability may be implemented in different ways, e.g. manually,

IT-supported or fully automated.

– Capabilities are owned by the business and named and defined in business terms.

Their definition should be readily understandable by all business professionals

involved. Their names are nouns (e.g. ‘Product innovation’) as opposed to

business processes, which are named with verbs (e.g. ‘Purchase materials’).
– Capabilities are unique and stable. They are defined only once for the whole

enterprise and they rarely change, unless, for example, the enterprise undertakes

a completely new line of business or divests part of its current business.

– Capabilities may be composite, consisting of sub-capabilities. A capability may

also use other capabilities.

– Capabilities can be organised in a capability map that provides an overview of

the entire enterprise.

Fig. 5.8 Resources assigned to capabilities and realised by structure elements

86 5 A Language for Enterprise Modelling

– A capability’s maturity can be assessed across different dimensions, such as

people, process, technology, assets or information. These are the basis for

capability-based planning.

Capabilities can also be classified further, for example, in:

– Core vs. non-core

– Strategic vs. operational vs. supporting

– Customer-facing vs. internal

– Innovating vs. differentiating vs. commodity

Such a classification scheme helps in investment and sourcing decisions, for

example, by distinguishing between:

– Differentiating, customer-facing capabilities, which are core and are seldom

outsourced

– Strategic, innovating capabilities, which are important for the long-term future

of an enterprise and are often assigned a separate budget, to avoid the ‘innova-
tion squeeze’ where the core, operational capabilities eat up all budget

– Non-core, commodity or supporting capabilities, which are good candidates for

outsourcing to partners that have these as their core, differentiating capabilities

Capabilities are distinct from business functions (Sect. 5.8.2). Capabilities

represent the current or desired abilities of an enterprise, realised by its people,

processes, information and technology, but defined independently from the struc-

ture of the organisation. They are focused on specific business outcomes, are used

for strategic planning purposes and may include abilities that the enterprise does not

recognise or use yet. In contrast, business functions describe the work actually done

by the organisation, and they are more closely aligned with the organisation

structure. Each capability occurs only once in a capability map, whereas in a

functional decomposition of the enterprise the same sub-function can occur multi-

ple times.

In describing the current-state business architecture, the value of capabilities

mostly lies in the analysis of the current versus desired levels of capability and in

uncovering capabilities that the organisation already possesses but does not recog-

nise or manage explicitly. Capabilities and capability levels in a target business

architecture give high-level direction for change. This is the core of capability-

based planning.

Of course, when you draw a map of the current capabilities of the organisation,

its current business functions will often figure prominently, since what you actually

do today must by nature be something you are able to do as well. And multiple

business functions may (together with other behaviour elements) contribute to the

realisation of a capability.

More extensive guidance on capability-based planning and capability mapping

is provided by the BIZBOK® Guide (Business Architecture Guild 2016) and the

Open Group Business Capabilities Guide (The Open Group 2016b).

5.7 Strategy Concepts 87

5.8 Business Layer Concepts

An example of a business layer model is shown in Fig. 5.9, illustrating the use of the

central concepts and relations. In the following subsections, we will explain the

business layer concepts in more detail.

5.8.1 Business Structure Concepts

The structure aspect at the business layer refers to the organisation structure, in

terms of the actors that make up the organisation and their relationships. The central

structural concept is the business actor.

Business actor: a business entity that is capable of performing behaviour.

A business actor may be an individual person (e.g., a customer or an employee),

but also a group of people and resources that have a permanent (or at least long-

term) status within the organisation. Typical examples of the latter are a department
and a business unit. Two different specialisations may be defined to distinguish the

two cases. This is illustrated in Fig. 5.24. The name of a business actor should

preferably be a noun.

Fig. 5.9 Example of a business layer model

88 5 A Language for Enterprise Modelling

Business role: the responsibility for performing specific behaviour, to which

an actor can be assigned, or the part an actor plays in a particular action or

event.

The idea is that the work that an actor performs within an organisation is always

based on a certain role that the actor fulfils. The set of roles in an organisation can

be expected to be much more stable than the specific actors fulfilling these roles.

Multiple actors can fulfil the same role, and, conversely, a single actor can fulfil

multiple roles. The name of a business role should preferably be a noun.

A business process or function may be interpreted as the internal behaviour

assigned to a single business role. In some cases, behaviour is the collective effort

of more than one business role: in fact, a collaboration of two or more business roles

results in collective behaviour which may be more than simply the sum of the

behaviour of the separate roles.

Business collaboration: an aggregate of two or more business internal

active structure elements that work together to perform collective behaviour.

Unlike a department, which may also group roles, a business collaboration does

not need to have an official (permanent) status within the organisation: it is aimed at

a specific interaction or set of interactions between roles. The name of a business

collaboration should preferably be a noun. It is also rather common to leave a

business collaboration unnamed.

The same service may be offered on a number of different interfaces, e.g., by

mail, by telephone or through the Internet. This example suggests that different

‘channels’ for offering products or services are typically modelled as business

interfaces.

Business interface: a point of access where a business service is made

available to the environment.

The name of a business interface should preferably be a noun.

Business objects represent the important ‘informational’ or ‘conceptual’ ele-
ments in which the business thinks about a domain. Generally, a business object is

used to model an object type (cf. a UML class), of which several instances may

exist within the organisation. A wide variety of business objects can be defined.

Business object: a concept used within a particular business domain.

5.8 Business Layer Concepts 89

Business objects are passive in the sense that they do not trigger or perform

processes. A business object may be accessed (e.g., created, read, written) by a

business process, function, interaction, event, or service. The name of a business

object should preferably be a noun.

Useful specialisations (see Sect. 5.14.2) of the business object concept are

Message, i.e., an object intended to exchange information between parties, and

Administration, i.e., a coherent collection of information used internally.

Representation: the perceptible form of the information carried by a busi-

ness object.

If relevant, representations can be classified in various ways: for example, in

terms of medium (e.g., electronic, paper, audio) or format (e.g., HTML, PDF, plain

text, bar chart). A single business object can have a number of different represen-

tations, but a representation always belongs to one specific business object.

5.8.2 Business Behaviour Concepts

Business services are used to expose business functionality to the environment.

Business service: an explicitly defined exposed business behaviour.

The name of a business service should preferably be or contain a verb ending

with ‘-ing’, e.g. ‘Transaction processing’, or explicitly contain the word ‘service’,
as in ‘Claims registration service’.

A distinction can be made between ‘external’ business services, offered to

external customers, and ‘internal’ business services, offering supporting function-

ality to processes or functions within the organisation. (The term business service is
sometimes also used to refer to application services used by ‘the business’, which
may be somewhat confusing).

Internally to the organisation, business services are realised by business behav-
iour, for which we have a number of concepts: business process, business function,
business activity, or business interaction. For the ‘consumers’ of a business service
the internal behaviour of an organisation is usually irrelevant: they are only

interested in the (functional and non-functional) results of the behaviour that are

advertised by the business service. Internal business behaviour, in turn, may use

other services (internal to the organisation, but external to a smaller entity within

the organisation). Note that in some organisations, the term (business) function is

used to designate an external, implementation-independent unit of behaviour,

which is very similar to our service concept.

90 5 A Language for Enterprise Modelling

Although the distinction between the two is not always sharp, it is often useful to

distinguish a process view from a function view of behaviour. Both concepts can be

used to group activities, but based on different grouping criteria.

Business process: a sequence of business behaviours that achieves a specific

outcome such as a defined set of products and services.

The is sometimes described as a ‘customer-to-customer’ process, where ‘cus-
tomer’ may also be an ‘internal customer’, in the case of sub-processes within an

organisation. The name of a business process should preferably be or contain a verb

in the simple present tense, e.g. ‘Receive request’.

Business function: a collection of business behaviour based on a chosen set

of criteria (typically required business resources and/or competences), closely

aligned to an organisation, but not necessarily explicitly governed by the

organisation.

A business function groups behaviour based on, for example, required skills,

capabilities, resources, or (application) support. The name of a business function

should preferably be or contain a verb ending with ‘-ing’, e.g. ‘Claims processing’
(Fig. 5.10).

Typically, the business processes of an organisation are defined based on the

products and services that the organisation offers, while the business functions are

the basis for the assignment of resources to tasks and for the application support.

The example of Fig. 5.11 illustrates the process view and function view in one

picture. As the figure suggests, there is a potential many-to-many relation between

functions and processes.

A business interaction is a unit of behaviour similar to a business process or

function, but which is performed in by two or more collaborating roles within the

organisation.

Business interaction: a unit of collective business behaviour performed by

(a collaboration of) two or more business roles.

Although interactions are external behaviour from the perspective of the roles

participating in the collaboration, the behaviour is internal to the collaboration as a

whole. Similar to processes or functions, the result of a business interaction can be

made available to the environment through a business service. As in the case of a

business process, the name of a business interaction should preferably be a verb in

the simple present tense.

5.8 Business Layer Concepts 91

The example of Fig. 5.12 illustrates how an interaction and collaboration can be

used to model a business transaction and how the same situation can be modelled

with the service and interface concepts. These two alternatives can be seen as two

views, a symmetrical (‘peer-to-peer’) view and an asymmetrical (‘client–server’)
view, of the same process. In the former view, the buyer and seller perform

Fig. 5.11 Business processes versus business functions

Fig. 5.10 Business functions, organisation structure and location of ArchiSurance

92 5 A Language for Enterprise Modelling

collaborative behaviour to settle a transaction, while in the latter view the selling of

a product is considered to be a service that the seller offers to the buyer.

Business event: a business behaviour element that denotes an organisational

state change. It may originate from and be resolved inside or outside the

organisation.

A business event is most commonly used to model something that triggers
behaviour, but other types of events are also conceivable, e.g., an event that

interrupts a process. A business event should ideally have a name containing verb

in the past or present perfect tense, e.g. ‘claim received’ or ‘claim has arrived’.
Unlike other business behaviour, a business event is instantaneous: it does not

have duration. Events may originate from the environment of the organisation (e.g.,

from a customer), but also internal events may occur, generated by other processes

within the organisation.

The example of Fig. 5.13 shows how an event can be used to decouple processes.

The ‘Adjudicate’ and ‘Pay’ processes can be modelled separately, with their own

incoming and possibly outgoing events. The ‘Payment request sent’ event, a result

Fig. 5.12 Interaction

versus service use

5.8 Business Layer Concepts 93

of the ‘Adjudicate’ process, is a trigger for the ‘Pay’ process to start (here called

‘Payment request received’). When composing these two models into one new

model, the linking event can be omitted; it is then replaced by the triggering

relationship between the two processes.

5.8.3 Higher-Level Business Concepts

The higher-level business concepts provide a way to link the operational side of an

organisation to its business goals. These concepts are also concerned with the

products or services that an organisation offers to its customers.

We define a product as a collection of services and/or passive structure elements

(e.g. business objects, data objects or material), together with the rules for their use

(see Fig. 5.14).

Fig. 5.13 Events to decouple processes

Fig. 5.14 Services grouped into a product

94 5 A Language for Enterprise Modelling

Product: a coherent collection of services and/or passive structure elements,

accompanied by a contract/set of agreements, which is offered as a whole to

(internal or external) customers.

Informally speaking, the collection of services and passive structure elements

constitutes the actual product. These services are often business services, but

application or technology services may also be part of a product. This ‘package’
is offered as a whole to (internal or external) customers. ‘Buying’ a product gives
the customer the right to use the associated services. Generally, the product concept

is used to specify a product type. The number of product types in an organisation is

typically relatively stable compared to, for example, the processes that realise or

support the products. ‘Buying’ is usually one of the services associated with a

product, which results in a new instance of that product (belonging to a specific

customer). Similarly, there may be services to modify or discontinue a product. The

name of a product is usually the name which is used in the communication with

customers, or possibly a more generic noun (e.g., ‘travel insurance’).
The contract concept may be used to model a contract in the legal sense, but also

a more informal agreement associated with a product. It may also be, or include, a

Service Level Agreement (SLA), describing an agreement about the functionality

and quality of the services that are part of a product. A contract is a specialisation of

a business object. The name of a contract is preferably a noun.

Contract: a formal or informal specification of an agreement between a

provider and a consumer that specifies the rights and obligations associated

with a product and establishes functional and non-functional parameters for

interaction.

5.9 Application Layer Concepts

A typical example of an application layer model is shown in Fig. 5.15, illustrating

the use of the central concepts. In the following subsections, we explain the

application layer concepts in more detail. Also, we show how the relations between

the application layer and the business layer can be modelled.

5.9.1 Application Structure Concepts

The main structural concept for the application layer is the application component.

5.9 Application Layer Concepts 95

Application component: an encapsulation of application functionality

aligned to implementation structure, which is modular and replaceable. It

encapsulates its behaviour and data, exposes services and makes them avail-

able through interfaces.

This concept is used to model any structural entity in the application layer: not

just (reusable) software components that can be part of one or more applications but

also complete software applications, sub-applications or information systems. This

concept is very similar to the UML component. The name of an application

component should preferably be a noun.

The interrelationships of components are also an essential ingredient in appli-

cation architecture. Therefore, we also introduce the concept of application
collaboration.

Application collaboration: an aggregate of two or more application com-

ponents that work together to perform collective application behaviour.

The concept is very similar to the collaboration as defined in the UML standard

(Object Management Group 2015a). The name of an application collaboration

should preferably be a noun.

In the purely structural sense, an application interface is the (logical) location

where the services of a component can be accessed. In a broader sense (as used in,

among others, the UML definition), an application interface also defines some

Fig. 5.15 Example of an application layer model

96 5 A Language for Enterprise Modelling

elementary behavioural characteristics: it defines the set of operations and events

that are provided by the component, or those that are required from the

environment.

Application interface: a point of access where an application service is

made available to a user, another application component or a node.

Thus, it is used to access the functionality of a component. The application

interface concept can be used to model both application-to-application interfaces,

offering internal application services, and application-to-business interfaces

(or user interfaces), offering external application services. The name of an appli-

cation interface should preferably be a noun.

Also at the application layer, we distinguish the passive counterpart of the

component, which we call a data object.

Data object: data structured for automated processing.

This concept is similar to data objects (in fact, object types or classes) in well-

known data modelling approaches. The name of a data object should preferably be

a noun.

5.9.2 Application Behaviour Concepts

Behaviour in the application layer can be described in a way that is very similar to

business layer behaviour. We make a distinction between the external behaviour of

application components in terms of application services, and the internal behaviour
of these components to realise these services.

Application service: an explicitly defined exposed application behaviour.

The service concept provides a way to describe explicitly the functionality that

components share with each other and the functionality that they make available to

the environment. The concept fits well within the current developments in the area

of, for example, Web services. The term ‘business service’ is sometimes used for an

external application service, i.e., application functionality that is used to directly

support the work performed in a business process or function, exposed by an

application-to-business interface. However, we reserve the term ‘business service’
for services provided by the business layer to the environment. Internal application

services are exposed through an application-to-application interface. The name of

5.9 Application Layer Concepts 97

an application service should preferably be a verb ending with ‘-ing’ or explicitly
contain the word ‘service’. Application services expose application functions and
application processes to the environment.

Application function: automated behaviour that can be performed by an

application component.

The name of an application function should preferably be a verb ending with

‘-ing’, e.g., ‘accounting’.

Application process: a sequence of application behaviours that achieves a

specific outcome.

Application processes are used to model the time-ordering of behaviour, for

example, to describe the orchestration between applications.

Application processes and functions model the internal behaviour of a single

application component; for the collaborative behaviour of application components,

we use application interactions.

Application interaction: a unit of collective application behaviour

performed by (a collaboration of) two or more application components.

The UML standard (Object Management Group 2015a) also includes the inter-

action concept. An application interaction is external behaviour from the perspec-

tive of each of the participating components, but the behaviour is internal to the

collaboration as a whole. The name of an application interaction should preferably

be or contain a verb in the present tense.

Finally, we can use application events to model state changes in the application

layer, which may, for example, trigger application processes.

Application event: an application behaviour element that denotes a state

change.

5.9.3 Business–Application Alignment

The application layer and the business layer can be easily linked in ArchiMate

(Fig. 5.16). Two types of relations provide this link:

98 5 A Language for Enterprise Modelling

1. Application services can serve business behaviour and application interfaces

serve business actors and roles, i.e. there is a support relation between the

application and business layers. Less common, but also possible, is the reverse

relationship, i.e. the business layer providing services to the application layer.

2. Data objects can realise business objects; this means that a data object is an

electronic representation of the business object, i.e., there is an implementation
relation between the application and business layers.

5.10 Technology Layer Concepts

A typical example of a technology layer model is shown in Fig. 5.17, illustrating the

use of the central concepts. In the following subsections, we explain the technology

layer concepts in more detail. Also, we show how the relations between the

technology layer and the application layer can be modelled.

5.10.1 Technology Structure Concepts

The main structural concept for the application layer is the node.

Node: a computational or physical resource that hosts, manipulates or inter-

acts with other computational or physical resources.

It is identical to the node concept of UML 2. It strictly models the structural

aspect of an application; its behaviour is modelled by an explicit relationship to the

behavioural concepts.

Similar to the business and application layers, the collaboration between differ-

ent structure elements is described by a technology collaboration.

Fig. 5.16 Example of a business–application alignment model

5.10 Technology Layer Concepts 99

Technology collaboration: an aggregate of two or more nodes that work

together to perform collective technology behaviour.

A technology interface (not shown in Fig. 5.17) specifies how the technology
services of a node can be accessed by other nodes (provided interface) or which

functionality the node requires from its environment (required interface). A tech-

nology interface exposes a technology service to the environment. The same service

may be exposed through different interfaces.

Technology interface: a point of access where technology services offered

by a node can be accessed.

A device is a specialisation of a node that represents a physical resource with

processing capability. It is typically used to model hardware systems such as

mainframes, PCs, or routers. It can be part of a node together with system software.

Devices may be composite, i.e. consist of sub-devices.

Device: a physical IT resource upon which system software and artefacts

may be deployed for execution.

System software is a specialisation of a node that is used to model the software

environment in which artefacts are stored or run. This can be, for example, an

Fig. 5.17 Example of a technology layer model

100 5 A Language for Enterprise Modelling

operating system, a JEE application server, a database system, a workflow engine or

COTS software such as ERP or CRM packages. Also, system software can be used

to represent, for example, communication middleware. Usually, system software is

combined with a device representing the hardware environment to form a

general node.

System software: software that provides or contributes to an environment

for storing, executing and using software or data deployed within it.

Typically, a node will consist of a number of sub-nodes, for example, a device

such as a server and system software to model the operating system.

The interrelationships of components in the technology layer are mainly formed

by communication infrastructure.

Path: a link between two or more nodes, through which these nodes can

exchange data or material.

Communication network: a set of structures that connects computer systems

or other electronic devices for transmission, routing and reception of data or

data-based communications such as voice and video.

Artefacts are used to model the representation, in the form of, for example, a file,

a data object or an application component, and can be assigned to (i.e. deployed on)

a node.

Artefact: a piece of data that is used or produced in a software development

process or by deployment and operation of a system.

The artefact concept has been borrowed from UML.

Names for technology structure elements are usually taken directly from the

corresponding product or technical designations.

5.10.2 Technology Behaviour Concepts

The technology layer provides technology services to be used by applications.

Technology service: externally visible unit of functionality, provided by

one or more nodes, exposed through well-defined interfaces, and meaningful

to the environment.

5.10 Technology Layer Concepts 101

Like the other service types, the name of a technology service either contains a

verb in the ‘-ing’ form or the word ‘service’ itself. Technology services are realised
by technology functions and technology processes.

Technology function: a behaviour element that groups infrastructural

behaviour that can be performed by a node.

Technology process: a sequence of technology behaviours that achieves a

specific outcome.

A technology function or process describes the internal behaviour of a node; for

the user of a node, this function or process is invisible. If its behaviour is exposed

externally, this is done through one or more technology services. A technology

function abstracts from the way it is implemented. Only the necessary behaviour is

specified.

For the collaborative behaviour in the technology layer, we use technology
interactions.

Technology interaction: a unit of collective technology behaviour

performed by (a collaboration of) two or more nodes.

Finally, state changes in the technology layer are described with technology
events.

Technology event: a technology behaviour element that denotes a state

change.

5.10.3 Application–Technology Alignment

The technology layer and the application layer can also be linked very easily.

Similar to business–application alignment, two types of relations provide this link:

1. Technology services can serve application functions and technology interfaces

serve application components, i.e. there is a support relation between the tech-

nology and application layers (Fig. 5.18).

2. Artefacts can realise data objects and application components, i.e. there is an

implementation relation between the technology and application layers

(Fig. 5.18).

102 5 A Language for Enterprise Modelling

Artefacts play a central role in showing how ‘logical’ application components

are realised by ‘physical’ components (modelled as artefacts). A single physical

component may realise multiple logical components and, conversely, multiple

physical components may be used to realise a single logical component.

The technology layer may also use the services from the other layers, although

this is less common in practice.

5.11 Physical Concepts

The ArchiMate language was initially aimed at modelling the world of information

technology since it was developed by and for typical IT-intensive administrative

organisations in government and finance. However, enterprise architecture is also

used increasingly in other types of organisations, for example, in healthcare,

manufacturing or logistics. Moreover, technology innovations such as the Internet

of Things have become increasingly important. Modelling the physical world and

its interplay with IT is therefore an important addition to the language in ArchiMate

version 3.0 (The Open Group 2016a). An example of these concepts is shown in

Fig. 5.19.

The equipment element is the main active structure element within the set of

physical concepts.

Equipment: one or more physical machines, tools or instruments that can

create, use, store, move or transform materials.

Equipment comprises all active structure elements that carry out physical pro-

cesses in which materials are used or transformed. It is a specialisation of the node

element from the technology layer. Thus, nodes can be modelled that combine IT

technology (devices, system software) and physical technology (equipment), for

example, computer-controlled production machinery, a fitness tracker monitoring

Fig. 5.18 Example of applications and data supported by technology

5.11 Physical Concepts 103

your movements or a smart thermostat measuring and controlling the temperature

in your home.

A facility represents a physical resource that has the capability of facilitating

(e.g. housing) the use of equipment. It is typically used to model factories, buildings

or outdoor constructions that have an important role in production or distribution

processes. In an ICT context, a data centre would typically be modelled as a facility.

Facility: a physical structure or environment.

Facilities can be interconnected by distribution networks. These represent the

physical distribution or transportation infrastructure and embody the physical

realisation of the logical paths between nodes.

Distribution network: a physical network used to transport materials or

energy.

Material can be accessed (e.g. created, used, stored, moved or transformed) by

equipment. It is typically used to model raw materials and physical products, and

also energy sources such as fuel, and it can be transported via distribution networks.

Material: tangible physical matter or physical elements.

There are no separate physical behaviour elements. Rather, the behaviour ele-

ments from the technology layer (Sect. 5.10) are used to model the behaviour of

all nodes, including physical equipment. Since equipment will very often be

computer-controlled or in other ways have a close relationship to IT, this lets you

describe their behaviour in an integral way.

Fig. 5.19 Example of physical concepts

104 5 A Language for Enterprise Modelling

5.12 Implementation and Migration Concepts

The implementation and migration concepts are used to describe how an architec-

ture is going to be realised. In the following subsections, we will explain the

implementation and migration concepts in more detail.

5.12.1 Implementation-Related Concepts

An example of a model using the implementation-related concepts is shown in

Fig. 5.20, illustrating the use of the central concepts and relations for expressing the

work that needs to be done to realise an architecture.

Conceptually, a work package is similar to a business process, in that it consists

of a set of causally related tasks, aimed at producing a well-defined result. However,

a work package is a unique, ‘one-off’ process.

Work package: a series of actions identified and designed to achieve spe-

cific results within specified time and resource constraints.

A work package has a clearly defined beginning and end date, and a well-defined

set of goals or results. The work package concept can be used to model projects, but

also subprojects or tasks within a project, programs, or project portfolios. A work

package can be assigned to a business role that carries out the work.

Fig. 5.20 Example of an implementation model

5.12 Implementation and Migration Concepts 105

Work packages may be triggered or interrupted by implementation events. Also,
work packages may raise events that trigger other behaviour. Unlike a work

package, an event is instantaneous: it does not have duration.

Implementation event: a behaviour element that denotes a state change

related to implementation or migration.

An implementation event may have a time attribute that denotes the moment

or moments at which the event happens. For example, this can be used to

model project schedules and milestones such as the completion of deliverables
produced by a work package. These may be results of any kind, including reports,

services, software, physical products and intangible results such as organisational

change. A deliverable may also be the implementation of (a part of) an

architecture.

Deliverable: a precisely defined outcome of a work package.

5.12.2 Migration Planning Concepts

In order to model the change of an architecture over time, the plateau concept is

introduced.

Plateau: a relatively stable state of the architecture that exists during a

limited period of time.

A plateau may represent the current state (baseline) or desired future state

(target) of the architecture, or intermediate states. It aggregates the core elements

of the architecture belonging to that state (Fig. 5.21).

The result of a gap analysis between two plateaus can be represented by the gap
concept.

Gap: a statement of difference between two plateaus.

A gap represents the differences between the plateaus, and forms an important

input for the subsequent implementation and migration planning.

106 5 A Language for Enterprise Modelling

5.13 Relations

As we argued before, enterprise architecture is, above all, about the description of

coherence: coherence within different domains but also the coherence among

domains. Therefore, in contrast to many other modelling languages, a fairly exten-

sive set of clearly defined relationship concepts has been defined. In the examples

throughout this chapter, most of the relations have already been used. In this

section, we summarise them and show some of their properties. As we did for the

concepts used to describe the different conceptual domains, we adopt

corresponding relationship concepts from existing standards as much as possible.

For instance, relationship concepts such as composition, association and speciali-

sation are taken from UML, while triggering is used in most business process

modelling languages, for example, in BPMN.

The structural and dependency relations, summarised in Table 5.1, form an

important category of relations to describe coherence. The relations are listed in

ascending order by ‘strength’: association is the weakest structural relation; com-

position is the strongest structural relation.

Any concept may be used in a nested way: that is, a concept may consist of

‘smaller’ concepts of the same type, e.g. a business actor may consist of sub-actors,

a service may consist of subservices, an application component may consist of

subcomponents, etc. Depending on the context (and possibly the chosen view),

nesting formally denotes an aggregation or a composition relation (i.e. the concept

aggregates or is composed of sub-concepts of the same type). See, for example, the

model of Fig. 5.9, in which the Handle Claim process is composed of several

sub-processes.

Fig. 5.21 Example of a migration model

5.13 Relations 107

Nesting of concepts of different types usually denotes an assignment relation,
e.g. the functions assigned to an application component are drawn inside that

component, or the artefacts assigned to (deployed on) a node are drawn inside

the node.

In a number of specific cases, relationships to relationships are also allowed.

This can be used, for example, to show that a business object is flowing between

two business processes, as depicted in Fig. 5.22. On the left, we see the business

object Insurance Policy related to flow relation between Policy Creation and Policy

Table 5.1 Structural and dependency relations

Association Association models a relation between objects that is not

covered by another, more specific relationship

Influence The influence relation models that an element affects the

implementation or achievement of some motivation ele-

ment

Access The access relation models that behavioural elements can

observe or act upon passive structure elements

Serving The serving relation models that an element offers its func-

tionality to another element

Realisation The realisation relation indicates that an entity plays a criti-

cal role in the creation, achievement, sustenance, or opera-

tion of a more abstract entity

Specialisation The specialisation relation indicates that an element is a

particular kind of another element

Assignment The assignment relation expresses the allocation of respon-

sibility, performance of behaviour or execution

Aggregation The aggregation relation indicates that an element groups a

number of other elements

Composition The composition relation indicates that an element consists

of a number of other elements

Fig. 5.22 Relationships to relationships

108 5 A Language for Enterprise Modelling

Management; on the right, the flow relation between the two application compo-

nents is aggregated in the plateau Front-end applications in place.

The ArchiMate language contains an abstraction rule that states that a ‘chain’ of
structural relations (with intermediate model elements) can be replaced by the

weakest structural relation. For a more precise description and derivation of the

original definition of this rule, we refer to Buuren et al. (2004). With this rule, it is

possible to determine the indirect, derived relations that exist between model

elements without a direct relation, which may be useful for, among others, impact

analysis. An example is shown in Fig. 5.23: assume that we would like to know

what the impact on the business is if the Financial application fails? In this case, an

indirect ‘serving’ relation (the thick arrow on the left) can be derived from this

system to the ‘Invoicing and Collections’ business process (from the chain ‘assign-
ment—composition—realisation—serving’).

All these derived relations are also valid in the ArchiMate language. The full set

of possible relations between elements of the language is listed in the standard (The

Open Group 2016a).

For behaviour modelling, in addition to the structural relations, we may also use

dynamic relations, summarised in Table 5.2. The triggering relation models the

‘control flow’ in a process, while the flow relation, inspired by Steen et al. (2002),

models the flow of information, data, goods or value, typically between functions. It

is also allowed to abstract from behaviour elements and use the flow relation

between structural elements. As there may be information associated with a trig-

gering relation, triggering can be considered a stronger form of the flow relation,

i.e. a flow that is intended to trigger behaviour.

Fig. 5.23 Example of a derived relation

5.13 Relations 109

For the two dynamic relationships, another set of derivation rules apply:

– A flow relation between elements may be transferred ‘upstream’ following any

structural relationship. For example, a flow between two services may be

transferred to the processes that realise these services.

– A triggering relation may be transferred ‘upstream’ following assignment rela-

tionships. For example, a triggering between two processes may be transferred to

the actors assigned to these processes.

– Triggering relationships are transitive: if a triggers b and b triggers c, we may

derive that a indirectly triggers c.

These derived relations are also valid in the ArchiMate language. See also the

description of this derivation property and the list of permitted relations in the

standard (The Open Group 2016a).

5.14 Language Customisation Mechanisms

Every specific purpose and usage of an architecture modelling language brings

about its own specific demands on the language. Yet, it should be possible to use a

language for only a limited, though non-specific, modelling purpose. Therefore, the

ArchiMate core language as described in the previous sections contains only the

basic concepts and relationships that serve general enterprise architecture model-

ling purposes. However, the language should also be able to facilitate, through

customisation mechanisms, specialised or domain-specific purposes, such as:

– Supporting specific types of model analysis;

– Supporting the communication of architectures;

– Capturing the specifics of a certain application domain (e.g., the financial

sector).

To this end, the language provides a means to allow specialisations of the core

set of concepts that are tailored towards such specific domains or applications,

without burdening the core with a lot of additional concepts and notation which

most people would barely use.

Table 5.2 Dynamic relations

Triggering The triggering relation describes a temporal or causal relationship

between elements

Flow The flow relation represents transfer from one element to another

Junction A junction is used to connect relations of the same type. Regular (or

and-) junctions signify a combination; or-junctions denote alterna-

tives

110 5 A Language for Enterprise Modelling

5.14.1 Adding Attributes to ArchiMate Concepts
and Relations

As said before, the core of ArchiMate contains only the concepts and relationships

that are necessary for general architecture modelling. However, users might want to

be able to, for example, perform model-based performance or cost calculations, or

to attach supplementary information (textual, numerical, etc.) to the model ele-

ments. A simple way to enrich ArchiMate concepts and relationships in a generic

way is to add supplementary information by means of a ‘profiling’ specialisation
mechanism (see also Eertink et al. 1999). A profile is a data structure which can be

defined separately from the ArchiMate language, but can be coupled dynamically

with concepts or relationships, i.e. the user of the language is free to decide whether

and when the assignment of a profile to a model element is necessary. Profiles can

be specified as sets of typed attributes, by means of a profile definition language.

Each of these attributes may have a default value that can be changed by the user.

We distinguish two types of profiles:

– Pre-defined profiles: These are profiles that have a predefined attribute structure

and can be implemented beforehand in any tool supporting the ArchiMate

language. Examples of such profiles are sets of attributes for ArchiMate concepts

and relationships that have to be specified in order to execute common types of

analysis.

– User-defined profiles: Through a profile definition language, the user is able to

define new profiles, thus extending the definition of ArchiMate concepts or

relationships with supplementary attribute sets.

In Chap. 9, we use this mechanism to add profiles for quantitative analysis to

model elements.

5.14.2 Specialisation of Concepts

Specialisation is a simple and powerful way to define new concepts based on the

existing ones. Specialised concepts inherit the properties of their ‘parent’ concepts,
but additional restrictions with respect to their use may apply. For example, some of

the relationships that apply for the ‘parent’ concept may not be allowed for the

specialisation. A specialised concept strongly resembles a stereotype as it is used in

UML, and its default notation is the UML’s guillemet notation (“specialisation

name”).

Specialisation of concepts provides extra flexibility, as it allows organisations or

individual users to customise the language to their own preferences and needs,

while the underlying precise definition of the concepts is conserved. This also

implies that analysis and visualisation techniques developed for the ArchiMate

language still apply when the specialised concepts are used.

Figure 5.24 shows a number of examples of concept specialisations that have

proven to be useful in several practical cases. As the examples indicate, we may

5.14 Language Customisation Mechanisms 111

http://dx.doi.org/10.1007/978-3-662-53933-0_9

introduce a new graphical notation for a specialised concept, but usually with a

resemblance to the notation of the parent concept, e.g., by adding or changing the

icon or changing the line style. Finally, for a specialised concept, certain attributes

may be predefined, as described in Sect. 5.14.1.

5.15 Modelling Example

To illustrate the use of the ArchiMate language, we introduce the fictitious (though

realistic) insurance company ArchiSurance. ArchiSurance originally provided

home and travel insurance, but merged recently with two other insurance compa-

nies, PRO-FIT (car insurance) and LegallyYours (legal aid insurance). By

streamlining their operations and removing duplication, substantial synergy is

expected from this merger.

ArchiSurance’s management is now wrestling with the intricacies of integrating

these three companies, and has decided to take an enterprise architecture approach

to create more insight into this complexity.

5.16 Capabilities, Business Functions and Organisation

Structure

As a first description of what the company needs to be able to do, the enterprise

architects of ArchiSurance, together with a group of its business managers, have

created a capability map, inspired by the Panorama 360 reference model for the

Fig. 5.24 Examples of specialisation

112 5 A Language for Enterprise Modelling

insurance industry (Insurance Frameworks 2013). These capabilities are very

similar for many insurance companies and represent what is most stable about

this type of enterprise (Fig. 5.25).

To provide a high-level overview of ArchiSurance’s primary operations that

realise its operational capabilities, the company is described in terms of its main

business functions:

– Maintaining Customer Relations and Intermediary Relations: these business

functions are responsible for the contacts of ArchiSurance with its customers

and the intermediaries that sell its products. This function handles customer

questions and incoming claims, and performs marketing and sales.

– Contracting: this function does the ‘back-office’ processing of contracts. It

performs risk analysis and ensures legally and financially correct contracts.

– Claims Processing: this function is responsible for processing insurance claims,

judging their validity and valuation, and deciding the further course of action.

– Financial Handling: this function performs the regular premium collection,

according to the insurance policies with customers as produced by Contracting,

handles payment of insurance claims and manages other money flows.

– Asset Management: this function manages the financial assets of ArchiSurance,

e.g., by investing in stocks and bonds.

The relationship between capabilities and business functions is not one to one:

some functions contribute to the realisation of multiple capabilities, and some

capabilities require multiple functions. This is shown in Fig. 5.26. Its business

Fig. 5.25 Capability map of ArchiSurance

5.16 Capabilities, Business Functions and Organisation Structure 113

functions are closely aligned with the organisation structure of ArchiSurance

(Fig. 5.28), whereas its capabilities are defined in an organisation-independent way.

These business functions are shown in Fig. 5.27, connected by the flows asso-

ciated with claims handling.

Post-merger integration is in full swing. The first step in the integration process

has been the creation of a unified front office, comprising departments for managing

relations with customers on the one hand, and intermediaries on the other hand.

However, behind this front office are still three separate back offices:

– Home & Away: this department was the original pre-merger ArchiSurance,

responsible for home and travel insurance.

– Legal Aid: this is the old LegallyYours, responsible for legal aid and liability

insurance.

– Car: this department is the core of the old PRO-FIT and handles car insurance,

including some legal expense insurance.

Furthermore, ArchiSurance is in the process of setting up a Shared Service

Centre for document processing, which will handle all document streams and

performs scanning, printing and archiving jobs. The company’s structure is

shown in Fig. 5.28. ArchiSurance’s front-office departments are located in regional

branch offices; its back office is centralised at the company’s headquarters.

Fig. 5.26 Capabilities realised by business functions

114 5 A Language for Enterprise Modelling

Fig. 5.28 ArchiSurance departments

Fig. 5.27 ArchiSurance business functions

5.16 Capabilities, Business Functions and Organisation Structure 115

5.17 Post-Merger IT Rationalisation

As in many other recently merged companies, IT integration is a problem.

ArchiSurance wants to move to a single CRM system, separate back-office systems

for policy administration and finance, and a single document management system.

However, Home & Away still has separate systems for the policy administration

and the financial handling of premium collection and claims payment, and uses the

central CRM system and call centre. The Car department has its own monolithic

back-office system, but uses the central CRM system and call centre. The Legal Aid

department has its own back- and front-office systems (Fig. 5.29).

An important prerequisite for the changes in ArchiSurance’s IT is that the IT

integration should be ‘invisible’ to ArchiSurance’s clients: products and services

remain the same. However, this is not a straightforward requirement. To illustrate

the complexity of the relationships between products, business processes and IT

support, Fig. 5.30 shows a number of core services and the business process that

provide these, and Fig. 5.31 shows the relations between this business process and

its supporting IT applications. Note that this only shows these relations for a single
business process. In general, many different business processes within the back

office link the external products and services with the internal systems. This web of

Fig. 5.29 Applications grouped according to departments

116 5 A Language for Enterprise Modelling

relations creates a major problem if we want to create insight into the IT support of

ArchiSurance.

To improve this application landscape, ArchiSurance has defined a number of

projects and programs, for example, to replace the separate policy administrations

for its lines of business by a single integrated one. This is shown in Fig. 5.32.

Fig. 5.30 Services and business processes

Fig. 5.31 Relations between the Handle Claim business process and its IT support

5.17 Post-Merger IT Rationalisation 117

5.17.1 New Digital Customer Intimacy Strategy

ArchiSurance not only has to deal with the complexities of post-merger integration.

Insurance companies operate under challenging circumstances. The low interest

rates in financial markets make it difficult for them to fulfil their financial obliga-

tions, and digital disruption threatens their business models and market share.

ArchiSurance has made a strategic analysis of the main ways in which it can

improve returns. To sustain profitability, the company needs to increase revenue,

which requires a higher customer retention and/or increasing market share. To this

end, it wants to achieve an improved customer satisfaction and a more competitive

premium setting.

ArchiSurance sees the rapid pace of technology innovation as both a challenge

and an opportunity. This has led it to define a new strategy based on ‘digital
customer intimacy’, which employs a combination of social media, big data and

the Internet of Things (IoT). According to this strategy, they intend to use more

detailed customer data to improve customer interaction and satisfaction and to

determine customised insurance premiums. This is depicted in Fig. 5.33.

In its digital customer intimacy strategy, ArchiSurance takes a two-pronged

approach. First, it wants to engage with its customers more intimately through

various social media channels. Second, it aims to use various kinds of external data.

For insurance products sold in the consumer market, this entails data from smart,

connected devices such as fitness trackers, black boxes in vehicles or home auto-

mation gateways; in various b2b markets it wants to use data from sources such as

fleet management, energy networks, in-store RFID devices or smart building

sensors. Ultimately, this may result in real-time insurance products where

Fig. 5.32 Projects and programs realise change

118 5 A Language for Enterprise Modelling

customers receive direct feedback on the financial consequences of their behaviour

and advice on adjusting this behaviour to lower their insurance premium.

In Fig. 5.34, we see the main new capabilities needed to realise this strategy and

how these contribute to the business outcomes ArchiSurance wants to achieve.

These capabilities need to be supported by the right resources including person-

nel with the right knowledge and skills for the digital age, smart devices for data

acquisition and the customer data itself. This is shown in Fig. 5.35.

Fig. 5.33 Strategic analysis of ArchiSurance

Fig. 5.34 Capabilities for the Digital Customer Intimacy strategy

5.17 Post-Merger IT Rationalisation 119

These resources themselves are realised by the enterprise architecture core. A

small part of what this may result in is shown as well. Note that this does not depict

all elements needed to realise these resources, but only a representative sample. In

practice, separate views will often be created to show how individual capabilities

and resources are realised.

5.18 Transformation Roadmap

Combining both the post-merger rationalisation of its IT landscape and the reali-

sation of its new strategy, ArchiSurance has drawn up a roadmap showing the

architecture plateaus that step by step move it into the future (Fig. 5.36) and two

alternative transition scenarios.

Each plateau aggregates the elements of the architecture that are valid during

this specific period, as exemplified in Fig. 5.37.

By putting all of this information together, you obtain a line of sight between

your different assets and the projects and programs working on these, upwards to

the business functions, processes and capabilities they support and finally to the

strategies, goals and outcomes. Thus, ArchiMate models support the full trajectory

of strategy implementation.

Fig. 5.35 Resources supporting capabilities

Fig. 5.36 Application architecture roadmap

120 5 A Language for Enterprise Modelling

5.19 Summary

A well-defined language for enterprise architecture modelling helps to reach a

common understanding between different architects and other stakeholders in an

enterprise. It allows for the integration of architectural models and detailed designs

within specific domains, which is a prerequisite for the integration of domain-

specific modelling tools. In this way, enterprise architecture models may serve as

a starting point for model-driven system development. They also provide the basis

for visualisation and analysis of architectures.

Service orientation plays a central role in the enterprise modelling language we

presented in this chapter, where the service concept is applicable at several layers:

business services made available to internal or external customers, application

services made available to ‘the business’ or to other applications, and infrastructure
technology services made available to applications. Services provide a way to show

the alignment between the different modelling layers.

This emphasis on service orientation is but one aspect of the strong focus we put

on the relations between the different domains and aspects of the enterprise.

Integrating these is essential for providing coherent descriptions of enterprise

architectures.

In this chapter, we have only described the essentials of the language. A more

extensive description of its background and details can be found in Jonkers et al.

(2004) and in The Open Group’s ArchiMate 3.0 specification document (The Open

Group 2016a).

Fig. 5.37 Contents of target plateau

5.19 Summary 121

Chapter 6

Combining ArchiMate with Other Standards

and Approaches

Marc M. Lankhorst, Adina Aldea, and Joost Niehof

The ArchiMate language is not intended to replace other standards and modelling

approaches. Rather, it is meant to function together with these other techniques and

function as a kind of ‘umbrella’, binding them together to create an integrated set of

models of an enterprise architecture.

6.1 Introduction

For many domains, there are languages and techniques available to provide more

detailed descriptions than ArchiMate offers. Those languages, such as UML,

BPMN and others, have a narrower scope (e.g. UML for specifying software,

BPMN for business processes) than ArchiMate, but they lack concepts for relating

these to other domains.

The uniqueness of ArchiMate does not lie in the individual concepts, but rather

the opposite: many concepts in the language are designed to have a direct corre-

spondence with similar concepts in other techniques, in which you can zoom in in

more detail for specific parts of your architecture. As Fig. 6.1 shows, there is some

overlap between ArchiMate and these other techniques. For example, the

ArchiMate concept of Application Component is largely identical to UML’s Com-

ponent concept. This allows you to connect ArchiMate models to models for these

individual domains, so you can zoom in on specific parts of the enterprise archi-

tecture by drilling down into these other models.

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

A. Aldea • J. Niehof

BiZZdesign, Enschede, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_6

123

mailto:m.lankhorst@bizzdesign.com

This is where ArchiMate adds value. You need such a less detailed but broader

description to have a general overview of your enterprise, in order to see the

dependencies between different aspects and areas, but at the same time avoid

drowning in details.

Moreover, ArchiMate provides youwith an integrated description of the enterprise

that relates (sub)models from formerly separate domains in a meaningful manner.

This way, you can analyse and define the dependencies between desired business

outcomes, products and processes, IT systems, data, projects and programs and other

aspects of your enterprise, all within one environment. This is very important in

realising your business strategy: a clear line-of-sight between all the elements of your

enterprise, with a single source of truth instead of disparate modelling silos, efficient

analysis of the impact of management decisions and easy collaboration between the

different experts that work on designing and changing your enterprise.

Existing languages focus on detailed descriptions of individual domains, but

lack concepts for relating these to others. The ArchiMate language acts as a hub

between models for these domains (Fig. 6.2). These models can be seen as more

…
Business
model
(BMC)

Software
model
(UML)

Business
process
model

(BPMN)

Motivation
model
(BMM)

Data
model
(ERD)

Enterprise model
(ArchiMate)

Scope

Detailed

Simple

Fig. 6.1 Enterprise architecture model connecting other models

Process models

Strategy models

Business models

,,,

Motivation models

System models

Software models

Enterprise
Architecture

model

Data models

Fig. 6.2 Enterprise architecture model as hub between other models

124 6 Combining ArchiMate with Other Standards and Approaches

detailed views on specific parts of the enterprise architecture. If they are tied in to an

overall enterprise architecture model in ArchiMate, an integrated model of the

enterprise can be constructed that relates (sub)models from formerly separate

domains in a meaningful way.

To help you relate ArchiMate models to a number of those other techniques, the

following sections provide an approximate mapping between ArchiMate concepts

and concepts from those techniques, illustrated with examples.

6.2 Business Motivation Model

The Business Motivation Model (BMM) (Object Management Group 2015b) has

been one of the inspirations behind ArchiMate’s motivation concepts (Sect. 5.6).

BMM distinguishes between means, ends, and influencers and assessments and

provides a more detailed, fine-grained description of business motivation that

ArchiMate’s motivation concepts (Table 6.1).

In Fig. 6.3, we see how ArchiMate concepts are used to model concepts from the

Business Motivation Model. Between the stereotype notations with guillemets

(“«. . .»”), we show the name of the ArchiMate type (AM) and the Business

Motivation Model type (BMM).

6.3 Balanced Scorecard

As discussed in Sect. 2.1.1, the Balanced Scorecard (Kaplan and Norton 1992) is a

widely used high-level technique for strategic performance management of orga-

nisations. It provides four perspectives on this performance and addresses these in a

layered structure using mission, objectives, measures, targets and initiatives to

express the strategic direction. Figure 6.4 shows these concepts can be mapped

onto ArchiMate (Table 6.2).

An example of the Balanced Scorecard modelled with ArchiMate is shown in

Fig. 6.4.

Table 6.1 ArchiMate and BMM

BMM ArchiMate
Vision, Desired Result (Goal, Objective) Goal
Mission, Course of Action (Strategy, Tactic) Course of Action
Directive (Business Policy, Business Rule) Principle, Requirement, Constraint
Assessment Assessment
Influencer Driver
Potential Impact Outcome

6.3 Balanced Scorecard 125

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_2

6.4 Business Model Canvas

The Business Model Canvas (Osterwalder and Pigneur 2010), as described in Sect.

2.1.2, provides you with a high-level overview of the structure of the current or

envisaged business models of an organisation. Its concepts can be mapped onto

ArchiMate in a straightforward way, as shown in Table 6.3. This provides a useful

starting point for further definition of the business architecture.

An example of an automatically generated mapping from the Business Model

Canvas to ArchiMate concepts is shown in Fig. 6.5.

6.5 Value Map

Value mapping is a useful technique in business architecture. It provides insight

into the value produced by the various activities of the organisation, how this

contributes to its overall value proposition and how this value is exchanged with

other parties in a value network.

The classical example of this is the Value Chain defined by Porter (1985), which

divides the activities of an enterprise in value-creating and supporting and sub-

divides the former in the typical stages of a production process, with inbound

Fig. 6.3 BMM concepts expressed in ArchiMate

126 6 Combining ArchiMate with Other Standards and Approaches

http://dx.doi.org/10.1007/978-3-662-53933-0_2

Fig. 6.4 Balanced Scorecard concepts expressed in ArchiMate

Table 6.2 ArchiMate and Balanced Scorecard

Balanced Scorecard ArchiMate
Mission, Objective Goal
Measure Metric (specialisation of Driver)
Target Outcome, Value
Initiative Course of Action (high-level)

Work Package (detailed)

6.5 Value Map 127

logistics, operations, outbound logistics, marketing and sales and service. More

recent approaches such as e3value (Gordijn 2002), the Value Delivery Metamodel

(VDML) (Object Management Group 2015f) and the BIZBOK® Guide (Business

Architecture Guild 2016) take a more general stance and also look at value

exchange in the broader ecosystem. Table 6.4 provides a general mapping aimed

at supporting most of these approaches. For more on value modelling and

ArchiMate, see, for example, De Kinderen et al. (2012).

The mapping shown in Table 6.4 mainly uses ArchiMate’s business layer

concepts to express value maps. Remember that ArchiMate uses the same concept

Table 6.3 ArchiMate and Business Model Canvas

Business Model Canvas ArchiMate
Key Partner Business Actor (or Role)
Key Activity Capability
Key Resource Resource
Value Proposition Product + Value
Customer Relationship Business Collaboration
Channel Resource (realised by Interface)
Customer Segment Business Actor
Cost Structure Value attached to architecture elements
Revenue Stream Value + Flow

Fig. 6.5 Business Model Canvas mapped onto ArchiMate

128 6 Combining ArchiMate with Other Standards and Approaches

for all levels of granularity, i.e. a business process can express an entire value

stream, a value stage in that stream or activities within such a stage, down to the

smallest individual task. Furthermore, this mapping uses value elements associated

with products and with flow relationships to model the value propositions and

exchange of value along the value chain, stream or network. This maps well onto

typical Porter Value Chain models. Alternatively, for a somewhat more abstract

view, we may map a value stage to a (named) grouping of capabilities in ArchiMate

and relate these groupings via flow relationships with associated value elements.

An example of a Value Map with a Value Stream and Value Exchanges between

its different stages is shown in Fig. 6.6.

A partial Value Network containing several Actors Value Exchanges and Value

Items can be seen in Fig. 6.7.

Using ArchiMate helps you express and analyse the business model of your

organisation and how it produces stakeholder value, and lets you focus on the

important value-producing activities in strategic planning and change.

Table 6.4 ArchiMate and Value Maps

Value Map ArchiMate
Value Proposition Product + Value
Value Item Value
Value Stream Business Process (highest-level)
Value Stage, Activity Business Process or Function
Value Exchange Flow + associated Value
Actor, Organisation Unit Business Actor
Role Business Role
Collaboration Business Collaboration
Capability Capability

Fig. 6.6 Value Stream expressed in ArchiMate

6.5 Value Map 129

6.6 Customer Journey Map

A customer journey map is a useful way to graphically represent the customer

experience of an organisation. It focuses on the touchpoints that characterise the

customers’ interaction with the services of the organisation and helps you optimise

this experience.

ArchiMate concepts can easily be used in such a customer journey map. The

backbone of a customer journey map is course the business process, with the stages

therein modelled as subprocesses. The touchpoints with the customer are modelled

as business services plus business interfaces, to model both the behaviour of the

organisation and the channels it uses in the customer contact. Different customer

journey maps for the same process could be specified for various personas, who are

typically modelled as business roles.

Information from customer surveys and other measurements of the customer

experience (e.g. data from the website or call centre, net promoter score) is added to

the steps in the process, using the profile mechanism (Sect. 5.14.1) to specify

relevant attributes. Alternatively, you can define Metric as a specialisation of the

Driver concept, in the way described in Sect. 9.6. Different metrics for different

aspects of the customer journey can be associated with the steps in the journey. This

information has to be evaluated, which can be modelled with the Assessment

concept, and appropriate improvements to the customer experience may be speci-

fied as Requirements.

Fig. 6.7 Value Network expressed in ArchiMate

130 6 Combining ArchiMate with Other Standards and Approaches

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_9

There is no fixed, standardised vocabulary in customer journey maps. Table 6.5

shows a number of common terms and their mapping onto appropriate ArchiMate

concepts.

Customer journey maps are typically depicted using a graph that shows the

touchpoints in the process on the horizontal axis and the quality of the experience

from the customers’ point of view (e.g. in terms of meeting or exceeding their

expectations) on the vertical axis. Around this, various other kinds of information

can be shown in various ways, for example, using swimlanes to depict the channels

used and smiley faces to show the feeling of your customers with certain

touchpoints, as shown in Fig. 6.8. This is of course not expressed in the standard

ArchiMate notation, but it is based on an underlying ArchiMate model.

6.7 Service Blueprint

Another technique for service innovation is the service blueprint (Shostack 1984). It

is related to customer journey maps (Sect. 6.6) in its emphasis of customer

touchpoints but focuses more on the realisation of services by underlying activities

and less on the quality of the customer’s experience. A service blueprint provides a

layered depiction of a service, showing from top to bottom:

– Physical evidence: the tangibles obtained by the customer as a result of the

service delivery process

– Customer actions: the steps taken by customers in the service delivery

– Onstage/visible actions: the activities performed by the organisation in direct,

face-to-face contact with the customer

– Backstage/invisible actions: the activities by the customer contact employees in

the service delivery process that are invisible to the customer

– Support processes: the activities performed by others than customer contact

employees that are needed to deliver a service

Table 6.5 ArchiMate and Customer Journey Maps

Customer Journey Map ArchiMate
Persona Business Role
Customer Journey, Process, Scenario Business Process
Stage Business Process

Touchpoint Business Service
Channel Business Interface

Experience, Feeling Metric (specialisation of Driver), or
profile attribute

Evaluation Assessment
Opportunity, Improvement Requirement

6.7 Service Blueprint 131

The user and on-stage actions are separated by the so-called line of interaction,

the on- and backstage actions by the ‘line of visibility’ and the backstage actions

and support processes by the ‘line of internal interaction’.
Nowadays, given the importance of online experiences, the ‘physical’ evidence

and face-to-face nature of visible customer interactions as defined in the original

service blueprint are often interpreted more liberally, to include electronic means as

well (e.g. email, webpage, social media, etc.). A straightforward mapping on

ArchiMate concepts is listed in Table 6.6.

A Service Blueprint modelled with ArchiMate is shown in Fig. 6.9.

Fig. 6.8 Customer Journey Map

132 6 Combining ArchiMate with Other Standards and Approaches

6.8 BPMN

The main standard for modelling business processes is BPMN (Sect. 2.3.2).

ArchiMate is typically used for high-level processes and their relations to the

enterprise context, but it is not intended for detailed workflow modelling. BPMN

supports detailed subprocess and task modelling down to the level of executable

specifications but lacks the broader enterprise context, for example, to model the

application services that support a process or the goals and requirements it has to

fulfil. To this end, BPMN has a more fine-grained set of elements, with various

types of events, tasks and gateways. Both languages can be used quite easily in

combination. Mapping from ArchiMate down to BPMN is fairly straightforward, as

is shown in Table 6.7.

Table 6.6 ArchiMate and Service Blueprints

Service Blueprint ArchiMate
Physical Evidence Business Object, Data Object, Representa-

tion, Artefact, Material

Customer Action Business Process

Onstage Action Business Interaction

Backstage Action Business Process

Support Process Business Process

Fig. 6.9 Service Blueprint expressed in ArchiMate

6.8 BPMN 133

http://dx.doi.org/10.1007/978-3-662-53933-0_2

The most common use of such a mapping is to utilise ArchiMate to make a high-

level process view and draw a corresponding, more detailed BPMNmodel based on

the mapping in the Table 6.7 (see Figs. 6.10 and 6.11). The relations between the

individual concepts in both languages are shown in Fig. 6.12. Here you can see that

a single ArchiMate concept (e.g. ‘Order a pizza’) may expand into multiple BPMN

concepts.

6.9 Business Logic

Explicit definitions of business logic are increasingly used to separate the ‘know’
from the ‘flow’ in business process models. The two main open standards in this

domain are SBVR (Semantics of Business Vocabulary and Rules) (Object Man-

agement Group 2015g) and DMN (Decision Model and Notation) (Object

Table 6.7 ArchiMate and BPMN

BPMN ArchiMate
Participant/Pool, Lane Business Actor, Role, Application Component

Collaboration Business/Application Collaboration

Process Business/Application Process

Sequence flow Triggering

Data association Access

Inclusive and parallel gateways Junction

Exclusive and event-based gateways Or-junction

Fig. 6.10 High-level ArchiMate model of pizza ordering process

134 6 Combining ArchiMate with Other Standards and Approaches

Management Group 2016a). Often, business logic models will be used in conjunc-

tion with process models expressed in BPMN (Sect. 6.8) which has an explicit

business rule task type.

In Table 6.8, an approximate mapping of SBVR and DMN concepts onto

ArchiMate is shown. A small example is shown in Fig. 6.13. In this example, we

use the stereotype notation for expressing language customisations, as explained in

Sect. 5.14.2.

6.10 UML

The Unified Modeling Language (UML) (Sect. 2.3.3) is the de facto standard for

software modelling. Several concepts in ArchiMate were strongly inspired by

UML. The most obvious is the application component concepts, which corresponds

to the UML component. The node, artefact, device, system software and path

elements have also been taken more or less directly from UML (where system

software is called execution environment). This close linkage facilitates a contin-

uous development chain between higher-level enterprise architecture models

Fig. 6.11 Detailed BPMN model of pizza ordering process

6.10 UML 135

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_2

Fig. 6.12 Correspondence between BPMN concepts (left) and ArchiMate concepts (top)

Table 6.8 ArchiMate, SBVR and DMN

SBVR ArchiMate
Fact, Rule, Proposition, Concept, Meaning Meaning

Community Stakeholder

DMN
Business Knowledge Model, Decision Table,

Rule Set

Data Object, Business Object

Decision Application Service, Business Service

Input Data Data Object

Knowledge Source Requirement

136 6 Combining ArchiMate with Other Standards and Approaches

described in ArchiMate notation and lower-level solution architecture and imple-

mentation models in UML (Table 6.9).

There are also some important differences between the two. The ArchiMate

serving relationship, although superficially similar in notation, is semantically

different from UML’s dependency and often points in the opposite direction. A

UML dependency is used to model, for example, function calls in software pro-

grams. At the architectural level at which the ArchiMate language is aimed,

run-time operational details of such call graphs are less important than the more

stable and generic notion of service provision. In ArchiMate, the direction of the

serving relationship therefore denotes the direction of service delivery, independent
of whether this service is called by the user or offered pro-actively by the provider.

This also points to another important difference: UML does not have a separate

service concept, since in its object-oriented paradigm the behaviour expressed by a

service is encapsulated via (the operations of) an interface. The ArchiMate lan-

guage differentiates between interfaces and the services they provide, in order to

Fig. 6.13 Expressing business rules and decisions in ArchiMate using stereotypes

Table 6.9 ArchiMate and UML

UML ArchiMate
Actor Business Actor, Role

Use Case Requirement + Service

Component Application Component

Class Business Object, Data Object

Collaboration Application Collaboration

Node, Device, Execution Environment Node, Device, System Software

Artefact Artefact

Interface Application Interface + Service

Aggregation, Composition, Generalisation Aggregation, Composition, Specialisation

6.10 UML 137

specify that the same service is offered through multiple interfaces. Hence, UML

interface corresponds with the combination of an ArchiMate application interface

and service.

6.11 SysML

The Systems Modeling Language (SysML) (Object Management Group 2015e) is

an offshoot from UML for systems engineering and offers concepts for specifica-

tion, analysis, design, verification and validation of a broad range of systems and

systems-of-systems. It is less software-centric than UML and a lot smaller and

simpler to learn (although its diagrams can become quite complicated).

When designing physical systems (or systems with physical parts), SysML may

be suited as a language for the more detailed design, while ArchiMate is used for the

architecture level of abstraction. Table 6.10 shows the correspondence between

ArchiMate and SysML concepts in such a context.

6.12 Entity-Relationship Model

One of the older type of modelling techniques in ICT is the entity-relationship

(ER) model (Chen 1976). An ER model comprises entity types, which classify the

things of interest and specific relationships between the instances of these types.

There are various techniques to depict ER models in ER diagrams, one of the most

popular being the Crow’s Foot notation.
ER models are often used in data modelling, in particular in the design of

relational databases. As such, they map most naturally on ArchiMate’s passive

structure concepts, as shown in the Table 6.11. Attributes, keys or instances of

entities would typically not be modelled in ArchiMate, as these are usually too

detailed for the enterprise architecture level of abstraction. For the same reason,

ArchiMate does not support cardinalities of relationships.

Table 6.10 ArchiMate and SysML

SysML ArchiMate
Block Active Structure Element, e.g. Application Component, Busi-

ness Actor, Device, Equipment, Facility

Requirement Requirement, Constraint

Port Service+Interface

Activity Function, Process

138 6 Combining ArchiMate with Other Standards and Approaches

6.13 TOGAF

The structure of the ArchiMate core language neatly corresponds with the three

main architectural domains of TOGAF’s Architecture Development Method

(ADM) (see also Sect. 2.2.3). Therefore, the core of ArchiMate primarily supports

the creation of architectural views in Phases B, C and D of the ADM (Business,

Information Systems and Technology Architectures), as is illustrated in Fig. 6.14.

The Strategy and the Motivation concepts can be used to capture the strategy of the

enterprise, its architecture vision, stakeholders, drivers, business goals and princi-

ples in the Preliminary Phase and Phase A and to capture and manage business

requirements throughout the ADM cycle (with a focus on Phase H, Change

Management and the central Requirements Management process). The Implemen-

tation and Migration concepts offer support for implementation and migration

planning in Phases E, F and G of the ADM.

Thus, TOGAF and ArchiMate can easily be used in conjunction, and they cover

much of the same ground. TOGAF itself provides some guidance on creating a

consistent overall model of the architecture, but mostly refers to tools that should

provide this support (The Open Group 2011, Sect. 35.3.1):

In order to achieve the goals of completeness and integrity in an architecture, architecture

views are usually developed, visualized, communicated, and managed using a tool.

In the current state of the market, different tools normally have to be used to develop

and analyze different views of the architecture. It is highly desirable that an architecture

description be encoded in a standard language, to enable a standard approach to the

description of architecture semantics and their re-use among different tools.

This is where ArchiMate nicely complements TOGAF: it provides a vendor-

independent, standardised set of concepts that helps to create a consistent, inte-

grated model ‘below the waterline’, which can be depicted in the form of TOGAF’s
views (see also Sect. 8.10).

Table 6.11 ArchiMate and ER models

ER model ArchiMate
Entity (conceptual) Business Object, Meaning

Entity (logical) Data Object

Entity (physical) Artefact

Relationship Association (with label)

6.13 TOGAF 139

http://dx.doi.org/10.1007/978-3-662-53933-0_2
http://dx.doi.org/10.1007/978-3-662-53933-0_8

6.14 Summary

In designing your enterprise, no single modelling technique will ever be sufficient.

Combining different models covering different parts of the overall enterprise scope

is therefore essential. The ArchiMate language provides an excellent instrument to

bring those models together and create an integrated view of the enterprise.

As we have demonstrated in this chapter, the ArchiMate language works very

well in conjunction with various other techniques, ranging from strategic planning

and analysis such as the Balanced Scorecard to more detailed design languages like

UML and BPMN. It also provides a good fit with the TOGAF framework for

enterprise architecture, which is of course not surprising given that they are both

Open Group standards.

Fig. 6.14 Correspondence between TOGAF ADM and ArchiMate language

140 6 Combining ArchiMate with Other Standards and Approaches

Chapter 7

Guidelines for Modelling

Robert J. Slagter, Stijn J.B.A. Hoppenbrouwers, Marc M. Lankhorst,

and Jan Campschroer

7.1 Introduction

Two architects, without a common method, tend to develop different models of the

same real world. How should we decide what is a good architecture? Pioneers in the

design of complex systems (Dijkstra 1968; Brooks 1975) have described design

principles to ensure the conceptual integrity of a model: ‘It is not enough to learn

the elements and rules of combination; one must also learn idiomatic usage, a whole

lore of how the elements are combined in practice. Simplicity and straightforward-

ness proceed from conceptual integrity. Every part must reflect the same philoso-

phies and the same balancing of desiderata. [. . .] Ease of use, then, dictates unity of
design, conceptual integrity’ (Brooks 1975).

Conceptual integrity is the degree to which a model can be understood by a

single human mind, despite its complexity. The core idea of conceptual integrity is

that any good design exhibits a single, coherent vision, which is easy to understand

by others. This allows someone with a limited knowledge and understanding of a

model to understand easily yet unknown parts of the model. In emphasising the role

of the ‘single mind’, this design principle clearly advocates the important role of an

architect in any larger design project.

R.J. Slagter

GriDD Consultancy, Enschede, The Netherlands

S.J.B.A. Hoppenbrouwers

Radboud University Nijmegen, Nijmegen, The Netherlands

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

J. Campschroer

Ordina, Nieuwegein, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_7

141

mailto:m.lankhorst@bizzdesign.com

To ensure conceptual integrity, one can use subordinate design principles such

as: do not link what is independent (orthogonality), do not introduce multiple

functions that are slightly divergent (generality), do not introduce what is irrelevant

(economy; sometimes denoted as parsimony), and do not restrict what is inherent

(propriety). The literature on quality requirements for models shows a broad

consensus about the general applicability of these heuristics (Krogstie et al. 1995;

Lindland et al. 1994; Teeuw and Berg 1997). Applying these design principles

increases the internal quality of a model (Teeuw and Berg 1997).

Additionally, the quality of an architecture is also determined by its stake-

holders: we state that an enterprise architecture that is a ‘correct’ and ‘complete’
representation of the real-life enterprise that is being modelled, given the objectives

of stakeholders, has a high external quality. In short, external quality refers to the

fitness for use of a model (Biemans et al. 2001).

Notwithstanding this, the quality of many architectures is often also determined by

less rational choices. As Rechtin and Maier state about the political process (1997,

p. 206): ‘The best engineering solutions are not necessarily the best political ones’.
In enterprise architecture, as in other design ventures, these general principles

are of course very valuable. However, the broad scope, and wide-ranging nature of

enterprise architecture make the ideal of conceptual integrity particularly difficult

to achieve.

There is no such thing as an inherently good – or inherently bad – model. To

assess the quality of an architecture model, you have to take into account for what

purpose the model is created and who the target audience is. Different purposes and

different target audiences may require fundamentally different models: while an IT

manager may wish to have an overview of the system software, the devices it runs

on, and the communication paths between these devices, the manager of a company

may wish to have an overview of the products the company produces and the

services they depend on. Nevertheless, it is possible to formulate generic guidelines

that help to make clear and useful models, comparable to the guidelines that the

TOGAF Architecture Development Method (The Open Group 2011) formulates

(see also Chap. 2).

This chapter provides such guidelines for our approach, founded on a basic

theoretical view of enterprise architecture modelling. After introducing this view

and its implications, the chapter continues with a discussion of general aspects of

readability and usability of models. The last part of this chapter provides guidelines

for creating models in the ArchiMate language that was introduced in Chap. 5, and

discusses issues such as what to capture in an ArchiMate model, how to structure

such models, and how to present them.

7.2 The Modelling Process

A model, in the context of this book, is an unambiguous, abstract conception of

some parts or aspects of the real world (see Sect. 3.2.3). Models focus on specific

aspects of the real world, based on the purpose for which the model is created.

142 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_2
http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_3

Hence, modelling is part of a goal-driven communication process, as discussed in

Chap. 4.

In enterprise architecture, modelling typically involves creating abstract repre-

sentations of enterprises: the business processes involved, the IT-infrastructure, as

well as the relations between them. Given a specific goal and focus, an enterprise

architect decides which aspects of an enterprise are relevant and should be

represented in the model. Examples of aspects that are frequently included in

enterprise architecture models are: products, business processes, applications and

IT-infrastructure elements, as well as their relations. As such, an enterprise architect

gathers relevant information and transforms this into a model; the aim of this

chapter is to provide you with design guidelines for this process.

7.2.1 Modelling as a Transformation Process

First, we go back to some fundamental issues discussed in Chap. 4 and link these up

with a view of the modelling process.

Architecture models are created in order to communicate something, either to

the people reading the model or between people making the model. But commu-

nication also has its underlying goal: the participants are to introduce, agree on, and

commit to some knowledge representation. This means that the model that is the

result of a modelling process is not the ultimate goal, and not even the only product

of that process. Transformations in the knowledge, agreements, and commitments

in the minds of the people involved are as important, if not more important, than the

representations (models). So the goals underlying the modelling process are essen-

tially knowledge goals, and (the creation of) models should be directly aimed at

fulfilling those knowledge goals. From this point of view, then, the modelling

process concerns a transformation of knowledge, agreements, and commitments

(the knowledge state of the participants) and of the central representations used as a
tool in this transformation: the models. This is depicted graphically in Fig. 7.1. The

input of the process consists of the knowledge state of participants involved in the

modelling process and possibly of one or more existing models (or related descrip-

tions, e.g. texts).

Knowledge
Agreements
Commitments

(Model)

Way of Modelling

O
U

TPU
T

IN
PU

T

Knowledge
Agreements

Commitments

Model

Way of Modelling

Knowledge goals & Guidelines

Modelling
Process

Fig. 7.1 Knowledge goals

and modelling guidelines

steer the modelling process

7.2 The Modelling Process 143

http://dx.doi.org/10.1007/978-3-662-53933-0_4
http://dx.doi.org/10.1007/978-3-662-53933-0_4

Note, however, that a third sort of input/output is included in Fig. 7.1: the ‘Way

of Modelling’ (WoM). As we described in Sect. 3.2.5, the WoM refers to the meta-

model and the concepts that the modellers work with. As modelling progresses, the

participants may or may not decide that more, or different, meta-concepts are

needed to answer the questions that are asked. For example, they may decide to

start using the concept ‘service’, or a specialisation of that concept fit for their

specific modelling context. Such changes in the WoM are commonplace during

modelling and are, in most cases, not an undesirable action due to badWoM choices

earlier on. It cannot easily be foreseen what precise WoM will be needed. In fact,

finding out the best WoM for a model is an inherent part of the process as such.

The knowledge goals steer the modelling process, or should do so. Of course,

these goals depend on the modelling context. However, there are also a number of

principles that hold more generally. They can be boiled down to modelling guide-
lines. The combined knowledge goals and modelling guidelines are what should

guide each and every step of the transformational process.

7.2.2 Basic Modelling Activities

In a modelling process, you carry out different types of activities. This section

describes these activities and a logical order to perform them in. However, real-life

modelling processes are not linear, but iterative and highly interactive: an architect

will discuss design decisions and intermediate versions of the model with various

stakeholders and, as a result, repeat some activities, perform activities in a different

order, combine or even skip activities. We distinguish the following activities in a

modelling process:

– Establishing the purpose, scope and focus. Modelling is a goal-driven activity.

So initially, an architect should determine who the stakeholders and are what the

purpose of the model is, in relation to these stakeholders. As described in Sect.

1.3, a business strategy often forms the starting point to establish the modelling

purpose. Typical purposes of enterprise architecture models are to provide

(1) insight into processes, IT infrastructure, and their alignment, (2) a basis for

business process redesign, (3) a basis for application (re)design, (4) a basis for

infrastructure (re)design, and (5) a basis for business–IT alignment. Related to

the purpose, you have to decide on the scope and focus of the model: (1) what

part of reality will be described in the model (e.g., only the primary processes),

(2) what aspects will be described, and (3) with what level of detail? Note that

models can be applied to describe the current situation ‘as is’ as well as the

situation ‘to be’, possibly including the required transition.

– Selecting one or more viewpoints to create the model. Architects create models

using viewpoints, such as the ones described in Chap. 8. These viewpoints give a

set of concepts and relations to be used during the modelling process. As such,

they guide you in determining what information should be included in the model,

given the stakeholder, the purpose for which the model is created and the focus.

144 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_1
http://dx.doi.org/10.1007/978-3-662-53933-0_8

In our approach, we typically use the design viewpoints described in Chap. 8 to

create a model, but this can also be done using the other types of viewpoints.

– Creating and structuring the model: In this stage you gather the required

information, and create, structure, and visualise the enterprise architecture

model. The actions of creating and structuring a model are strongly related

and should not be performed in isolation.

• Enterprise architecture is hardly ever performed in a green field situation:

typically, business process models, information models, or infrastructure

models about (parts of) the enterprise already exist. A main objective of

enterprise architecture is to reveal the relations between the different

domains, and to provide a high-level overview. As such, you should always

check the validity of any existing models, and incorporate their information

on an appropriate level of abstraction; domain-specific models provide more

details about parts of the enterprise than an enterprise architecture model. As

such, an enterprise architecture model should, for example, not be considered

a replacement for the existing information models or business process

models.

• You can elicit the additional information you need for example by using

interviews or by discussing scenarios of the situation ‘to be’ with

stakeholders.

• Based on this information, you create and structure a model. Creating a model

is done via the modelling actions, described in the following section. The

purpose of structuring the model is to reduce its (visual) complexity, which

makes it easier to recognise and understand. Structuring a model also helps to

discover recurring patterns as well as inconsistencies. There are many ways to

structure models. One type of structuring that is frequently applied in enter-

prise modelling is to structure the model around one key concept: structuring

your model around services is for instance practical if the model should reveal

the links between business processes and application components that are in

use. Another type of structuring frequently used in business process descrip-

tions reveals the flow of processes that are triggered by an event or an activity.

More examples of this are given in Sect. 7.3.4.

• In our approach, you create a model via one or more (visual) representations,

in accordance with a selected viewpoint. You have to decide, depending on

the modelling purpose and the stakeholders, what (visual) representations to

apply for the various concepts and relations, how to structure the visualisa-

tion, and, for instance, what colours to use. While in some exceptional cases a

textual representation of a model may be preferred, our approach focuses on

visual representations of enterprise architecture models.

– Visualising the model: Depending on the types of stakeholders and their needs,

you select one or more appropriate ways to visualise the model. The enterprise

architecture approach presented in this book advocates one central model, which

is visualised in different ways, for different purposes. Graphical viewpoints, like

7.2 The Modelling Process 145

http://dx.doi.org/10.1007/978-3-662-53933-0_8

those described in Chap. 8, form a useful starting point to visualise models,

although other representations, such as text and tables, are also possible.

– Using the model: At this stage, you use the representation of the model to

communicate with the stakeholders. Independent of whether the model is meant

as a basis for designing, deciding, or just to inform stakeholders, you have to

assess whether the model and the selected visualisation achieve the intended

result. Section 7.3.5 describes which breakdowns can occur in this process, and

how to handle them. The typical steps in using visual representations are:

• Validation. You can validate a model indirectly, by checking whether the

stakeholders agree that the views created from this model are correct repre-

sentations of the actual or intended situation.

• Obtaining commitment from the key stakeholders. After reaching agreement,

the key stakeholders have to commit themselves to the (potential) impact of

what is described.

• Informing the other stakeholders.

These steps will be described in more detail Sect. 8.4.2.

– Maintaining the model: A modelling process is iterative. In the early stages of

modelling, you discuss intermediate, but stable, versions of the model with

stakeholders. These iterations help in getting a clear understanding of the

purpose of the modelling process, the concerns of the individual stakeholders,

and the degree to which the model helps in achieving this purpose. Such

discussions may for instance reveal places in the model that have to be updated,

and places where the model includes too much or too little detail. Also in later

stages of the modelling process iterations remain crucial: if the enterprise

architecture model is not kept up to date it loses its value for the stakeholders.

As such, the model should be maintained to reflect, for instance, changes in the

infrastructure, the business processes, or the enterprise’s products. Conse-

quently, maintaining an existing model may also be the purpose of an enterprise
architecture process.

After providing some more theory about modelling and the types of modelling

actions, we continue the chapter with a discussion of the most relevant principles

guiding the design choices in a modelling process.

7.2.3 Types of Modelling Actions

There are a virtually endless number of ways in which an enterprise architect can go

about creating or changing the contents of a model. Even so, there are a limited

number of basic, general types of modelling actions that can be distinguished with

respect to the detailed actions we perform while modelling. This section describes

these types of modelling actions, thereby providing a vocabulary for talking and

reasoning about how concepts and relations are handled during modelling. This is

146 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_8

of course closely related to modelling decisions that are taken. Without wanting to

prescribe specific causes of action during modelling, we believe it is useful to

introduce terms that enable us to discuss the basic actions of modelling, but also –

and even more importantly – help architects to think in these terms, and to

externalise some of the intuitive decision making and acting they have always

been doing as they were modelling. In other words, this can help you to become

more aware of what you are doing, and think about it more explicitly and rationally.

The basic types of modelling actions that we distinguish are listed below; some

modelling actions are sub-classified. In this overview, modelling actions are oper-

ations on concrete concepts and relations from the domain that is being modelled;

as such, these concepts and relations can be considered instances of the concepts

and relations that are defined in the ArchiMate language.

We also provide some typical questions that you could reflect on as you make

your modelling decisions. These questions should be seen as ‘guidelines for reflec-
tion’; they provide concrete examples of what aspects of your modelling actions

you might need to reflect on.

– Introduce a candidate element in the model.

By this we mean simply the act of placing a fresh term for a concept or relation

within the model. It may not even be linked (related) to anything, it just seems

‘somehow relevant’. It may be changed or even deleted later on. Note that such

an element may at this point be just some unclassified item with a name on it. It

may be refined later on. The main questions one might ask here is: why this

element, why not another one, or perhaps not do it at all? Why is it relevant?

Why give it this particular name?
– Refine an element in the model.

This corresponds to adding detail to the element. Note that amodel can of course
also be refined by introducing elements. Refining an element can take two main

forms:

• Classify the newly introduced (candidate) element. You classify a yet unclas-

sified element, or may have thought of a more specific classification, or

simply a better one. Classifications are of course selected from the meta-

concepts used, so that depends on the modelling context. You may even

decide to select a classification not used so far, which amounts to extending

the WoM used. Why this classification? For reclassification: what was wrong

with the old classification?

• Provide a description of the element in another way than adding more

elements, for instance by:

• Adding internal detail to an element: for example, add attributes to a

business object, or cardinality to a ‘serving’ relation. Why this instead of

introducing a new element?
• Writing a definition or gloss kept outside the model: for example, in a

dictionary. Why this instead of expressing the definition by modelling it?

Why define at all? Will anyone (including you!) ever read the definition?

7.2 The Modelling Process 147

• Nesting models: elaborate on an element by introducing another model –

‘zooming in’. (This action is related to abstraction as described below, but
concerns adding detail instead of hiding it.) Why not include those details

in the actual model; what is the reason for using multiple levels in your

model?

– Abandon a model element.

This is an action that is harder and more complex than it may look. Of course,

concepts and relations (or internal details, for that matter) can be simply

scrapped and deleted if they turn out to be ‘wrong’. However, especially if a

model has been around for a while, it may be a good idea to make an explicit
(even communal) decision to abandon a concept or relation, in order to avoid the

concept ‘lingering around’. There is a difference between just throwing away a

model element and saying a proper and noted ‘goodbye’ to it. A record of this

potential but rejected element might be kept somewhere, as a ‘lesson learned’.
Why is this element no good? Do we want to abandon it or abstract from it?

– Abstract from a concept or relation.

Importantly, this action is quite different from abandoning a concept, or scrap-

ping some detail. Abstraction rather is the opposite of refinement.
Abstraction can take place at two levels: abstract the whole concept or relation
or some internal detail. In either case, you decide that some information that is

available to you is to be left out of the model. You may want to keep the

information (because it is not ‘wrong’ as such), but ‘hide’ it (perhaps describing
it somewhere else). The trick here is to ‘show information on demand’. Why do

you not want to show this particular information? Hide this detail (keeping the

information somewhere) or throw it away entirely?

So far we have introduced some helpful terms for describing the basic actions

involving model elements. However, enterprise architecture modelling typically

involves a larger context: relations with other models, other domains, other con-

cerns, etc. You may need to make relations with other contexts explicit, or even to

rephrase some model within some other context. This is why we also distinguish the

following modelling action:

– Translate an element.

Translation may of course simply mean finding a fitting alternative for an

interesting element in another model. If so, there is no crucial difference with

introduction or refinement (perhaps combined with abandonment). However, an
act of translation has its own special rationale behind it. More importantly, it

may need to be documented in order to keep track of the existing relationship

between models/contexts. Also, a future translation may have to be kept in line

with previous translations. This is why we distinguish the following subtypes:

• Create or replace an element so it matches the meaning of a concept from

another language or context. Why use a translation? Why this translation?

Why from that particular source model, context, or language?

148 7 Guidelines for Modelling

• Link an element to an element in the other model or modelling language.

Keep some record of this particular link, and the particular contexts and/or

languages it concerns (see also documentation below).

• Link an element to some intermediary language. This is an old trick in

translation. If a model needs to be translated to more than one language or

context, it may be a problem to find translators with expertise in all combi-

nations of contexts or languages. Instead, you could first translate to a

language or context that is understood by everyone, and then take the next

step. In this case, you may want to keep records of both the translations to the

intermediary language and to the final target language.

• A translation rule may be specified that enables standardised, coherent

translation between some contexts or languages. If translation is structural,

this may be a good thing to do. However, a note of caution is in order here:

translation is a heavily contextualised and subtle business. If translation rules

are too generically applied, gross mistranslations may occur. To keep on the

safe side, translation rules should preferably be seen as guidelines (time-

saving suggestions) rather than strict and generic rules.

• Based on experiences in previous translations, or in confusion between

contexts/languages, sources of confusion may be listed explicitly, for exam-

ple homonyms and synonyms. These may be part of the translation rules, but

even if no such rules are formulated, particularly notorious risks may be noted

and communicated.

– Document modelling actions. While this will often be too much of a burden

(automation may help here, of course), documentation and administration of all

or some modelling actions may be useful. Why should you document a model-

ling action, if at all, and what aspects of it? There are several reasons to do so:

• To be able to ‘undo’: you may simply regret a decision and backtrack to a

previous state. Of course, many modelling tools have this option.

• To revisit rejected alternatives.

• To record modelling rationales related to traceability, accountability, etc. of

the modelling process.

• To add conceptual meta-data. It may be interesting to keep track of who did

what with a model element, and where it occurs:

– In which language/context/model is the element used? Is it part of any

standard?

– Who first introduced the element?

Translation records and rules may also be linked in here.

7.3 Guidelines for Modelling

The main guideline for modelling results from our notion of modelling as a goal-

driven activity (Chap. 4) is the following:

7.3 Guidelines for Modelling 149

http://dx.doi.org/10.1007/978-3-662-53933-0_4

A model has to provide answers to questions.

Modelling in itself is not an objective: a model serves a purpose to answer some

particular questions. Making these questions explicit help you to find the appropri-

ate scope and focus while creating a model.

Make a clear distinction between a model and its visualisations.

Architects have a tendency to consider a visualisation of a model as the model

itself (see also the remarks in Chap. 3). You should be aware of this difference and

not use visual terms while describing a model. For example, avoid using terms such

as ‘above’ to denote that some concept is more important than another one.

The processes that underlie the functioning of enterprises are complex activities

that, by definition, contain a large amount of detail. When you model such activ-

ities, you leave out information you feel is unimportant and emphasise information

you feel is essential, given the modelling goal and target audience. This economy of

communication is an example of obeying Grice’s Maxims (Grice 1975). These

maxims have been formulated as heuristics for optimising communication. Since

the visualisation of an enterprise architecture model is a means to communicate

information about an enterprise, these maxims are relevant for us as well. Applying

Grice’s Maxims to enterprise architecture, we interpret them as follows:

Maxim of quantity:

– Make your model as informative as necessary.

– Do not make your model more informative than necessary.

Maxim of quality:

– Do not model what you believe to be false.

– Do not model that for which you lack adequate evidence.

Maxim of relevance:

– Be relevant (i.e. model things related to the modelling goal).

Maxim of manner:

– Avoid obscurity of expression.

– Avoid ambiguity.

– Be brief (avoid unnecessary concepts and relations).

– Be orderly.

If you apply these maxims, they will help you to create models that include

appropriate details, given the modelling goal and the target stakeholders.

There are typically multiple stakeholders involved in an enterprise architecture

and its model. Apart from the enterprise architect, possible stakeholders include

managers, CIOs, CEOs, software developers, and business process designers. In

150 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_3

such settings, the types of stakeholders and the purpose for which the model is

created determine what makes an appropriate model. Always remember that, while

the architect determines the internal quality of a model (e.g., its conceptual integ-

rity), the external quality of a model is largely determined by the stakeholders, not

the architect.

We have obtained a series of such guidelines based on interviews with enterprise

architects, combined with our own experience and information from the literature.

These guidelines are listed below.

Model iteratively.

When modelling an enterprise architecture, use several iterations to discuss

intermediate, stable models with the stakeholders. Use their feedback to improve

the model and to determine parts of the model that do not yet have the appropriate

level of detail.

Model for dynamics.

Models often include real-life aspects that are likely to change over time, such as

a company’s product portfolio. As such, models are dynamic. If certain changes can

be foreseen, architects should add a description of how the model can change.

Be economical in models.

Model only those concepts and relations that are relevant given the purpose of

the model and the type of stakeholders it is intended for.

Be economical in views.

When communicating with a specific stakeholder, use a view of the model that

only includes the concepts and relations that are relevant for that stakeholder.

Make concepts recognisable.

Indicate concepts in a model by the same names the stakeholders apply to those

concepts.

Make structures recognisable.

7.3 Guidelines for Modelling 151

Use the same type of structuring that the stakeholders apply: if the stakeholders

for instance describe their business in terms of a process with various steps, make

sure this process and the individual steps are clearly present in the model.

Make a model consistent.

In a model, apply the same type of concepts to denote the same type of elements

from the real world. Model similar relations in a similar manner. Use the same

terms to denote the same concepts, also in related models.

Keep related models consistent.

In many cases, architects will create a series of related models to model different

aspects of the same enterprise. Coherence between these models is very important:

you should try to avoid conflicts between related models and use uniform

terminology.

Make models as correct and complete as needed.

A model should be a correct representation of something from the real world,

focusing on specific aspects. While models abstract from certain aspects, the

aspects they focus on should be modelled in a correct and complete manner. In

many cases you do not want to create 100% complete or correct models. Models do

not always have to be complete, because people can easily fill in the gaps. Main

structures must be clear, but details and exceptions are left for the implementation

phase. Although not a complete or 100% correct representation of reality, models

must be unambiguous.

Treat different concerns orthogonally.

Different concerns should be addressed in different parts of the model, or in

different, related models.

7.3.1 Before You Start

When you are about to start creating models, i.e., you are about to model an

enterprise architecture, you should ask yourself the following questions:

152 7 Guidelines for Modelling

– Is there a clear stakeholder?

– Is the objective explicit?

– Will creating an enterprise architecture model help to reach this objective?

– Are the boundaries clear of what you should model?

– Is it clear whether the situation ‘as is’ or the situation ‘to be’ should be modelled?

– Can you obtain the information needed to create the model?

– Are there realistic expectations regarding your role as an enterprise architect in

the process?

Only if all these questions can be answered positively should you start the

modelling process. Now the next question is; what to capture in the model?

7.3.2 What to Capture in a Model?

The contents to capture in a model primarily depend on the purpose of the model

and the intended target audience: the stakeholders for which the model is created.

Based on this purpose and target audience, you decide on a scope and focus: which

aspects of the enterprise to include in the model and what abstraction levels to use?

In deciding the scope of the model, you should focus only on those aspects that

contribute to the modelling objective. In order to model appropriate aspects, the

following guidelines can be applied:

Select the design viewpoints that match your objective.

Choose design viewpoints that include all concepts and relations that are of

primary importance to the purpose of the model. If you need to communicate how

various business roles contribute to the realisation of one specific business process,

make sure you select a design viewpoint that includes these concepts. The selected

design viewpoints determine which types of concepts and relations to include in the

model.

Focus.

Only include those elements in the model that directly contribute to the realisa-

tion of the modelling objective.

Neglect matters of secondary importance and exceptions.

7.3 Guidelines for Modelling 153

Initially, assume that no errors occur in the processes you model and that all

processes complete successfully.

Do not be afraid to abandon model elements.

Some aspects or relations that may seem important when you start modelling

may later on prove to be of secondary importance. For this reason, models tend to

include too much detail and too many aspects after a while. Do not be afraid to

abandon those elements that clutter the model with less relevant details: even

though the resulting model will contain less information, it will be more valuable

for the stakeholders.

Discuss stable, intermediate versions of the model with the stakeholders.

As discussed in Sect. 7.2, what to include in a model is determined by its purpose

and stakeholders. As a result, an architect should discuss intermediate, but stable,

versions of the model with the various stakeholders to get feedback on the selected

concepts and relations, the level of detail, and the representation applied. Involving

stakeholders throughout an enterprise architecture process not only increases their

commitment, but also contributes to a higher quality of the resulting models.

Start modelling from a single element.

Depending on the selected design viewpoint, one element (for instance, a

specific role, a service, a process, or a product) is of prime importance. Form

your model around this central element. For instance, in the Application Behaviour

Viewpoint (Sect. 8.5.12) the provided Application service is the central concept.

Start modelling by systematically investigating one concrete application service

that is most relevant given your modelling objective. Investigate all Application
functions that contribute to realising this Application service and all Data objects
that are used.

Starting from a single element, you can use the following four metaphorical

directions (inspired by Veryard 2004) to find other relevant model elements:

1. Inwards: towards the internal composition of the element.

2. Upwards: towards the elements that are supported by it.

3. Downwards: towards its realisation by other elements.

4. Sideways: towards peer elements with which it cooperates.

This is illustrated in Fig. 7.2. Of course, this approach can be iterated over

multiple elements in your model.

154 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_8

7.3.3 Modelling and Abstraction

The iterative modelling approach, as described in the previous section, helps you to

handle the complexity of enterprise architecture modelling by allowing you to use

different levels of abstraction. Through the use of abstraction levels, you can first

capture the key concepts and key relations in an enterprise architecture model,

before providing more details.

First capture key concepts and key relations at a high level of abstraction.

A high-level enterprise architecture model that only includes key concepts and

key relations forms an appropriate means of communication with the stakeholders

in the early stages of the modelling process: not only does it show the key concepts

and relation, but also it forms a basis to discuss the purpose and scope of the

modelling process. It is of the utmost importance to agree with the stakeholders on

the key concepts and key relations, as these make up the framework on which the

rest of the enterprise architecture model is based.

After reaching an agreement on this high level of abstraction, you can use

various other levels of abstraction to specify the enterprise architecture model.

Each of these levels zooms in on a specific part of the higher-level model and allows

you to add detail. To benefit from the use of different levels of abstraction, you have

(formally) to identify the levels, each with a well-defined scope, and maintain

consistency among the levels (Biemans et al. 2001).

Use a limited number of predefined abstraction levels.

Define abstraction levels based on the modelling goals.

Abstraction levels can abstract from aspects, such as physical distribution, or

abstract from details, such as the internal structure of a system. As a result,

refinements of a model can for instance provide more details regarding:

Support

Realisation

C
oo

pe
ra

tio
n C

ooperation

Composition

Fig. 7.2 Metaphorical

directions for viewpoints

7.3 Guidelines for Modelling 155

– Implementation: adding details about how behaviour is realised. In the

ArchiMate notation the ‘realises’ arrow indicates this relation.

– Extension: augmenting a model with new elements, such as exceptions.

– Decomposition: adding the internal structure of parts of the model.

In correspondence to the enterprise modelling language chapter, typical levels of

abstraction are the business level (focusing, for example, on business objectives,

products, and organisational structures), the application level (focusing, for exam-

ple, on applications and the services they provide), and the technology level
(focusing, for example, on computer systems and networks). However, abstraction

levels should be chosen depending on the modelling objective and the concerns of

the stakeholders.

Maintaining consistency among abstraction levels is a necessary, but complex,

task. Tool support can help an architect in this task, for instance by checking

whether a detailed description of a part of the model conforms to a higher-level

description.

Keep abstraction levels consistent.

So, in creating an enterprise architecture model, we suggest an iterative

approach, using multiple abstraction levels, where the first iteration is performed

in a top-down manner. This top-down first iteration stimulates you to capture, on a

high level, the key concepts and key relations of the model in relation to the

modelling purpose, before looking at lower-level details.

7.3.4 Structuring Models and Visualisations

When a model consists of many concepts and relations, structuring a model helps to

reduce the visual complexity of the model, which makes it easier for your stake-

holders to recognise and understand your model. Structuring a model may also help

to discover recurring structures, patterns, or inconsistencies.

Especially in an enterprise architecture, which integrates many different

domains, several of these structures will be apparent at the same time. However,

different structures will be dominant in different parts of the enterprise architecture.

For example, in business processes a temporal structure will be dominant, whereas

functional decomposition is more prominent in the application architecture.

Architecture models may contain different types of structure. Commonly used

structural dimensions include:

– Functionality: functional decomposition

– Time: temporal structure, data flow, control flow

– Usage: dependencies, call graphs

156 7 Guidelines for Modelling

– Location: physical distribution

– Data structure: type/class hierarchies

– Work: units of implementation, module structure

In structuring any model, the modelling objective is of prime importance:

different types of structure help you to make different aspects of the enterprise

architecture explicit. If you, for instance, would like to reveal how various appli-

cations contribute to the realisation of the products of an enterprise, a grouping

based on products may be the most suitable structure.

Below, we give some of the most important and widely used structuring

principles.

Make a model as self-explanatory as possible.

Any part of the model should be specified in such a way that (potential) users

require a minimum amount of additional information about both its context and its

contents to understand what its role in the architecture is. To achieve this, you

should use existing shared understanding: apply the user’s terminology and build on

their existing knowledge.

Separate internal and external behaviour.

This principle is a further elaboration of the previous one. In describing the

behaviour of any system element, you should clearly separate what its environment

perceives and how it operates internally. Thus, the user of that system element does

not need to be concerned with its inner working and only has to understand what it

shows to the outside world. A prime example of this principle is the use of the

service concept. Following its definition in Chap. 5, a service should only describe

the externally observable behaviour of a system, not how that behaviour is realised.

Such encapsulation has long been a guiding principle in software development

(e.g., see Dijkstra 1968). It provides a mechanism for being truly platform inde-

pendent, for substituting different implementations with the same external behav-

iour, or interchanging different suppliers of services.

Use layers.

Structure the elements in the model in terms of layers, for instance the business,

application, and technology layers as applied in the ArchiMate language. The link

between layers in an enterprise architecture is typically made explicit via the

services one layer provides to the other. An example is given in Fig. 7.3, which

shows the business and application layers joined by a layer of application services.

7.3 Guidelines for Modelling 157

http://dx.doi.org/10.1007/978-3-662-53933-0_5

Group by phase.

Structure the elements in the model in terms of the time at which they take place.

If the organisation, for instance, distinguishes different phases in a production

process, arranging the enterprise architecture model in terms of these phases may

help your stakeholders to recognise and understand the model. In Fig. 7.4, for

instance, the business functions that come into play after damage occurs are

grouped by the phases in the process.

Group by product or service.

Group elements in the model (such as business processes, information, and

actors) that contribute to the realisation of a specific product or service.

Group by information used.

Fig. 7.3 Layered model

Fig. 7.4 Business functions grouped by phase

158 7 Guidelines for Modelling

Structure the elements in the model according to the information they have or

need. This can be applied on a technical level, e.g., in a data warehouse architecture,

but also on a business level, as in a business model for an electronic marketplace or

a broker.

Group by physical distribution.

Group elements in the model based on their physical (geographical) location, for

instance as specific activities take place in a specific region.

Separate independent parts.

Split the model into smaller sub-models of (largely) independent parts of the

enterprise.

While structuring an enterprise architecture may help your stakeholders to

recognise and understand the model, it is also a powerful means to make the

coherence in an enterprise explicit. For instance, the relations that cross the

boundaries in a layered structuring indicate dependencies where one layer uses

information or services provided by another layer. Revealing coherence, for

instance between business roles, business processes, and the resulting products, is

a main objective of many enterprise architecting processes.

Linked to the different dimensions of structure, a number of elementary struc-

turing operations can be discerned (Bass et al. 1998), including abstraction and

separation (e.g., part–whole decomposition, ‘is-a’ decomposition, and replication).

Applying these operations to an architecture has an impact on its quality

attributes, such as performance, scalability, or modifiability. By transforming an

architecture using these operations, the qualities of that architecture can be

influenced. However, since these quality attributes are interrelated, the end result

will always be a compromise between different requirements. It is the task of the

enterprise architect to ensure a workable outcome, both in balancing the needs of

the different stakeholders within the architecture itself and in guiding the process of

communication and negotiation with all these stakeholders.

7.3.5 Constructive Use of Modelling Breakdowns

In communication, a failure to communicate effectively is typically denoted as a

breakdown. In a modelling process, breakdowns become evident when – for some

reason – a stakeholder does not properly understand the model. As such, break-

downs should be avoided. Nevertheless, if they do occur you can use them in a

constructive manner. Most importantly, you should check for readability and effect.

7.3 Guidelines for Modelling 159

Check for Readability

Readability breakdowns occur when communicating models that are visualised in

an inappropriate manner given your stakeholders and the modelling goals. Having

your stakeholders understand the model is of the utmost importance, independent of

whether your model is meant for designing, deciding, or informing. This section

describes typical breakdowns related to the readability of models: it states the

symptoms (how can you determine that such a breakdown is occurring?) and

possible solutions to repair the breakdown. We distinguish the following readability

breakdowns:

– The model is not understood: Unknown terms and concepts are used.

Symptoms: If asked, the stakeholder cannot explain the model. Furthermore the

stakeholder will not show any enthusiasm. A cooperative receiver will ask

questions such as: ‘What do you mean by that? Can you give an example?

What does this term mean?’. In the worst case the receiver will say the model is

useless and ignore it.

Solution: Analyse the stakeholder and use his or her language, terms, and

concepts. It can be useful to build a model using the terms of the stakeholder

or to explain new introduced vocabulary.

– The model is understood in the wrong way.

Symptoms: When asked the stakeholder turns out to have his or her own

conflicting interpretation of the model. The stakeholder will draw strange con-

clusions and take initiatives you do not expect.

Solution: Analyse the stakeholder and use his or her language, terms and

concepts. It can be useful to build a model in terms of the receiver or to explain

newly introduced vocabulary.

– The model has no intuitive structure for the receiver.

Symptoms: The receiver finds it difficult to recall all of the elements of the model

and thinks of it as a bag full of propositions. It is hard to keep him interested. If

the receiver refers to the model, he or she always uses another representation,

e.g., another diagram or another sequence, to explain the content.

Solution: Copy the structure used by the stakeholder or analyse it to find out

about its underlying logic. Use this logic in the new model.

– The model has an unclear structure or notation.

Symptoms: The structure of the model or the language or diagrams used causes

questions. The receiver will reject the model, although he or she agrees with its

contents. The remarks made only concern the structure of the model.

Solution: Explain the structure of the model or use structures the receiver is used

to. Introduce new kinds of diagrams describing a well-known situation to explain

the diagram constructs.

– The visualisation of the model distracts from the original message.

Symptoms: Diagrams and colours are so awful or beautiful that nobody takes any

notice of the contents. The form of the model is the only thing that people

remember, not its contents.

160 7 Guidelines for Modelling

Solution: Adjust the visualisation of the model: first give the message as text, or

as a story. Apologise for ugly models.

Check for Effect

Even with a properly readable model, the communication with the stakeholder may

not result in the intended effect. We can identify several typical breakdowns related

to the inability of models to achieve the intended effect:

– The model or architect lacks status.

Symptoms: The receiver is not willing to listen. He or she is always busy and

cannot make time for you.

Solution: This is a relational breakdown, which needs to be solved before

continuing the process. It is outside the scope of this book to describe solutions

for such organisational issues.

– The model has a true but unwanted message.

Symptoms: There is no room to negotiate. The model is forgotten or deliberately

misunderstood. Some sort of delaying tactics are used.

Solution: This too is a relational breakdown, which needs to be solved before

continuing the process.

– The model is irrelevant: The model is true, it is a good representation of the

modelled situation, but it has no relation with the problem.

Symptoms: The stakeholder will ask: ‘Why do you tell me this?’ to which you

have no good reply.

Solution: See ‘the model contains superfluous elements’.
– The model contains superfluous elements: The model is true, it is a good

representation of the modelled situation, and there is a relation with the problem,

but not everything is relevant. The real message is hidden somewhere in the

larger message.

Symptoms: The architect has too much to say, but does not always have an

answer to the question: ‘Why do you tell me this?’.
Solution: Construct and get commitment for a problem description. For every

line and every drawing, you should ask yourself: ‘Do I miss something if I leave

this thing out?’ If you are convinced that the model should include some

elements that should be left out considering the problem description,

re-evaluate the problem description together with the stakeholders.

– The model is too complex. The model may contain relevant information, but

there is just too much of it.

Symptoms: The stakeholder appears to be puzzled by the model or spends a lot of

time looking at the model.

Solution: Use abstraction levels to allow the stakeholder to zoom in on or out of

parts of the model.

– The model is too vague. The model is true but not very specific. It does not

provide the stakeholder with the desired knowledge.

Symptoms: The stakeholder will not be interested.

7.3 Guidelines for Modelling 161

Solution: Iterate and create a more concrete model, focusing on the objective of

the stakeholder.

– The model is not sufficiently complete. Not all required information is included

in the model. If the model is part of a sequence, this might not be a problem.

Symptoms: The model does not provide the stakeholder with all the desired

knowledge. The stakeholder will be dissatisfied, as you are not fully addressing

the problem.

Solution: Iterate and create a more complete model, focusing on the objective of

the stakeholder. An architect always has to find a balance in order to create

models that are sufficiently complete, while not being too complex.

– The model is not true. The model contains incorrect arguments, or inaccurate or

untrue reasoning.

Symptoms: The stakeholder does not agree with the arguments and reasoning

used. The stakeholder will dispute the content.

Solution: Gather the required information and check it for correctness.

7.4 Readability and Usability of Models

The prime purpose of enterprise architecture models is to capture and communicate

key functions and key relations of different domains relevant for enterprises. As

such, these models have to be readable and usable, given their particular purpose

and given the stakeholders for which they are intended. The readability and

usability is, to a large extent, determined by the complexity of the model. While

creating models, you should aim for models with a limited complexity, by reducing:

– The number of elements in the model

– The number of types of elements in the model

– The number of relations depicted in the model

Nevertheless, complex designs and complex relations from the real world cannot

always be captured in models with a limited complexity. In that case, the use of

viewpoints can help to reduce the complexity for stakeholders. Such viewpoints

focus on specific aspects of the model, reducing the number of elements that are

visible, as well as the number of element types and the number of visible relations.

Viewpoints are discussed in detail in Chap. 8.

In order to promote readability and usability of models, visualisations of models

should link the visualisations of model elements with the elements themselves. This
principle is especially important for enterprise architecture models, since these

typically integrate different architectural models.

When creating a visualisation of an enterprise architecture model, there are two

conflicting forces. First, the visualisation should state as much information as

possible, given the purpose of the visualisation and the intended stakeholders of

the visualisation. Second, the stakeholders of the visualisation can only handle a

162 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_8

limited visual complexity of a presented model. Balancing these two conflicting

forces is an important challenge when creating a model.

The level of detail must be attuned to the purpose of the model and the intended

stakeholder. A new user’s initial focus may be the system as a whole, with few

details. When the user focuses on a specific part of the model, more detail should be

added. When users can zoom in on parts of a model, navigational information

becomes important: users should be provided with awareness information regarding

the current level of abstraction and switching between levels of abstraction should

be supported. Additionally, the meaning of the symbols at the given level of

abstraction should be stated.

7.4.1 Reducing the Visual Complexity of Models

Reducing the visual complexity of models is primarily achieved by limiting the

number of concepts and relations that are visible in a model. Related to this, the

number of types of concepts and relations should also be limited. Having different

views of models is one means to reduce the visual and conceptual complexity:

given a specific objective and a specific type of stakeholder, a view only includes

those aspects of the model that are relevant for that situation. Chapter 8 elaborates

on the notion of viewpoints for design and visualisation, and provides examples of

various viewpoints.

Another solution is the use of abstraction (see Sect. 7.3.3). Humans are only

good at working with models that do not include more than 30 elements (Horton

1991). Even more restricting is the rule by Miller (1956), based on the capacity of

our short-term memory, which states that humans are only good at processing seven

plus or minus two elements at a time. If the number of elements in a model exceeds

this limit, elements should be grouped and substituted with an aggregate, abstract

object. Based on this principle, one can create models with different levels of

abstraction: on the highest level, only the key concepts and key relations are

shown. Such high-level models show the essentials of the enterprise architecture

and abstract from details, for instance regarding implementation of processes or

distribution aspects. Each concept and relation on this highest level may be an

abstraction for a more complex set of concepts and relations. In a model with

different layers of abstraction, the more detailed concepts and relations can be

reached by zooming in on the composite object. This process is iterative: in each

layer, concepts and relations may in turn be compositions of more detailed concepts

and relations. However, to maintain an overview of the model, enterprise architec-

ture models should not apply more than three layers of abstraction (Koning 2002).

Within one view and given an abstraction level, the visual complexity of a model

depends for a significant part on how well humans perceive the relations between

concepts. To create appropriate visualisations of complex models a number of

generic organising principles can be identified. These principles, derived from the

Gestalt theory of human perception, are particularly useful for assisting in the

7.4 Readability and Usability of Models 163

http://dx.doi.org/10.1007/978-3-662-53933-0_8

representation of relationships that exist between different entities in architectural

models. They are illustrated in Fig. 7.5 and explained below:

– Proximity: People have a tendency to relate objects that are near to each other.

Therefore, related objects should be placed near to each other in a model. The

proximity rule also applies for colours. Therefore, the colour of objects in a

model can be applied to indicate relations between objects.

– Continuity: People have a tendency to perceive a line as continuing its

established direction. For example, a cross is perceived as two straight lines

bisecting each other rather than two (or even four) right angles positioned next to

each other. Therefore, right angles should not be positioned next to each other in

a model.

– Closure: People have a tendency to perceive incomplete objects as complete and

to close or fill gaps and to perceive asymmetric objects as symmetric. In general,

symmetry and regularity of models increases the readability of models and

reduces the perceived complexity.

– Similarity: People have a tendency to perceive objects that are similar to each

other as belonging together as a unit. As a specialisation of this principle, people

have a tendency to perceive objects with similar size as being of equal impor-

tance: when shown a larger object and a smaller object, people have a tendency

to perceive the larger object as being more important.

– Common fate: People have a tendency to perceive different objects that move or

function in a similar manner as a unit. Consider a group of four similar objects

Proximity

Continuity

Closure

Similarity

Common fate

Fig. 7.5 Examples of the Gestalt principles

164 7 Guidelines for Modelling

that are perceived as a group: if two objects are rotated, the group of objects is no

longer perceived as one group, but rather as two pairs.

In the next subsections, we have translated these general principles into a

number of practical requirements, illustrated with some examples.

7.4.2 Representation Conventions

Representation conventions can be applied to increase the ease of understanding

models. Especially for the experienced user, they may provide useful clues for the

meaning of a model. Using conventions does not influence the formal meaning of

the model. Typical conventions encountered in textual programming are naming

conventions and indentation conventions for clarifying the nesting structure of

the code.

Use of Layout

The layout is one of the most important visual attributes of a model. A good layout

is perceived instantly and almost unconsciously. An unclear, cluttered layout is

distracting and hinders perception of more detailed information. Putting the objects

in a diagram in a pattern that is easily recognisable and fitting to the underlying

message is a great aid to the viewer of the diagram. It very much helps in discerning

and remembering which objects there are and which relationships are relevant.

Layout aspects of a diagram include: basic pattern, horizontal and vertical align-

ment, above/before positioning, symmetry, distance of objects from the centre and

from other objects, distribution of white space, distribution of connectors, density

of objects and connectors. A basic pattern makes clear to the viewer what strategy is

being followed in positioning objects and what meaning can be derived from the

position of an object. For instance, in a workflow diagram the activities might be

positioned from left to right in the order of execution and having the same vertical

position can mean being executed in the same stage of the process.

Use white space.

Providing enough, but not too much, white space makes diagrams elegant. White

space gives room to envision alterations or additions, and in that way (again)

supports reasoning about the diagram.

Distinguish between normal and exceptional cases.

In order to reduce the complexity of a model, it is useful to make a clear

distinction between the normal proceedings and exceptions. This can for instance

7.4 Readability and Usability of Models 165

be realised by presenting the normal activities within a process at the same

horizontal level, while placing the exceptional activities above or below that level.

Use symmetry to stress similarities.

Symmetry can be used to suggest or stress similarities between parts of the

model. This is used in Fig. 7.6 to suggest, for example, the similarities between the

two front-office departments and also between the three back-office departments.

Model time dependence from left to right.

By letting triggering relations point from left to right, the time dimension in

behaviour models matches the natural reading direction in Western cultures. An

example is the process model of Fig. 7.7.

Avoid crossing lines.

Fig. 7.6 Symmetry and similarity

166 7 Guidelines for Modelling

Avoiding crossing lines can increase the readability of a model. In case of a

crossing line, the user may have to spend extra time finding out in what direction

each of the lines continues.

Use of Symbols

The shapes of objects usually match the intrinsic properties of the objects (e.g., the

cylinder shape for a data store, an actor represented by a stick figure, etc.). There is

a tendency to use realistic, possibly three-dimensional symbols for concrete and

tangible objects (e.g., cylinder, human figure, factory symbol, graphics of com-

puters) and to use simple, geometric shapes for abstract concepts (e.g., process,

function, component, etc.).

Use similar shapes for similar concepts.

Similar concepts should be represented by similar shapes. In the ArchiMate

language, for example, all behavioural concepts such as business process, service,

and function, have rounded corners, whereas the structural concepts such as actor,

component, and object have sharp corners.

Use line width to stress important relations.

In order to differentiate several types of relationships (for instance, flow of

goods, flow of money, and flow of information), different line styles and arrows

are used in the ArchiMate language. To differentiate relations of the same type, line

widths (e.g., thicker lines) can be used to stress the most important ones, e.g., the

main flow of information. This is used in Fig. 7.8 to emphasise the flow associated

with the Handle Claim business process.

Use of Colour

Colour is a very strong visual signal. It is a visual attribute that is strongly

influenced by ‘prior knowledge’, like cultural values, fashion colours, or company

colours. Additional meanings can be easily (temporarily) attached to a certain

colour. Using a distinct colour for an object with a particular attribute can program

the meaning of that colour for the rest of the models describing a particular

architecture. It is important to keep in mind that colours can enlarge the appeal of

Fig. 7.7 Time dependence from left to right

7.4 Readability and Usability of Models 167

the diagram, but can also lead to contrary effects by abusive usage of them (such as

confusion, distraction, eye fatigue, difficulties in following the diagram).

Use colour for emphasis.

There is a perceptual order to colour that follows the spectrum of red, yellow,

green, and blue. When viewing these colours, red tends to focus in the foreground,

yellow and green focus in the middle, and blue focuses in the background. Conse-

quently, red is usually used to emphasise a feature, while blue is used for

backgrounds.

Fig. 7.8 Line width used to emphasise flow for insurance claim handling

168 7 Guidelines for Modelling

Use colour for similarity.

One way of indicating that certain elements have something in common is to use

the same colour. For instance, processes performed by the same actors can be given

the same colour as the representation of the actor. Different objects or concepts are

usually represented by different colours. For example, in many of the examples

throughout the book, colour is used to distinguish between business, application,

and technology layer concepts.

Use colour to convey emotions.

There is a language to colour, based on the culture, education, and experience of

people. Colours can be very symbolic. This fact should be kept in mind when

designing graphic representations of models. Some obvious examples of this are:

the colour red implies importance or danger; yellow refers to caution; in mapping,

green often represents vegetation. Colour also has physical and emotional effects on

the viewer. For example, red may be perceived as exciting, green as restful, and

blue as cheerful.

Limit the number of colours.

For aesthetic reasons, too gaudy visualisations should be avoided, since this will

annoy the users of the model. Another reason for this constraint is that too many

different colours in a graphic hinder the viewer from developing an effective mental

model of the meaningful relationships between objects and their colours.

Use of Text

Most modelling languages combine the power of text and graphics. Text can be

very strong in suggesting the proper interpretations and associations and in stimu-

lating thinking. The guidelines on the use of text try to stimulate you to be diligent

in adding proper titles, subscripts, and annotations. They do matter. Text is impor-

tant to speed up the creation of the proper mental model and to create a good

starting point for a line of reasoning.

Use domain-specific terminology.

Using the terminology of the stakeholders facilitates communication with them

and helps to make a recognisable model (Biemans et al. 2001).

7.4 Readability and Usability of Models 169

Use naming conventions.

Naming conventions can be used for indicating the kind of element, such as

verbs for actions and nouns for resources. Use short names (if possible consisting of

one word) that are clear and unique. These will allow quick identification of an

object throughout the whole architecture.

In the ArchiMate example models throughout the book, we use nouns for

structural elements such as actors, roles, and components (e.g., ‘insurer’ and ‘policy
administration’), first-person-singular verbs for business processes (e.g., ‘handle
claim’), and gerunds for functions (e.g., ‘contracting’).

7.5 Summary

As described in this chapter, modelling is a goal-driven process in which an

enterprise architect, in cooperation with the stakeholders, creates and structures a

model via one or more viewpoints. As described in Chap. 4, enterprise architecture

models are created for many reasons: they may for instance form a basis for design,

for deciding, or for informing stakeholders. Depending on the purpose and the

stakeholders, an enterprise architect can choose from a wide range of tools and

techniques to create an appropriate model. In this chapter the stages in a modelling

process have been described, as well as important principles influencing the model-

ling process. These principles concern the choice of modelling concepts, the use of

abstraction, the structuring of models, as well as the visual representation of

models. We have formulated concrete guidelines to describe good practices and

illustrate principles, with the intention of helping an enterprise architect to create

models that suit their purpose and cover the concerns of the various stakeholders.

170 7 Guidelines for Modelling

http://dx.doi.org/10.1007/978-3-662-53933-0_4

Chapter 8

Viewpoints and Visualisation

Marc M. Lankhorst, Leon van der Torre, H.A. (Erik) Proper,

Farhad Arbab, Stijn J.B.A. Hoppenbrouwers, and Maarten W.A. Steen

Establishing and maintaining a coherent enterprise architecture is clearly a complex

task, because it involves many different people with differing backgrounds using

various notations. In order to get to grips with this complexity, researchers have

initially focused on the definition of architectural frameworks for classifying and

positioning the various architecture descriptions with respect to each other. A

problem with looking at enterprise architecture through the lens of an architectural

framework is that it categorises and divides architecture descriptions rather than

providing insight into their coherence.

To integrate the diverse architecture descriptions, we advocate an approach in

which architects and other stakeholders can define their own views of the enterprise

architecture. In this approach views are specified by viewpoints. Viewpoints define
abstractions on the set of models representing the enterprise architecture, each

aimed at a particular type of stakeholder and addressing a particular set of concerns.

Viewpoints can be used both to view certain aspects in isolation, and for relating

two or more aspects.

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

L. van der Torre

University of Luxembourg, Luxembourg, Luxembourg

H.A. Proper

Luxembourg Institute of Science and Technology, Luxembourg, Luxembourg

F. Arbab

University of Leiden, Leiden, The Netherlands

S.J.B.A. Hoppenbrouwers

Radboud University Nijmegen, Nijmegen, The Netherlands

M.W.A. Steen

BiZZdesign, Enschede, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_8

171

mailto:m.lankhorst@bizzdesign.com

8.1 Architecture Viewpoints

In this section we discuss the notion of views and viewpoints as basic tools in

communicating about architectures. In the context of enterprise architectures, a

viewpoint is typically used for activities like design, analysis, obtaining commit-

ment, formal decision making, etc. As we argued in Chap. 4, we regard all of these

activities to be communicative in nature.

As defined in Sect. 3.2.4, a viewpoint essentially prescribes the concepts,

models, analysis techniques, and visualisations that are to be used in the construc-

tion of different views of an architecture description. A view is typically geared

towards a set of stakeholders and their concerns. Simply put, a view is what you see,

and a viewpoint describes from where you are looking.

In discussing the notion of viewpoint, we will first provide a brief overview of

the origin of viewpoints. This is followed by a more precise definition of view-

points, and the concept of viewpoint frameworks.

8.1.1 Origin of Viewpoints

The concept of viewpoint is not new. For example, in the mid 1980s, Multiview

(Wood-Harper et al. 1985) already introduced the notion of views. In fact,

Multiview identified five viewpoints for the development of (computerised) infor-

mation systems: Human Activity System, Information Modelling, Socio-Technical

System, Human–Computer Interface, and the Technical System. During the same

period in which Multiview was developed, the so-called CRIS Task Group of IFIP

Working Group 8.1 developed similar notions, where stakeholder views were

reconciled via appropriate ‘representations’. Special attention was paid to disagree-
ment about which aspect (or perspective) was to dominate the system design

(namely, ‘process’, ‘data’, or ‘behaviour’). As a precursor to the notion of concern,
the CRIS Task Group identified several human roles involved in information

system development, such as executive responsible, development coordinator,

business analyst, business designer (Olle et al. 1988).

The use of viewpoints is not limited to the information systems community; it

was also introduced by the software engineering community. In the 1990s, a

substantial number of software engineering researchers worked on what was

phrased as ‘the multiple perspectives problem’ (Finkelstein et al. 1992; Kotonya

and Sommerville 1992; Nuseibeh 1994; Reeves et al. 1995). By this term, the

authors referred to the problem of how to organise and guide (software) develop-

ment in a setting with many actors, using diverse representation schemes, having

diverse domain knowledge, and using different development strategies. A general

framework has been developed in order to address the diverse issues related to this

problem (Finkelstein et al. 1992; Kotonya and Sommerville 1992; Nuseibeh 1994).

In this framework, a viewpoint combines the notion of actor, role, or agent in the

development process with the idea of a perspective or view which an actor

172 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_4
http://dx.doi.org/10.1007/978-3-662-53933-0_3

maintains. A viewpoint is more than a partial specification; in addition, it contains

partial knowledge of how further to develop that partial specification. These early

ideas on viewpoint-oriented software engineering have found their way into the

IEEE 1471 standard for architecture description (IEEE Computer Society 2000)

and the subsequent ISO/IEC/IEEE 42010:2011 standard (ISO/IEC/IEEE 2011), on

which we have based our definitions below.

8.1.2 Architecture Viewpoints

In the context of architecture, viewpoints provide a means to focus on particular

aspects of an architecture description. These aspects are determined by the concerns

of the stakeholders with whom communication takes place. What should and should

not be visible from a specific viewpoint is therefore entirely dependent on argu-

mentation with respect to a stakeholder’s concerns. Viewpoints are designed for the
purpose of serving as a means of communication in a conversation about certain

aspects of an architecture. Though viewpoints can be used in strictly

uni-directional, informative conversations, they can in general also be used in

bi-directional classes of conversations: the architect informs stakeholders, and

stakeholders give their feedback (critique or consent) on the presented aspects.

What is and what is not shown in a view depends on the scope of the viewpoint and

on what is relevant to the concerns of the stakeholders. Ideally, these are the same,

i.e., the viewpoint is designed with the specific concerns of a stakeholder in mind.

Relevance to a stakeholder’s concern, therefore, is the selection criterion that is

used to determine which objects and relations are to appear in a view.

Below we list some examples of stakeholders and their concerns, which could

typically serve as the basis for the definition/selection of viewpoints:

– Upper-level management: How can we ensure our policies are followed in the

development and operation of processes and systems? What is the impact of

decisions (on personnel, finance, ICT, etc.)? Which improvements can a new

system bring to a pre-existing situation in relation to the costs of acquiring that

system?

– Middle-level management: What is the current situation with regards to the

computerised support of a business process?

– End user: What is the potential impact of a new system on the activities of a

prospective user?

– Architect: What are the consequences for the maintainability of a system with

respect to corrective, preventive, and adaptive maintenance?

– Operational manager: What new technologies do we need to prepare for? Is there

a need to adapt maintenance processes? What is the impact of changes to

existing applications? How secure are the systems?

– Project manager (of system development project): What are the relevant

domains and their relations? What is the dependence of business processes on

the applications to be built? What is their expected performance?

8.1 Architecture Viewpoints 173

– System developer: What are the modifications with respect to the current

situation that need to be performed?

– System administrators: What is the potential impact of a new system on the work

of the system administrators that are to maintain the new system?

In line with the ISO/IEC/IEEE 42010:2011 standard, and based on the detailed

definition given in Proper (2004), we define a viewpoint as follows:

Viewpoint: a specification of the conventions for constructing and using

views.

This should also involve the various ‘ways of . . .’ that we outlined in Sect. 3.2.5,
but in this chapter we will focus on the selection of the content of views, the visual

representation of this content, and the typical use of these viewpoints, i.e., on the

ways of modelling, communicating, and using. The ‘way of supporting’, i.e., tool
support for views, will be addressed in Chap. 11, and the ‘way of working’ has
already been addressed in Chap. 7.

8.1.3 Viewpoint Frameworks

In the context of architecture descriptions, a score of viewpoint frameworks exists,

leaving designers and architects with the burden of selecting the viewpoints to be used

in a specific situation. Some of these frameworks of viewpoints are: the Zachman

framework (Zachman 1987), Kruchten’s 4+1 viewmodel (Kruchten 1995), RM-ODP

(ITU 1996), and TOGAF (The Open Group 2011). These frameworks have usually

been constructed by their authors in an attempt to cover all relevant aspects/concerns

of the architecture of some class of systems. In practice, numerous large organisations

have defined their own frameworks of viewpoints by which they describe their

architectures. We shall discuss two of these framework in more detail below.

The ‘4+1’ View Model

Kruchten (1995) introduced a framework of viewpoints (a view model) comprising

five viewpoints. The use of multiple viewpoints is motivated by the observation that

it ‘allows to address separately the concerns of the various stakeholders of the

architecture: end-user, developers, systems engineers, project managers, etc., and to

handle separately the functional and non-functional requirements’.
The goals, stakeholders, concerns and meta-model of the 4+1 framework can be

presented, in brief, as in Table 8.1. Note that in Kruchten (2000), the viewpoints

have been renamed; physical viewpoint ! deployment viewpoint, development

viewpoint! implementation viewpoint, and scenario viewpoint! use-case view-

point, better to match the terminology of UML.

The framework proposes modelling concepts (the meta-model) for each of the

specific viewpoints. It does so, however, without explicitly discussing how these

174 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_11
http://dx.doi.org/10.1007/978-3-662-53933-0_7

modelling concepts contribute to the goals of the specific viewpoints. One might, for

example, wonder whether object classes, associations, etc., are the right concepts for

communication with end users about the services they require from the system. The 4

+1 framework is based on experiences in practical settings by its author.

RM-ODP

The Reference Model for Open Distributed Processing (RM-ODP) (ITU 1996) was

produced in a joint effort by the international standard bodies ISO and ITU in order

to develop a coordinating framework for the standardisation of open distributed

processing. The resulting framework defines five viewpoints: enterprise, informa-
tion, computation, engineering and technology. The modelling concepts used in

each of these views are based on the object-oriented paradigm.

The goals, concerns and associated meta-models of the viewpoints identified by

the RM-ODP can be presented, in brief, as in Table 8.2.

RM-ODP provides a modelling language for each of the viewpoints identified. It

furthermore states: ‘Each language [for creating views/models conforming to a

viewpoint] has sufficient expressive power to specify an ODP function, application

or policy from the corresponding viewpoint.’ RM-ODP does not explicitly associ-

ate viewpoints to a specific class of stakeholders. This is left implicit in the concerns

which the viewpoints aim to address.

Table 8.1 Kruchten’s ‘4+1’ view model.

Viewpoint Logical Process Development Physical Scenarios
Goal Capture the

services
which the
system
should pro-
vide

Capture
concurrency
and synchro-
nisation as-
pects of the
design

Describe static
organisation of
the software and
its development

Describe
mapping of
software onto
hardware, and
its distribu-
tion

Provide a
driver to dis-
cover key el-
ements in de-
sign
Validation
and illustra-
tion

Stake-
holders

Architect
End users

Architect
System de-
signer
Integrator

Architect
Developer
Manager

Architect
System de-
signer

Architect
End users
Developer

Concerns Functionali-
ty

Performance
Availability
Fault toler-
ance
...

Organisation
Reuse
Portability
...

Scalability
Performance
Availability
...

Understand-
ability

Meta-model Object clas-
ses
Associations
Inheritance
...

Event
Message
Broadcast
...

Module
Subsystem
Layer
...

Processor
Device
Bandwidth
...

Objects
Events
Steps
...

8.1 Architecture Viewpoints 175

8.2 Models, Views, and Visualisations

An important principle in our approach is the separation of the content and the

presentation or visualisation of a view. This separation is not explicitly made in the

IEEE standard, but it has important advantages. It facilitates the use of different

visualisation techniques on the same modelling concepts, and vice versa. Operations

on the visualisation of a view, e.g., changing its layout, need not change its content.

The view content, referred to as the ‘view’ in the remainder of this chapter, is a

selection or derivation from a (symbolic) model of the architecture, and is

expressed in terms of the same modelling concepts. The presentation or notation

of this view, referred to as ‘visualisation’ in the remainder, can take many forms,

from standard diagrams to tables, cartoons, or even dynamic visualisations like

movies. Editing operations on this visualisation can lead to updates of the view and

of the underlying model. The creation and update of both the view and the

visualisation are governed by a viewpoint. This viewpoint is jointly defined

and/or selected in an iterative process by architect and stakeholder together. This

is illustrated in Fig. 8.1.

The separation between view and visualisation is based on the notion of ‘mean-

ing’. In Chap. 3 we introduced the concept of the signature of an architecture as its

alphabet: that is, the set of symbols used to describe the concepts of the architecture

and the relations among these concepts. This idea can also be used to clarify the

distinction between view and its visualisation. A further discussion of these formal

foundations can be found in Chap. 9.

A view stripped from its visual properties can be formalised just like any other

model, e.g., by defining its signature, as outlined in Chap. 3. By formalising its

relation with an underlying model, a view’s quality and consistency can be greatly

Table 8.2 The RM-ODP viewpoints

Viewpoint Enterprise Information Computational Engineering Technology
Goal Capture

purpose,
scope, and
policies of
the system

Capture se-
mantics of in-
formation and
processing
performed by
the system

Express distri-
bution of the
system in in-
teracting objects

Describe de-
sign of distri-
bution-ori-
ented aspects
of the system

Describe
choice of
technology
used in the
system

Concerns Organisa-
tional re-
quirements
and struc-
ture

Information
and process-
ing required

Distribution of
system
Functional de-
composition

Distribution
of the system,
and mecha-
nisms and
functions
needed

Hardware and
software
choices
Compliancy
to other views

Meta-model Objects
Communi-
ties
Permissions
Obligations
Contract

...

Object classes
Associations
Process

...

Objects
Interfaces
Interaction
Activities

...

Objects
Channels
Node
Capsule
Cluster

...

Not stated ex-
plicitly

176 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_3

enhanced and new opportunities for its use may arise, e.g., in changing the

underlying models by interacting with such a view.

8.2.1 Example: Process Illustrations

To illustrate the difference between a view and its visualisation, we introduce the

process illustration viewpoint. This viewpoint illustrates a process model in an

informal way for employees and managers. A process illustration is derived from a

model of the architecture using a set of translation and abstraction rules. As process

illustrations are meant for communicating the coherence between business pro-

cesses, they typically abstract from details regarding the applications and technol-

ogy involved. Moreover, process illustrations do not apply abstract concepts and

notations, but rather use recognisable terms and intuitive notations.

A process illustration of the Car Tax Collection process is depicted in Fig. 8.2.

The figure shows the various sub-processes involved and the information flows

between them. The figure is derived from an ArchiMate model via a series of

translation and abstraction rules, for instance to replace abstract shapes with

meaningful symbols, abstract from complex relations, and visually group all objects

and relations that belong to or happen within a certain actor.

In Fig. 8.3 you can see a number of presentation rules that can be applied in the

‘model-to-illustration’ derivation. The basic idea behind these rules is to find suitable
and intuitive graphic symbols that will replace ArchiMate shapes. These rules apply

to ArchiMate concepts for which there is an immediate correspondent in the process

illustration notation (i.e., actor, role, device, service, business object, etc.).

Of course, many other rules can be added here. For instance, rules referring to a

specific layout of the final drawing or to the more extensive usage of 3D graphic

symbols can increase the readability and usability of the final drawing.

select
derive

visualise

update update

Viewpoint

View Visualisation Model

Architect Stakeholder

Fig. 8.1 Separation of concerns: model, view, visualisation, and viewpoint

8.2 Models, Views, and Visualisations 177

8.2.2 Example: Landscape Maps

A more complex example to illustrate the differences between a model, a view, and

its visualisation, is the landscape map viewpoint. Landscape maps, as defined in

Sanden and Sturm (1997), are a technique for visualising enterprise architectures.

They present architectural elements in the form of an easy-to-understand 2D ‘map’.
A landscape map view of architectures provides non-technical stakeholders, such as

managers, with a high-level overview, without burdening them with the technical-

ities of architectural drawings.

Many systems used by many processes realising various products and services

comprise too much detail to display in a single figure. This is a typical example of

where landscape maps can help. In Fig. 8.4, a landscape map is depicted that shows

which information systems support the operations of our fictitious insurance com-

pany ArchiSurance. The vertical axis represents the company’s business functions;
the horizontal axis shows its insurance products. An application rectangle covering

one or more cells means that this particular function/product pair is supported by

the application, e.g., contracting of a legal aid insurance is supported by the legal

aid back-office system. The visualisation chosen makes it immediately obvious to

the viewer that there is (possibly unwanted) overlap between applications, as is the

case in the Car insurance application and the Legal Aid CRM system. Clearly,

BPM
declaration point

Customs unit
BPM
17
ex2

Collection

RDW

Administration

B/CICT

Desk

Handling

Archive

$$
Vault

Catalogue
value

Declaration
file

BPM
workstation

(Customs
unit)

BPM
server

(BCICT)

RIN
server

(Collection)

BPM
17
ex3

BPM
17
ex1

invoice

payment

decaration
payment

payment

check

Fig. 8.2 Process illustration of the Car Tax Collection process

178 8 Viewpoints and Visualisation

$$$$

Fig. 8.3 Translation rules

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Fig. 8.4 Landscape map of ArchiSurance

8.2 Models, Views, and Visualisations 179

landscape maps are a richer representation than cross-reference tables, which cover

only two dimensions. In order to obtain the same expressive power of a landscape

map two cross-reference tables would be necessary; but even then, you would get a

presentation that is not as insightful and informative as a landscape map.

The dimensions of the landscape maps can be freely chosen from the architec-

ture that is being modelled. In practice, dimensions are often chosen from different

architectural domains, for instance business functions, products and applications,

etc. In most cases, the vertical axis represents behaviour such as business processes

or functions; the horizontal axis represents ‘cases’ for which those functions or

processes must be executed. These ‘cases’ can be different products, services,

market segments, or scenarios. The third dimension represented by the cells of

the matrix is used for assigning resources like information systems, infrastructure,

or human resources.

The visualisation of architecture models as landscape maps is based on archi-

tecture relations. The dimensions that are used in the landscape maps determine

which relations are used. For instance, the landscape map in Fig. 8.4 relates

business functions (contracting, claim handling, etc.) to products (home insurance,

travel insurance, etc.) to applications (Web portal, car insurance application, etc.).

The relation between business functions, products, and applications is not directly

supported by relations in the underlying model. Rather, this needs to be inferred

indirectly: a product comprises a number of business services, which are realised by

business processes and functions, which use (the application services of) applica-

tion components. For this inference, the formalisation of the underlying symbolic

models and the rules for the composition of relations described in Chaps. 3 and 4 are

indispensable.

For landscape maps to be of practical use, the visualisation must be intuitive and

easy to understand. To a large extent, the choice of the axes and the ordering of the

rows and columns determine the layout of a landscape map. If adjacent cells in the

plane have the same value assigned, they can be merged to form a single shape. If

there are no other criteria for ordering the axes such as time or priority, changes to

the ordering can be used to optimise the layout of shapes in the plane, and also to

limit their number. Various layout optimisation algorithms can be employed, and

user manipulation of, for example, the order of rows and columns may also help in

creating a pleasing visualisation.

Summarising, in developing the landscape map viewpoint, it has been fruitful to

distinguish the operation on the model from the visualisation of the view, because

they are completely different concerns. The same holds for the other viewpoints we

have defined. To separate these concerns, views have to be distinguished from their

visualisation.

180 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_4

8.3 Visualisation and Interaction

The distinction we make between a model and its visualisation naturally leads to the

concept of interactive visualisation; that is, visualisation which can change the

model due to interaction with a stakeholder. Interaction has traditionally been

considered as something completely outside the model and the view. Interaction

is at least partly a visualisation issue: for example, when a user draws an object on

the canvas of some tool. However, it can also partly be defined as part of the model

and view, since the object the user draws may be put in the underlying model or

view as well.

These two considerations have led to a new visualisation and interaction model

for enterprise architectures in ArchiMate. Its goal is that interaction is separated

from updating the model, or from its visualisation.

8.3.1 Actions in Views

The effect of a user interacting with the visualisation can be an update of the view.

But where will this be defined? Clearly, the visualisation itself is ‘dumb’ and does

not know about the semantics of the view. Hence, rules for changing the view

cannot be tied to the visualisation and must be defined in the view itself. This is why

we introduce the notion of actions in views. Consider for example a landscape map

view, and a user who interacts with this view by moving an application to another

business function. Does the relation between the interaction with the landscape map

and the update of the model mean something? Obviously the relation between the

move in the landscape map leads to an update of the underlying model or view, and

thus means something.

In Sect. 7.2.3 we have identified a number of basic modelling actions, such as

introducing, refining, abandoning, abstracting, and translating a concept in a model.

These actions operate on the architecture model or view, not on its visualisation.

However, most changes to a model will be conducted by a user who changes a

visualisation of that model. Hence, we need to define the ways in which a user can

manipulate these visualisations and the effects on the underlying model in terms of

these basic modelling actions. We can then relate these actions to the manipulations

of the visualisation by making the actions part of the view being visualised.

Thus, a clear separation of model and visualisation leads to a separation of

concerns in tool building. An extremely generic visualisation engine can be

constructed that does not need to know about the semantics of the models it

displays. If we define the possible actions together with the views, a generic editor

can be configured by this set of actions.

The actions in views should be defined in terms of the effects they have on

elements of the underlying model. For example, consider a view of a business

process model, and an action that merges two processes into a single process. Issues

8.3 Visualisation and Interaction 181

http://dx.doi.org/10.1007/978-3-662-53933-0_7

that are relevant for the action of merging processes are the effects of the merger:

for example, the removal of processes, addition of a new process, transferring some

relations from an old, removed process to a new process.

For each viewpoint, we define a set of actions. For example, for the landscape

map viewpoint we define the move of an application to another cell, we define

changing the columns and rows of the matrix, and we define the addition and

deletion of applications. Moreover, we must determine for each action which

parameters it needs as input, and define the consequences of executing the action.

When actions for each view have been defined, we can go one step further and

define the relation between actions. One important relation is that one action may

consist of a set of simpler actions. For example, consider an architect or stakeholder

that wishes to change an existing landscape map. First the effects of this change on

the underlying model need to be assessed. Some changes may be purely ‘cosmetic’
in nature, e.g., changing the colour of an object. Other changes need to be propa-

gated to the underlying model by invoking one of the basic modelling actions of

Sect. 7.2.3, e.g., if an object is added or deleted.

Mapping a seemingly simple change to the map onto the necessary modifications

of the model may become quite complicated. Since a landscape map abstracts from

many aspects of the underlying model, such a mapping might be ambiguous: many

different modifications to the model might correspond to the same change of the

landscape map. Human intervention is required to solve this, but a landscape map

tool might suggest where the impact of the change is located.

In the example of Fig. 8.4, you may, for instance, want to remove the seemingly

redundant Legal Aid CRM system by invoking a ‘remove overlap’ operation on this
object. This operation influences both the visualisation and the architectural model.

The effects of the operation on the underlying model are shown in Fig. 8.5. First,

you select the object to be removed, in this case the Legal Aid CRM system. The

envisaged tool colours this object and maps it back onto the underlying object in the

architecture. Next, the relations connecting this object to its environment are

computed, possibly using the impact-of-change analysis techniques described in

Chap. 9 (the second part of Fig. 8.5). Here, this concerns the relations of Legal Aid

CRM to the Call centre application and the Legal Aid back-office system. These

relations will have to be connected to one or more objects that replace the objects

that are to be removed. Since we have chosen a ‘remove overlap’ operation, the
landscape tool computes with which other objects Legal Aid CRM overlaps, in this

case the CRM system. The relations formerly connecting Legal Aid CRM are then

moved to the other CRM system, unless these already exist (e.g. the relation with

the Call centre application).

Naturally, this scenario presents an ideal situation with minimal user interven-

tion. In reality, a tool cannot always decide how a proposed change is to be mapped

back onto the model, and may only present the user with a number of options. For

example, if the functionality of the Legal Aid CRM system overlaps with more than

one other system, remapping its relations requires knowledge about the correspon-

dence between these relations and the functions realised by these other systems.

182 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_7
http://dx.doi.org/10.1007/978-3-662-53933-0_9

Implementing a tool that realises this ‘actions in views’ concept is not a trivial
task. In Chap. 11, we will describe the design of a software tool that provides a

proof of concept of these ideas.

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Front office applications

Back office applications

Home & Away
Policy

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM application Legal Aid
CRM

Front office applications

Back office applications

Home & Away
Policy

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM application Legal Aid
CRM

Fig. 8.5 Editing a landscape map

8.3 Visualisation and Interaction 183

http://dx.doi.org/10.1007/978-3-662-53933-0_11

8.4 Creating, Selecting, and Using Viewpoints

It is interesting to note that both of the discussed frameworks of viewpoints (Sect.

8.1.3) do not provide an explicit motivation for their choice regarding the modelling

concepts used in specific viewpoints. When using one of the two frameworks,

architects will not find it difficult to select a viewpoint for the modelling task at

hand. However, this ‘ease of choice’ is more a result of the limitation of the

selections of options available (one is limited to the number of viewpoints provided

by the framework) than the result of a well-motivated choice about the viewpoint’s
utility towards the tasks at hand.

One should realise that a well-integrated set of viewpoints (such as the

ArchiMate viewpoints) brings more (utility!) to a development project than the

sum of its parts! Among other things, it allows views to be more easily related and

integrated into a consistent whole. However, defining such an integrated viewpoint

framework is an expensive undertaking. This means that even though a pre-existing

(off-the-shelf) viewpoint framework may not be the ideal answer to an architect’s
specific communication needs, the alternative strategy of defining a tailor-made

viewpoint framework for each development project is likely to be too costly. Hence

our attention to defining ‘ad hoc’ viewpoints relative to a predefined modelling

language (i.e., meta-model) as a compromise between fixed viewpoints and free

viewpoints.

8.4.1 Classification of Viewpoints

As we can see from the list of stakeholders in Sect. 8.1.2, an architect is confronted

with many different types of stakeholders and concerns. To help the architect in

selecting the right viewpoints for the task at hand, we introduce a framework for the

definition and classification of viewpoints and views. The framework is based on

two dimensions, purpose and content. The following three types of architecture

support define the purpose dimension of architecture views (Steen et al. 2004):

– Designing: Design viewpoints support architects and designers in the design

process from initial sketch to detailed design. Typically, design viewpoints

consist of diagrams, like those used in UML.

– Deciding: Decision support views assist managers in the process of decision

making by offering an insight into cross-domain architecture relations, typically

through projections and intersections of underlying models, but also by means of

analytical techniques. Typical examples are cross-reference tables, landscape

maps, lists, and reports.

– Informing: These viewpoints help to inform any stakeholder about the enter-

prise architecture, in order to achieve understanding, obtain commitment, and

convince adversaries. Typical examples are illustrations, animations, cartoons,

flyers, etc.

184 8 Viewpoints and Visualisation

The goal of this classification is to assist architects and others to find suitable

viewpoints given their task at hand, i.e., the purpose that a view must serve and the

content it should display. With the help of this framework, it is easier to find typical

viewpoints that might be useful in a given situation. This implies that we do not

provide an orthogonal categorisation of each viewpoint into one of three classes;

these categories are not exclusive in the sense that a viewpoint in one category

cannot be applied to achieve another type of support. For instance, some decision

support viewpoints may be used to communicate to any other stakeholders as well.

For characterising the content of a view we define the following abstraction

levels:

– Details: Views of the detailed level typically consider one layer and one aspect

from the framework that was introduced in Chap. 5. Typical stakeholders are a

software engineer responsible for the design and implementation of a software

component or a process owner responsible for effective and efficient process

execution. Examples of views are a BPMN process diagram and a UML class

diagram.

– Coherence: At the coherence abstraction level, multiple layers or multiple

aspects are spanned. Extending the view to more than one layer or aspect enables

the stakeholder to focus on architecture relations like process–use–system (mul-

tiple layer) or application–uses–object (multiple aspect). Typical stakeholders

are operational managers responsible for a collection of IT services or business

processes.

– Overview: The overview abstraction level addresses both multiple layers and

multiple aspects. Typically, such overviews are addressed to enterprise archi-

tects and decision makers such as CEOs and CIOs.

In Fig. 8.6, the dimensions of purpose and abstraction level are visualised in a

single picture, together with examples of stakeholders. Tables 8.3 and 8.4 summa-

rise the different purposes and abstraction levels.

The landscape map viewpoint described in Sect. 8.2.1 is a typical example of a

decision support view, which give a high-level overview and can, for example, be

used to identify redundancies or gaps in the application landscape of an enterprise.

The process illustration viewpoint described in Sect. 8.2.1 is an example of a

viewpoint intended for ‘informing’ others. It depicts workflows in a cartoon-like

fashion, easily readable for employees and managers. Process illustrations can be

on the detailed, coherence, or overview abstraction level.

To assist the architect in designing an enterprise architecture, we present a set of

basic design viewpoints in the next sections. These viewpoints are all diagrams for

designing architectures. Some viewpoints are multiple-aspect and multiple-layer

overviews at the ‘coherence’ level of abstraction, while others are at the ‘details’
level.

8.4 Creating, Selecting, and Using Viewpoints 185

http://dx.doi.org/10.1007/978-3-662-53933-0_5

Table 8.3 Viewpoint purpose

 Typical stakeholders Purpose Examples
Designing Architect, software

developer, business
process designer

Navigate, design,
support design de-
cisions, compare al-
ternatives

UML diagram,
BPMN diagram,
flowchart, ER dia-
gram

Deciding Manager, CIO, CEO
ble, landscape map,
list, report

Informing Employee, customer,
others

Explain, convince,
obtain commitment

Animation, cartoon,
process illustration,
chart

Cross-reference ta-Decision making

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

Fig. 8.6 Classification of enterprise architecture viewpoints

Table 8.4 Viewpoint abstraction levels

 Typical stake-
holders

Purpose Examples

Details Software engi-
neer, process
owner

Design, manage
Testbed process diagram

Coherence Operational man-
agers

Analyse dependen-
cies, impact of-
change

Views expressing rela-
tions like ‘use’, ‘realise’,
and ‘assign’

Overview Enterprise archi-
tect, CIO, CEO

Change manage-
ment

Landscape map

UML class diagram,

186 8 Viewpoints and Visualisation

8.4.2 Guidelines for Using Viewpoints

To help you in selecting and using viewpoints for tasks at hand, we present a

number of guidelines, based on our own experience and interviews with architects

from practice.

In general, the use of an architectural viewpoint will pass through a number of

phases. These phases roughly are:

1. Scoping: Select one or more appropriate viewpoints, select the (sub)domain that

needs to be represented or modelled, and determine the constraints that apply to

the domain being modelled.

2. Creation of views: Create or select the actual content of the viewpoint, i.e.,

create or select a view conforming to the viewpoint used. This can pertain to the

selection of a part of the larger (pre-existing) architecture model, or the creation

or refinement of a part of the architecture model (in terms of a view).

3. Validation: Validate the resulting view. Do the stakeholders agree that the view

is a correct representation of the actual or intended situation?

4. Obtaining commitment: If agreement has been reached among the key stake-

holders involved, the next step will be to create commitment for the results. In

other words, do the stakeholders commit themselves to the (potential) impact of

what is described by the view?

5. Informing: Inform other stakeholders of the results. These stakeholders will be

those members of the development community, whose explicit commitment has,

in a conscious decision, been considered not to be crucial.

Note that these phases will not necessarily be executed in a linear order. Practical

circumstances usually dictate a more evolutionary approach. The viewpoints to be

used for architectural communication will have to support the activities of each of

the phases. The guidelines resulting from the interviews are divided over them.

They are discussed in the next sections.

8.4.3 Scoping

The importance of focusing on the concerns of stakeholders, and the extent to which

a specific view(point) addresses these concerns, was confirmed by the outcomes of

the interviews. When you communicate with business managers, you only need

those views or models that enable a discussion of factors deserving special atten-

tion. Typically, these are factors that have a high impact if they fail and also have a

high risk of indeed failing. For communication with the actual software developers,

on the other hand, more detailed models are crucial.

The selection of viewpoints should be done consciously and based on rational

considerations. Furthermore, architects state that this decision, and its

rationalisation, must be readily available. It is quite possible that a stakeholder

8.4 Creating, Selecting, and Using Viewpoints 187

(usually a technology-oriented one) will ask for more detail in a model than you can

give, or want to give, in that particular phase of the project. An architect should be

prepared to clarify better the goals of the particular model and phase, and why the

requested details are not yet relevant (or even harmful).

Determining the constraints that should guide the ensuing creation phase is also

considered to be important. Numerous IT projects suffer from the problem that

designers have too much ‘design freedom’ when producing a model of a desired

future system. This increases the risk of ending up with lengthy design processes.

Limiting design freedom by means of architecture principles, a higher-level archi-

tecture, or any other means, reduces this risk considerably.

8.4.4 Creation of Views

During the creation of a view, in particular when it involves actual modelling, you

should try to put a limit on the number of participants in a conversation. Graphical

models may or may not be used in communication with stakeholders, but most

actual modelling is done by individuals (or two people at most). Genuine group

modelling sessions are very rare.

During the early stages of system design, it is often considered bad to ‘think’ in
terms of ‘solutions’. However, when detailed modelling takes place in a cooperative

setting, give informants some room to think in terms of ‘solutions’ even if pure

requirements thinking (what, not how) does not officially allow for this. Most

people just think better in terms of concrete solutions; it is a vital part of their

creativity. Just be sure that requirements thinking is returned to in due course. In

general, when you discuss models with stakeholders and informants, in particular

when you try to establish a common understanding, you should discuss different

scenarios and alternatives to the model being considered. Doing so leads to an

exploration of the meaning and impact of the model taking shape, and also leads to

improved mutual understanding.

The graphical notation that is part of a viewpoint should be approached flexibly

when it comes to communicating with non-technical stakeholders. If people are not

used to or prepared to deal with abstract graphical models, do not use them. Use

other forms of visualisation, text, or tables. Iconised diagrams work particularly

well. However, be prepared to point out the relation between the alternative

visualisation and your abstract models if asked to.

Even if graphical models play a big role in architecture, text is the chief form in

which (written) communication takes place. Two main ways in which this occurs

are:

– Graphical (partial!) models that are used to support textual descriptions (‘illus-
tration by diagram’).

– Text explaining and elaborating on a graphical model (‘textual modelling’).

188 8 Viewpoints and Visualisation

In fact, text is often better than a graphical model for conveying large amounts of

detail.

Language studies have indeed shown how the specific form of a language does

have an impact on what is expressed by means of the language (Cruse 2000). In the

case of modelling languages, the modelling concepts offered by the language will,

in general, influence the level of detail or abstraction that the resulting models will

exhibit.

Finally, during a modelling session, several things may come to the fore that will

influence the further process. External events may occur that are a threat to the

process as a whole. Be prepared to stop modelling if executive commitment is

withdrawn. It may be frustrating, but from a business perspective it may also be

crucial. It is simply part of a flexible project setup. If the informants turn out to be

less informed than expected, it is better to stop than to try and ‘make the best of it’
and produce an ill-conceived model.

In the field of agile development (Martin 2002; Rueping 2003; Ambler 2002), a

refreshing perspective can be found on such considerations.

8.4.5 Validation

In validation of an architecture with stakeholders, a clear difference should be made

between validation of content (qualitative validation, by modellers and experts) and

validation in terms of commitment (by executives). Both are crucial, but very

different. Obtaining (and validating) commitment is discussed in the next

subsection.

Whether good mutual communication and understanding about a model is being

reached is often a matter of intuition. If the people involved have a mutual feeling

that ‘their thoughts are well in sync’, then dare to trust that feeling. However, if the
opposite is the case, be prepared to invest in substantial discussion of concrete

examples, or face the dire consequences of poor validation. If the required ‘level of
agreement’ between participants is high, an atmosphere of mutual trust and coop-

eration between these participants is crucial.

Validation is an activity that should be conducted in limited groups. ‘Feedback
rounds’ involving a larger number of people, by e-mail or printed documentation,

do not really work. If you want feedback that is worth something, find key people

and discuss the models/views, preferably face to face. Make sure the ‘opinion
leaders’ in an organisation agree to the model.

Also, you should take care that the languages used to express a view do not have

a wrong connotation that may result in incorrect impressions about the scope and

status of models. A language like UML cannot be used in a discussion with business

people. Even though the language is suitable to express the models, the notation has

an implementation-oriented connotation to this audience.

8.4 Creating, Selecting, and Using Viewpoints 189

Furthermore, do not show a concrete view of the desired system too early on in

the development process. The concreteness of the diagram may give the stake-

holders a feeling that important decisions have already been made.

With regards to the last observation, an interesting statement on this issue can

also be found in Weinberg (1988). He argues that when the design of a system, or a

model in general, is still in its early stages, and different aspects are not yet clear

and definite, the graphical notation used should also reflect this. He suggests using

squiggly lines rather than firm lines, so as to communicate to the reader of a view

that specific parts of the view are still open to debate. We use this principle in the

Introductory viewpoint discussed in Sect. 8.5.2.

8.4.6 Obtaining Commitment

Obtaining commitment for a specific architectural design involves obtaining com-

mitment for the impact of this design on the future system and its evolution, as well

as the costs/resources needed to arrive at this future system. This means that the

message that one needs to get across to the stakeholders involves:

– What are the major problems in the current situation?

– How bad are these problems (to the concerns and objectives of the

stakeholders)?

– How will this improve in the new situation? (Benefits!)

– At what costs will these improvements come?

When discussing costs and benefits with stakeholders, make these costs and

benefits as SMART (Specific, Measurable, Attainable, Realisable, and Time-

bound) as possible. Make sure that the stakeholders agree, up front, with the criteria

that are used to express/determine costs and benefits. It is their commitment that is

needed. They will be the judge. Let them also decide what they want to base their

judgement on! Create shared responsibility towards the outcomes.

Selecting the stakeholders that should be involved when obtaining commitment

is also of key importance. Involving the wrong stakeholders, or leaving out impor-

tant ones, will have obvious repercussions. At the same time, selecting a too large a

group of stakeholders may bog down the process. Too much communication may

be a bad thing: it may create unnoticed and uncontrolled discussion outside the

main discussion, leading to twisted conceptualisations and expectations.

Though ideally ‘everyone’ should be heard, this is generally a practical impos-

sibility. Therefore, choose your experts carefully. Aim for the opinion leaders, and

also accept that you cannot please everyone. Realise that some people will not be

perfectly satisfied, prepare for it, and deal with it.

People who actually make the decisions are usually those who are just outside

the group of people who really know what is going on. Make sure that the former

people are also involved and aware of what is happening.

190 8 Viewpoints and Visualisation

Getting executive commitment may actually be dictated technologically. If their

business is highly technological, business people do not see technology as second-

ary, and will only commit to something if they are assured that ‘their organisation
will be able to run it’.

Sharing design decisions and their underlying considerations at a late stage has a

negative impact on the commitment of stakeholders. Start building commitment

early on in the process. This implies that the linear ordering of the ‘viewpoint use
phases’ as provided at the start of this section should not be applied strictly.

Once agreement has been reached, you should document this explicitly. Models

are never accepted as sufficient statements to base agreements and commitment

on. Commitments and agreements also need to be spelled out separately, in text.

8.4.7 Informing Stakeholders

Once commitment from the opinion leaders has been obtained, other stakeholders

may be informed about the future plans and their impact. In doing so, it still makes

sense to concentrate on cost/benefit considerations when trying to ‘sell’ the new

system. Below, we have gathered some observations that apply to the informing

phase. However, due to their general communicative nature, some of these obser-

vations are also applicable to the creation, validation, and commitment phases.

Do not impose presumed architectural terminology on true business people. Use

their terminology. Even a concept like ‘service’ is suspect because it is relatively

technology oriented and often unknown by stakeholders that are strictly on the

business side.

Models are particularly important in giving stakeholders a feeling that they are

‘part of the larger whole’. Often, just knowing where in the model ‘they can be

found’ is important to stakeholders, even if they do not understand the fine points of

the model.

Communication is the crucial factor in enterprise architecture. It will even pay

off actually to employ some communication experts (think marketing, PR, even

entertainment!) in larger projects. As a result, you will end up with stakeholders

who are genuinely prepared to change the way they and their business work, not just

with some interesting looking plans and models. Crucially, communication can be

quite different for various stages of system development. Therefore, it is important

to have a good communication strategy and a framework guiding you in this.

Even if people are willing to and able to read models thoroughly, text (spoken or

written) needs to be added. Models alone never suffice.

8.4 Creating, Selecting, and Using Viewpoints 191

8.5 Basic Design Viewpoints

The most basic type of viewpoint is the selection of a relevant subset of the

ArchiMate concepts and the representation of that part of an architecture that is

expressed in the concepts in this selection. This is sometimes called a ‘diagram’,
akin to, for instance, the UML diagrams.

In Sect. 7.3.2, we introduced the following four metaphorical directions from

which we can identify relevant model elements:

1. ‘Inwards’, towards the internal composition of the element

2. ‘Upwards’, towards the elements that are supported by it

3. ‘Downwards’, towards its realisation by other elements

4. ‘Sideways’, towards peer elements with which it cooperates

We also use these directions to identify possibly useful viewpoints.

For the ‘composition’ viewpoints, we start from the basic structure of our

modelling language. In its elementary form, the generic meta-model that is behind

the language consists of active structural elements such as actors, behavioural

elements such as functions and processes and passive informational elements

such as business and data objects, which are processed by the active elements in

the course of their behaviour.

From this basic structure, we can deduce a first set of viewpoint types, containing

three viewpoints that are centred around one specific type of concept:

1. Active elements, e.g. the composition of a business actor from sub-actors, i.e. an

organisation structure

2. Behaviour elements, e.g. the structure of a business process in terms of

sub-processes

3. Passive elements, e.g. the information structure in terms of data objects

Although these viewpoints take a specific type of concept and its structure as

their focus, they are not limited to these concepts, and closely related concepts are

also included.

For the ‘upwards’ support of elements in their environment, the active elements

offer interfaces through which their services can be used. ‘Downwards’ services are
realised by processes and functions, and application components are deployed on

infrastructure elements. ‘Sideways’ cooperation is achieved through collaborations

between active elements and their behaviour in the form of interactions, and flows

of information and value that relate the elements. Passive elements often play a role

in these relations, e.g., by being passed from one element to another, but are not the

focus. Hence we concentrate on the relations between the active and behaviour

elements.

Next to the design viewpoints resulting from these metaphorical directions,

which focus on a limited part of an enterprise architecture, we also need to represent

the whole architecture, but in a simplified form. Especially early in the design

process, when we do not yet know all the details that are added later on, we want to

192 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_7

express an architecture using a subset of the ArchiMate language denoted in an

informal, simplified form. This helps to avoid the impression that the design is

already fixed and immutable, which may easily arise from a more formal diagram.

Furthermore, such a high-level overview is very useful in obtaining commitment

from stakeholders at an early stage of the design (see also Sect. 8.4.6). To this end,

we introduce the Simplified viewpoint.

In each of the viewpoint types, concepts from the three layers of business,

application, and technology may be used. However, not every combination of

these would give meaningful results; in some cases, for example, separate view-

points for the different layers are advisable. Based on common architectural

practice, our experiences with the use of ArchiMate models in practical cases and

the diagrams used in other languages like UML, we have selected the most useful

combinations in the form of a ‘standard’ set of basic viewpoints to be used with the
ArchiMate concepts (Table 8.5).

Some of these viewpoints have a scope that is limited to a single layer or aspect:

the Business Function and Business Process viewpoints show the two main per-

spectives on the business behaviour; the Organisation viewpoint depicts the struc-

ture of the enterprise in terms of its departments, roles, etc.; the Information

Structure viewpoint describes the information and data used; the Application

Structure, Behaviour, and Cooperation viewpoints contain the applications and

components and their mutual relations; and the Infrastructure viewpoint shows

the infrastructure and platforms underlying the enterprise’s information systems

in terms of networks, devices, and system software. Other viewpoints link multiple

layers and/or aspects: The Actor Cooperation and Product viewpoints relate the

enterprise to its environment; the Application Usage viewpoint relates applications

to their use in, for example, business processes; and the Deployment viewpoint

shows how applications are mapped onto the underlying infrastructure.

Table 8.5 Design viewpoints

Early design Cooperation
Introductory, p. 210 Actor Cooperation, p. 212

Business Process Cooperation, p. 216

Application Cooperation, p. 219

Composition Realisation
Organisation, p. 212

Business Function, p. 214

Business Process, p. 217

Information Structure, p. 218

Application Behaviour, p. 222

Application Structure, p. 222

Infrastructure, p. 223

Service Realisation, p. 216

Implementation & Deployment, p. 224

Support
Product, p. 215

Application Usage, p. 221

Infrastructure Usage, p. 224

8.5 Basic Design Viewpoints 193

In the next subsections, we will explain these design viewpoints in more detail

and provide examples of each one. In these examples, we have made extensive use

of the abstraction rule that can be applied on chains of structural relations in

ArchiMate, which was explained in Sect. 5.11. Note that it is explicitly not the
intention to limit the user of the ArchiMate language to these viewpoints; neither do

we expect an architect to draw all these diagrams in a given situation! They are

meant to assist the modeller in choosing the contents of a view, but combinations or

subsets of these viewpoints could well be useful in specific situations.

It is important in the examples that these views exhibit considerable overlap.

Different aspects of the Handle Claim business process are shown, for example, in

Fig. 8.15 (its use of information), Fig. 8.13 (realisation of services by business

processes) and Fig. 8.14 (its relations with other business processes), and there are

many more of these overlaps between views. This shows that underlying these

different views there is a single model, and each view is a projection of the relevant

elements in that model. We will use two examples throughout the description of the

basic design viewpoints to illustrate this coherence:

– The handling of insurance claims

– The policy administration systems and infrastructure

8.5.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language using a

simplified notation. It is typically used at the start of a design trajectory, when not

everything needs to be detailed, or to explain the essence of an architecture model to

non-architects who require a simpler notation. Another use of this basic, less formal

viewpoint is that it tries to avoid the impression that the architectural design is

already fixed, an impression that may easily arise when using a more formal, highly

structured, or detailed visualisation.

We use a simplified notation for the concepts and for the relations. All relations

except ‘triggering’ and ‘realisation’ are denoted by simple lines; ‘realisation’ has an
arrow in the direction of the realised service; ‘triggering’ is also represented by an

arrow. The concepts are denoted with slightly thicker lines and rounded corners,

which give a less formal impression. The example in Fig. 8.7 illustrates this

notation.

On purpose, the layout of this example is not as ‘straight’ as an ordinary

architecture diagram; this serves to avoid the idea that the design is already fixed

and immutable. This conforms to the suggestion made in Weinberg (1988) to use

squiggly lines rather than firm lines, to show to the reader of a view that specific

parts of the view are still open to debate.

194 8 Viewpoints and Visualisation

http://dx.doi.org/10.1007/978-3-662-53933-0_5

8.5.2 Organisation Viewpoint

The Organisation viewpoint shows the structure of an internal organisation of the

enterprise, department, or other organisational entity. It can be represented in the

form of a nested block diagram, but also in more traditional ways like the

organigram. An Organisation view is typically used to identify authority, compe-

tencies, and responsibilities within an organisation.

In Fig. 8.8, we see the high-level subdivision of ArchiSurance into a front and

back office and a finance department. Within the back office, there are three

departments responsible for specific products, e.g., car, travel, or legal aid insur-

ance, and the shared service centre for document processing. The front office

comprises two departments that handle the relations with customers and interme-

diaries, respectively.

Handle Claim

Customer
information

Claims
payment

CRM
application

 Policy
 administration

 Financial
 application

Claim
registration

Client
ArchiSurance

MainframeUnix
servers

Network

Register Accept Valuate Pay

Fig. 8.7 Example of an Introductory view

8.5 Basic Design Viewpoints 195

8.5.3 Actor Cooperation Viewpoint

The Actor Cooperation viewpoint focuses on the relations of actors with each other

and their environment. A common example of this is what is sometimes called a

‘context diagram’, which puts an organisation into its environment, consisting of

external parties such as customers, suppliers, and other business partners. It is

useful in determining external dependencies and collaborations and shows the

value chain or network in which the organisation operates. Another important use

of this viewpoint is in showing how a number of cooperating (business and/or

application) actors together realise a business process, by showing the flows

between them.

The main roles involved in the insurance business are the insurant, the insurer,

the intermediary and the customer’s bank. These cooperate in different settings. For
example, closing an insurance contract involves the customer, insurer and interme-

diary, whereas premium collection involves the insurer, the customer and the

customer’s bank. The main collaborations of ArchiSurance, which fulfils the role

of the insurer, are shown in Fig. 8.9 and the information flows in Fig. 8.10.

8.5.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an organi-

sation and their relations in terms of the flows of information, value, or goods

Fig. 8.8 ArchiSurance organisation structure

196 8 Viewpoints and Visualisation

between them. Business functions are used to represent what is most stable about a

company in terms of the primary activities it performs, regardless of organisational

changes or technological developments. Business function architectures of compa-

nies that operate in the same market therefore often exhibit many similarities. The

Business Function viewpoint thus provides high-level insight into the general

operations of the company, and can be used to identify necessary competencies,

or to structure an organisation according to its main activities.

In the example of Fig. 8.11, we can see the information flow associated with the

handling of insurance claims. Claims are submitted to the Maintaining Customer

Fig. 8.9 Collaborations of ArchiSurance and its partners

Fig. 8.10 Information flows between ArchiSurance’s departments and partners in handling

insurance claims

8.5 Basic Design Viewpoints 197

Relations business function, processed by Claim Handling, and paid by Financial

Handling. In the Business Process viewpoint (Sect. 8.5.6), we will see a more

detailed depiction of this process.

8.5.5 Product Viewpoint

The Product viewpoint depicts the value this product offers to the customers or other

external parties involved and shows the composition of one or more products in

terms of the constituting (business or application) services, and the associated

contract(s) or other agreements. It may also be used to show the interfaces (channels)

through which this product is offered, and the events associated with the product.

Fig. 8.11 Business functions and flows of information and money

198 8 Viewpoints and Visualisation

A Product view is typically used in designing a product by composing existing

services or by identifying which new services have to be created for this product,

given the value a customer expects from it. It may then serve as input for business

process architects and others that need to design the processes and IT systems that

realise this product.

A typical insurance product of ArchiSurance is depicted in Fig. 8.12. The value

to the customer of an insurance is typically the added security it provides, the

protection from loss and the reduced risk. The services mentioned here are realised

by various business processes, an example of which is given in Sect. 8.5.7.

8.5.6 Service Realisation Viewpoint

The Service Realisation viewpoint is used to show how one or more business

services are realised by the underlying processes (and sometimes by application

components). Thus, it forms the bridge between the Product viewpoint and the

Business Process viewpoint. It provides a ‘view from the outside’ of one or more

business processes.

Business services are realised by business processes. In Fig. 8.12, we saw the

services that constitute the travel insurance product. The business processes that

realise these services are shown in Fig. 8.13. For example, the Claim registration

service is realised by the Handle Claim business process that we use as an example

throughout this chapter.

Fig. 8.12 The travel insurance product

8.5 Basic Design Viewpoints 199

8.5.7 Business Process Cooperation Viewpoint

The Business Process Cooperation viewpoint is used to show the relations of one or

more business processes with each other and/or their surroundings. It can be used

both to create a high-level design of business processes within their context and to

provide an operational manager responsible for one or more such processes with

insight into their dependencies. Important aspects of coordination are:

– Causal relations between the main business processes of the enterprise

– The mapping of business processes onto business functions

– Realisation of services by business processes

– The use of shared data

– The execution of a business process by the same roles or actors

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process

Cooperation viewpoint. Below, we give examples of some of the resulting views.

In Fig. 8.14, the most important business processes of ArchiSurance are

depicted. It also shows their causal dependencies, e.g. the Collect premium process

needs to be preceded by the Close Contract process, since of course no premium can

be collected before the insurance policy has been issued. This figure also shows the

Handle Claim process that occurs in many of the other viewpoints.

8.5.8 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure and

composition of one or more business processes. Next to the processes themselves,

this viewpoint contains other directly related concepts such as:

Fig. 8.13 Realisation of business services by ArchiSurance business processes

200 8 Viewpoints and Visualisation

– The services a business process offers to the outside world, showing how a

process contributes to the realisation of the company’s products
– The assignment of business processes to roles, which gives insight into the

responsibilities of the associated actors

– The information used by the business process

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process

viewpoint.

In Fig. 8.15, the Handle Claim business process is shown with the sub-processes

that are carried out in handling insurance claims.

8.5.9 Information Structure Viewpoint

The Information Structure viewpoint is basically identical to the traditional infor-

mation models created in the development of almost any information system. It

shows the structure of the information used in the enterprise or in a specific business

process or application, in terms of data types or (object-oriented) class structures.

Furthermore, it may show how the information at the business level is represented

Fig. 8.14 Some of the main business processes, triggers, and relations of ArchiSurance

8.5 Basic Design Viewpoints 201

at the application level in the form of the data structures used there, and how these

are then mapped onto the underlying infrastructure, e.g., by means of a database

schema.

In Fig. 8.16, the most important business objects of ArchiSurance are shown.

Some of these are used in the Handle Claim business process, as depicted in

Fig. 8.15.

8.5.10 Application Cooperation Viewpoint

The Application Cooperation viewpoint shows the relations of a number of appli-

cations or components. It describes the dependencies in terms of the information

flows between them, or the services they offer and use. This viewpoint is typically

used to create an overview of the application landscape of an organisation.

This viewpoint is also used to express the coordination or orchestration (i.e.,

internal coordination) of services that together support the execution of a business

Fig. 8.15 The Handle Claim business process and its use of information

Fig. 8.16 Information model of ArchiSurance

202 8 Viewpoints and Visualisation

process. By modelling the interdependencies between services, the coordination of

the underlying applications is established in a more independent way. If this

coordination is centralised and internal to the enterprise, we speak of ‘orchestra-
tion’; in the case of coordination between independent entities, the term ‘choreog-
raphy’ is often used.

The front- and back-office applications of ArchiSurance are shown in Fig. 8.17.

It is clear that the back office is structured according to the different types of

products, whereas the front office is already more integrated. One of the applica-

tions shown is the Home & Away policy administration used in several other

viewpoints as well.

Some of the connections between the ArchiSurance applications are shown in

Fig. 8.18, which shows that ArchiSurance uses the Enterprise Service Bus concept

to link its applications.

In Fig. 8.19, we see in more detail how the Policy information service from the

Home & Away Policy administration is used by the department’s Financial appli-
cation, through an interface in which the message queuing service from the lower-

level infrastructure is used (see also Fig. 8.24).

Fig. 8.17 Applications and information flow of ArchiSurance

8.5 Basic Design Viewpoints 203

8.5.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to support

one or more business processes, and how they are used by other applications. It can

be used in designing an application by identifying the services needed by business

processes and other applications, or in designing business processes by describing

the services that are available. Furthermore, since it identifies the dependencies of

business processes upon applications, it may be useful to operational managers

responsible for these processes.

Fig. 8.18 Applications connected through the ArchiSurance Service Bus

Fig. 8.19 Details of the connection between the Home & Away Policy administration and

Financial application

204 8 Viewpoints and Visualisation

Figure 8.20 shows how the Handle Claim business process uses the application

services offered by several applications. Each of these services is realised by the

behaviour of an application, an example of which is given in Fig. 8.21.

8.5.12 Application Behaviour Viewpoint

The Application Behaviour viewpoint describes the internal behaviour of an appli-

cation or component, for example, as it realises one or more application services.

This viewpoint is useful in designing the main behaviour of applications or com-

ponents, or in identifying functional overlap between different applications.

Fig. 8.20 Application usage by the Handle Claim business process

Fig. 8.21 Behaviour of the CRM system

8.5 Basic Design Viewpoints 205

Part of the behaviour of the CRM system is shown in Fig. 8.21. The Customer

relation management application function uses customer data and realises the

Client registration service, which is provided via a Web client.

8.5.13 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more applica-

tions or components. This viewpoint is useful in designing or understanding the

main structure of applications or components and the associated data, e.g., to create

a first-step work breakdown structure for building a system, or in identifying legacy

parts suitable for migration.

Figure 8.22 shows the main components that constitute the policy administration

of ArchiSurance’s Home & Away department. It also depicts some of the important

data objects used by these components. These data objects are realisations of the

business objects of Fig. 8.16.

8.5.14 Technology Viewpoint

The Technology viewpoint comprises the hardware and software infrastructure

upon which the application layer depends. It contains physical devices and net-

works, and supporting system software such as operating systems, databases, and

middleware.

Part of the IT infrastructure of ArchiSurance and its intermediaries is shown in

Fig. 8.23.

Fig. 8.22 Main structure of the Home & Away Policy administration

206 8 Viewpoints and Visualisation

8.5.15 Technology Usage Viewpoint

The Technology Usage viewpoint shows how applications are supported by the

software and hardware infrastructure: technology services delivered by the devices,

system software and networks are provided to the applications. An example of this

viewpoint is given in Fig. 8.24, which shows the use, by a number of back-office

applications, of the messaging and data access services offered by ArchiSurance’s
technical infrastructure.

This viewpoint plays an important role in the analysis of performance and

scalability, since it relates the technical infrastructure to the world of applications.

It is very useful in determining the performance and quality requirements of the

infrastructure based on the demands of the various applications that use it. In

Chap. 9, we will describe a quantitative analysis technique that can be used to

determine, for example, the load on the infrastructure, based on its use by applica-

tions (and their use by business processes).

8.5.16 Implementation & Deployment Viewpoint

The Implementation & Deployment viewpoint shows how one or more applications

are deployed on the technical infrastructure. This comprises the mapping of (log-

ical) applications and components onto (physical) artefacts, for instance, Enterprise

Java Beans, and the mapping of the information used by these applications and

components onto the underlying storage infrastructure, e.g. database tables or other

Fig. 8.23 Infrastructure of ArchiSurance

8.5 Basic Design Viewpoints 207

http://dx.doi.org/10.1007/978-3-662-53933-0_9

files. In security and risk analysis, Deployment views are used to identify critical

dependencies and risks.

Figure 8.25 shows the mapping of logical application components of the Home

& Away Policy administration (see Fig. 8.22) used in several of the other examples

onto physical artefacts such as database tables. This figure also shows that the

artefacts are part of multiple groupings and that a grouping as a whole is related to

Fig. 8.25 Implementation of the Home & Away Policy administration

Fig. 8.24 Use of technology services by ArchiSurance’s back-office applications

208 8 Viewpoints and Visualisation

the system software on which it is deployed. This saves you from having to draw all

the individual relations with the elements in a group.

8.5.17 Physical Viewpoint

The Physical viewpoint contains equipment such as physical machines, tools or

instruments that can create, use, store, move or transform materials and shows how

this equipment is connected via the distribution network, on which facilities it is

deployed and what other active elements are assigned to the equipment (Fig. 8.26).

8.6 Motivation Viewpoints

For the Motivation concepts, we have also defined a number of example view-

points. Table 8.6 summarises these viewpoints.

8.7 Strategy Viewpoints

The next table summarises the viewpoints for the Strategy concepts (Table 8.7).

Fig. 8.26 Physical devices used by ArchiSurance to acquire data

8.7 Strategy Viewpoints 209

8.7.1 Capability Map Viewpoint

One often used strategy viewpoint that we want to highlight explicitly is the

capability map. This is a map of the enterprise that visualises its capabilities in

some state, for example, current capabilities and their current maturity level, or

required capabilities in a future state. Each key capability can be made more

specific by showing its sub-capabilities.

From a top-down perspective, capabilities are derived from the strategic direc-

tion of the organisation. From a bottom-up perspective, resources (e.g. people,

information, technology and other assets) can be linked to the capabilities they

support, providing a link between these and the strategic direction of the enterprise.

Table 8.6 Motivation viewpoints

Viewpoint Description Concepts and relations
Stakeholder

viewpoint

Allows the analyst to model the

stakeholders, internal or external

drivers for change, and the as-

sessments of these drivers

Stakeholder, Driver, As-

sessment, Goal, Associa-

tion relation, Aggrega-

tion relation

Goal realisation

viewpoint

Allows the designer to model the

refinement of high-level goals into

more concrete goals, and the re-

finement of concrete goals into re-

quirements or constraints that real-

ise these goals

Goal, Requirement,

Constraint, Principle,

Realisation relation, Ag-

gregation relation

Goal contribu-

tion viewpoint

Allows a designer or analyst to

model the influence relationships

between goals and requirements

Goal, Requirement,

Constraint, Principle,

Realisation relation, Ag-

gregation relation, Influ-

ence relation

Principles view-

point

Allows the analyst or designer to

model the principles that are rele-

vant to the design problem at hand,

including the goals that motivate

those principles.

Goal, Principle, Realisa-

tion relation, Aggrega-

tion relation, Influence

relation

Requirements

realisation

viewpoint

Allows the designer to model the

realisation of requirements by core

elements.

Goal, Requirement,

Constraint, all Core ele-

ments, Realisation rela-

tion, Aggregation rela-

tion

Motivation

viewpoint

Allows the designer or analyst to

model the motivation aspect, with-

out focusing on certain elements

within this aspect

All Motivation elements

and relations

210 8 Viewpoints and Visualisation

This way, capabilities can be used as a starting point for the definition of asset

portfolios.

As an example, a typical capability map is shown in Fig. 8.27.

Because the capabilities of an enterprise are relatively stable and easily

recognisable by its stakeholders, capability maps are very useful as a canvas onto

which other information can be projected. You can create various kinds of heat

maps and colour maps that all exhibit the same familiar structure. For example, you

might show benchmark data on the efficiency of capability implementations,

highlighting those capabilities that need to be improved. Or you can display the

organisation’s departments involved in capabilities using different colours or plot

the applications supporting capabilities on such a map.

8.8 Implementation and Migration Viewpoints

Table 8.8 summarises the viewpoints for the Implementation and Migration

concepts.

For more details on all of these viewpoints, please consult the ArchiMate

standard (The Open Group 2016a).

Table 8.7 Strategy viewpoints

Viewpoint Description Concepts and relations
Strategy

viewpoint

A high-level, strategic overview of

the strategies (courses of action) of

the enterprise, the capabilities and re-

sources supporting those and the en-

visaged outcomes

Course of action, Capa-

bility, Resource, Out-

come

Capability

Map view-

point

A structured overview of the capa-

bilities of the enterprise. A capability

map typically shows two or three lev-

els of capabilities across the entire

enterprise

Capability, Resource,

Outcome

Resource

Map view-

point

A structured overview of the re-

sources of the enterprise, how these

support its capabilities and how they

are realised by projects and programs

Capability, Resource,

Work package

Outcome

Realisation

viewpoint

Is used to show how the highest-

level, business-oriented results are

produced by the capabilities and un-

derlying core elements

Capability, Resource,

Outcome, Value, Mean-

ing, Core element

8.8 Implementation and Migration Viewpoints 211

Fig. 8.27 Example of a capability map

Table 8.8 Implementation and Migration viewpoints

Viewpoint Description Concepts and relations
Project viewpoint Is used to model the

management of architec-

ture change.

Work package Deliverable,

Goal, Business Role, Business

Actor, Realisation relation, Ag-

gregation relation, Triggering

relation, Flow relation, Assign-

ment relation

Migration view-

point

Entails models and con-

cepts that can be used for

specifying the transition

from an existing architec-

ture to a desired architec-

ture.

Plateau, Gap, Association rela-

tion, Aggregation relation, Trig-

gering relation

Implementation

and Migration

viewpoint

Is used to relate programs

and projects to the parts

of the architecture that

they implement.

All Implementation and Migra-

tion concepts, all Core concepts,

Requirement, Constraint, Goal,

all relations

212 8 Viewpoints and Visualisation

8.9 Combined Viewpoints

Next to the viewpoints for specific parts of the ArchiMate language, we can of

course also combine elements from different parts of the language to create

composite viewpoints. Moreover, we need not stick to the standard ArchiMate

notation described in Chap. 5, but we can use other symbols if that is a better fit with

the intended audience. This is also particularly useful if we want to use ArchiMate

in combination with other techniques, such as those described in Chap. 6. Creating

cross-cutting views that combine information from different but related models

may create new insights that cannot be had from viewing these models in isolation.

8.10 ArchiMate and TOGAF Viewpoints

TOGAF (The Open Group 2011) identifies a large number of viewpoints as part of

its content meta-model, subdivided in three main types of architectural artefact:

matrices, catalogues and diagrams. As we have seen in Sect. 6.13, ArchiMate and

TOGAF exhibit a very similar layered structure. This correspondence suggests a

fairly easy mapping between TOGAF’s views and the ArchiMate viewpoints.

Although corresponding viewpoints from ArchiMate and TOGAF do not necessar-

ily have identical coverage, we can see that many viewpoints from both methods

address approximately the same issues.

Moreover, ArchiMate is not limited to a specific set of viewpoints and allows the

definition of new viewpoints via the viewpoint mechanism described in the stan-

dard (The Open Group 2016a, Chap. 14). Most TOGAF views can easily be

expressed in ArchiMate concepts.

The most important disparity we observe between TOGAF and ArchiMate is

that the ArchiMate viewpoints that deal with the relationships between architectural

layers, such as the product and application usage viewpoints, are difficult to map

onto TOGAF’s diagrams, which are largely confined to a single architectural layer.

Although TOGAF does support several matrices that provide such a correspon-

dence between layers, such as the ‘Application/Organization Matrix’ or the ‘Data
Entity/Business Function Matrix’ it does not provide graphical representations of

these.

The ArchiMate language and its analysis techniques support pretty much all of

TOGAF’s diagrammatic views. Using ArchiMate as a description language

together with TOGAF as a method for developing architectures provides the

architect with two nicely complementary, open and vendor-independent methods.

Since both are administered by The Open Group, further integration of TOGAF and

ArchiMate can be expected.

8.10 ArchiMate and TOGAF Viewpoints 213

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_6
http://dx.doi.org/10.1007/978-3-662-53933-0_6

8.11 Summary

In the previous sections, we have advocated a viewpoint-oriented approach to

enterprise architecture modelling, in which architects and other stakeholders can

define their own views of the architecture. In this approach views are specified by

viewpoints, which define abstractions on the set of models representing the enter-

prise architecture, each aimed at a particular type of stakeholder and addressing a

particular set of concerns.

We have described the use of viewpoints in communication, and the distinction

between an architecture model, a view of that model, and its visualisation and

manipulation. We have presented guidelines for the selection and use of view-

points, and outlined a number of viewpoints in the ArchiMate language that can be

used by architects involved in the creation or change of enterprise architecture

models. Finally, we have shown how TOGAF’s views and ArchiMate’s viewpoints
match.

214 8 Viewpoints and Visualisation

Chapter 9

Architecture Analysis

Maria-Eugenia Iacob, Henk Jonkers, Leon van der Torre, Frank S. de Boer,

Marcello Bonsangue, Andries W. Stam, Marc M. Lankhorst,

Dick A.C. Quartel, and Adina Aldea

As we have argued in previous chapters, organisational effectiveness cannot be

achieved through local optimisations, but is realised by well-orchestrated interac-

tion of organisational components (Nadler et al. 1992). To create such an integrated

perspective of enterprise architecture, we need both a description technique for

architectural models and model-based analysis techniques to realise this global

optimisation in practice.

In Chap. 5, we have presented a description language that not only captures the

complexity of architectural domains and their relations, but also enables the integra-

tion at the appropriate level of abstraction of already existing partial architecture

models. However, the value of architecture models increases significantly if they can

also be used to support the decision-making process. In this chapter we argue that

whenever a change in the enterprise architecture is needed, model-based analysis

plays a central role. Therefore, we present a number of techniques that help architects

and stakeholders to compare alternative designs and, hence, take well-informed

M.-E. Iacob

University of Twente, Enschede, The Netherlands

H. Jonkers • D.A.C. Quartel • A. Aldea

BiZZdesign, Enschede, The Netherlands

L. van der Torre

University of Luxembourg, Luxembourg, Luxembourg

F.S. de Boer • M. Bonsangue

University of Leiden, Leiden, The Netherlands

A.W. Stam

Almende, Rotterdam, The Netherlands

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Rotterdam, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_9

215

http://dx.doi.org/10.1007/978-3-662-53933-0_5
mailto:m.lankhorst@bizzdesign.com

design decisions when making trade-offs between aspects like cost, quality, and

performance and to be able to study the impact of a change to the design.

9.1 Analysis Techniques

One of the central motivations for enterprise architecture in general is getting to

grips with change. Architects and stakeholders want to take well-informed design

decisions. To that end, they need to compare alternative designs, make trade-offs

between aspects like cost, quality, and performance, and know the impact of a

change across all aspects of an architecture. Given the size and complexity of

enterprise architectures, this is something that can no longer be done by hand and

requires sophisticated analysis techniques. These analysis techniques do more than

simply ‘walk through a picture’, but require well-defined semantic underpinnings

and advanced analysis algorithms.

We can classify architecture analysis techniques according to different aspects

(Fig. 9.1). First, we make a distinction based on the types of analysis inputs and

results: functional (e.g., structural and dynamic properties) and quantitative (e.g.,

performance and costs).

Functional analysis is performed to gain insight into the functional aspects of an

architecture. Among others, it is used to understand how a system that conforms to

an architecture works, to find the impact of a change on an architecture, or to

validate the correctness of an architecture.

Functional analysis techniques do not answer quantitative questions, like ‘how
quick’ or ‘how cheap’. These are typically questions addressed by the quantitative
analysis techniques. Usually, architectural models do not provide sufficient infor-

mation to perform detailed quantitative studies. In our view, an approach for

quantitative analysis of enterprise architectures should make it possible to structure

and relate quantitative results obtained with existing detailed analysis methods

(e.g., queuing analysis or simulation).

Second, for both functional and quantitative analysis, we distinguish two main

types of techniques: analytical techniques and simulation.

Basically, simulation can be seen as the ‘execution’ of a model. Functional
simulation and animation are useful to illustrate the dynamic behaviour of a system.

The aim of functional simulation is to gain insight into the properties and behaviour
of an architecture. Architects can ‘play’ with the architecture and see how it works,

Analytical Simulation

Functional

QuantitativeFig. 9.1 Analysis

dimensions

216 9 Architecture Analysis

feels, looks, can be adapted to certain changes, etc. Moreover, functional simulation

can also play an important role in the communication between stakeholders, by

giving them a better common understanding of the architecture. Interpretation

problems, often stemming from the high level of abstraction of architectures, may

come to light when using functional simulation. Quantitative simulation is used to

make statistical statements about the quantitative measures of a system based on

multiple simulation runs. It can be seen as performing ‘measurements’ in a model.

Thus, quantitative simulation allows for a thorough examination of the performance

measures in a specific situation.

In this chapter, we mainly consider formal and analytical analysis techniques. In
contrast to simulation, these are not of a statistical nature, but provide a unique,

reproducible result. Analytical techniques for quantitative analysis are typically

more efficient than quantitative simulation, and therefore more suitable for provid-

ing the architect with a first indication of performance measures and bottlenecks in

an architecture model. They are also useful when a comparison of a (large) number

of alternatives is needed in so-called ‘what if’ analysis.
Another issue to be addressed when using analysis techniques for enterprise

architectures is whether to apply existing techniques, or to develop new ones. Buy

or build? In the first case, two other questions are to be answered: which technique

to choose from the available ones, and how to apply it? In the second case, the

questions are for what problem a technique is developed, and how the development

itself can be carried out.

This chapter illustrates both of the above-mentioned options. For quantitative

analysis, described in Sect. 9.2, we have chosen to propose a new top-down bottom-

up approach. Nevertheless, this approach also facilitates the integration with existent,

domain-specific analysis techniques. For functional analysis, explained in Sect. 9.3,

we have chosen the first approach, i.e., we show how existing techniques from formal

methods can be used in analysing the functional properties of architectures.

9.2 Quantitative Analysis

As noted earlier, enterprise architecture is concerned with a description of how all

the relevant elements that make up an enterprise interrelate. It covers aspects

ranging from business processes and products, through software applications, to

the technical infrastructure. The relations between these ‘layers’ play a central role.
Also, from a quantitative perspective, these aspects are interrelated in several ways.

For example, the business processes impose a workload on the software applica-

tions and infrastructure, while the performance characteristics of the lower layers

directly influence the performance of the higher layers.

There is a common misconception that quantitative analysis is ‘too detailed’ to be
performed at the architecture level. However, performance engineering practitioners

argue that next to functional aspects, non-functional (quantitative) aspects of systems

should also be taken into account at all stages of the design of a system, and not just as

an afterthought (Smith 1990). This implies that these aspects are also relevant for

9.2 Quantitative Analysis 217

http://dx.doi.org/10.1007/978-3-662-53933-0_9

enterprise architectures. In this case, however—as for enterprise architecture model-

ling—the quantitative aspects are considered at a relatively global level. Also, the

emphasis is on structure: enterprise architectures can provide a useful instrument to

structure quantitative properties of organisations and systems.

Quantitative analysis can serve several purposes. In the first place it is often used

for the optimisation of, for example, processes or systems, by quantifying the effect

of alternative design choices. Similarly, it can be used to obtain measures to support

impact-of-change analysis: what is the quantitative effect of changes in a design?

This shows that the distinction between functional and quantitative analysis is not

always sharp. A third application of quantitative analysis is capacity planning, e.g.,
how many people should fulfil a certain role to finish the processes on time, or how

should the infrastructure be dimensioned (processing, storage, and network capac-

ity) given an expected workload?

Models of organisations and systems can be quantified in several ways. Mea-

sures of interest may include:

– Performance measures, i.e., time-related measures such as completion and

response times, throughputs, resource utilisations.

– Reliability measures such as availability and dependability.

– Cost measures.

The techniques and examples presented in this section focus on performance

measures.

9.2.1 Performance Views

As explained earlier, the different ways to structure an enterprise architecture

model provide different views of the same model. These views are aimed at

different stakeholders and their concerns. Also in the context of the performance

of a system, a number of views can be discerned, each having their own perfor-

mance measures, explained below:

– User/customer view (stakeholders: customer; user of an application or system):

The response time is the time between issuing a request and receiving the result,

e.g., the time between the moment that a customer arrives at a counter and the

moment of completion of the service, or the time between sending a letter and

receiving an answer. Also in the supporting IT applications the response time

plays an important role; a well-known example is the (mean) time between a

database query and the presentation of its results. Examples of ArchiMate

concepts for which the calculation of the response time is suited are actors,

roles, and services.

– Process view (stakeholders: process owner; operational manager): Completion
time is the time required to complete one instance of a process (possibly

involving multiple customers, orders, products, etc., as opposed to the response

218 9 Architecture Analysis

time, which is defined as the time to complete one request). In batch processing

by means of an information system the completion time can be defined as the

time required to finish a batch.

– Product view (stakeholders: product manager; operational manager):

Processing time is the amount of time that actual work is performed on the

realisation of a certain product or result, i.e., the response time without waiting

times. The processing time can be orders of magnitude lower than the response

time. In a computer system, an example of the processing time is the actual time

that the CPU is busy.

– System view (stakeholders: system owner/manager): Throughput is the number

of transactions or requests that a system completes per time unit (e.g., the

average number of customers served per hour). Related to this is the maximum

attainable throughput (also called the processing capacity, or in a more techni-

cally oriented context such as communication networks, the bandwidth), which
depends on the number of available resources and their capacity.

– Resource view (stakeholders: resource manager; capacity planner): Utilisation
is the percentage of the operational time that a resource is busy. On the one hand,

the utilisation is a measure of the effectiveness with which a resource is used. On

the other hand, a high utilisation can be an indication of the fact that the resource

is a potential bottleneck, and that increasing that resource’s capacity (or adding

an extra resource) can lead to a relatively high performance improvement. In the

case of humans, the utilisation can be used as a more or less objective measure

for work stress. In information systems architectures, a typical example of the

utilisation is the network load. Examples of ArchiMate concepts for which the

calculation of the utilisation is suited are the infrastructure concepts and the

actor.

The different performance views are summarised in Fig. 9.2. Performance

measures belonging to the different views are interrelated, and may be in

Process view Product view

Resource view System view

User viewUser view

Response
time

Response
time

Completion
time

Completion
time Processing

time
Processing

time

UtilisationUtilisation ThroughputThroughput

Fig. 9.2 Performance

views

9.2 Quantitative Analysis 219

conflict when trying to optimise the performance of a system. For example, a

higher throughput leads to a higher resource utilisation, which may be

favourable from a resource manager’s point of view; however, this generally

leads to an increase in the response times, which is unfavourable from a user’s
point of view. Therefore, when aiming to optimise the performance of a system,

it is important to have a clear picture of which performance measures should be

optimised.

9.2.2 Performance Analysis Techniques for Architectures

Although several software tools exist to model enterprise architectures, hardly any

attention has been paid to the analysis of their quantitative aspects. For detailed

design models of (distributed) systems, such as computing and telecommunication

systems, and manufacturing systems, a broad range of performance analysis tech-

niques have been proposed. There are very efficient static techniques that offer

relatively inaccurate first estimates or bounds for the performance. Analytical

solutions of queuing models are more accurate but also more computation inten-

sive, while they still impose certain restrictions on the models. With detailed

quantitative simulations, any model can be analysed with arbitrary accuracy,

although this presumes that accurate input parameters are available.

As mentioned above, enterprise architecture covers a broad range of aspects, from

the technology layer (e.g. computer hardware and networks), through software appli-

cations running on top of the infrastructure, to business processes supported by these

applications. Within each of these layers, quantitative analysis techniques can be

applied, which often require detailed models as input. In this subsection, we will only

be able to give a global impression of analysis approaches for each of these layers.

We also noted earlier that enterprise architecture is specifically concerned with

the relations between the layers. Also from a quantitative perspective the layers are

interrelated: higher layers impose a workload on lower layers, while the perfor-

mance characteristics of the lower layers directly influence the performance of the

higher layers. The service concept that is central to the ArchiMate language plays

an important role in connecting these layers, also in a quantitative sense (Jonkers

and Iacob 2009).

Technology Layer

Traditionally, approaches to performance evaluation of computer systems and

communication systems (see Harrison and Patel 1992) have a strong focus on the

technical infrastructure domain. Queuing models, for example, describe the char-

acteristics of the (hardware) resources in a system, while an abstract stochastic

arrival process captures the workload imposed by the applications. Also, a lot of

literature exists on performance studies of specific hardware configurations, some-

times extended to the system software and middleware levels. Most of these

approaches commonly are based on detailed models and require detailed input data.

220 9 Architecture Analysis

Application Layer

Performance engineering of software applications (see Smith 1990) is a much

newer discipline compared to the traditional techniques described above. A number

of papers consider the performance of software architectures at a global level.

Bosch and Grahn (1998) present some first observations about the performance

characteristics of a number of often occurring architectural styles. Performance

issues in the context of the SAAM method (see Kazman et al. 1994) for scenario-

based analysis are considered in Lung et al. (1998).

Another direction of research addresses the approaches that have been proposed

to derive queuing models from a software architecture described in an architecture

description language (ADL). The method described by Spitznagel and Garlan

(1998) is restricted to a number of popular architectural styles (e.g., the distributed

message passing style but not the pipe and filter style). Other similar approaches are

described in Aquilani et al. (2001) and Williams and Smith (1998). In Di Marco and

Inverardi (2004) queuing models are derived from UML 2 specifications, which in

most cases, however, do not have an analytical solution.

As we noted in Sect. 3.1.1, compositionality is an important issue in architecture.

In the context of performance analysis, compositionality of analysis results may

also be a useful property. This means that the performance of a system as a whole

can be expressed in terms of the performance of its components. Stochastic

extensions of process algebras (see Hermanns et al. 2002) are often advocated as

a tool for compositional performance analysis. However, process-algebra-based

approaches to performance analysis are still fairly computation intensive, because

they still suffer from a state space explosion. Moreover, while they allow for a

compositional specification of performance models, this does not necessarily mean

that the analysis results are also compositional.

Business Layer

Several business process modelling tools provide some support for quantitative

analysis through discrete-event simulation. Also, general-purpose simulation tool

such as Arena1 or ExSpect2 (based on high-level Petri nets) are often used for this

purpose. A drawback of simulation is that it requires detailed input data, and for

inexperienced users it may be difficult to use and to interpret the results correctly.

BiZZdesign Enterprise Studio3 offers, in addition to simulation, a number of analyt-

ical methods. They include completion time and critical path analysis of business

processes (see Jonkers et al. 1999) and queuing model analysis (see Jonkers and

Swelm 1999). Petri nets (and several of its variations) are fairly popular in business

process modelling, either to model processes directly or as an underlying formalism

for other languages (e.g., see Schomig and Rau 1995). They offer possibilities for

1http://www.arenasimulation.com
2http://www.exspect.com
3http://www.bizzdesign.com

9.2 Quantitative Analysis 221

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://www.arenasimulation.com/
http://www.exspect.com/
http://www.bizzdesign.com

performance analysis based on simulation, as described above, but they also allow for

analytical solutions (which are, however, fairly computation intensive).

9.2.3 Quantitative Modelling

In this section we present our approach for the quantitative modelling of service-

oriented enterprise architectures expressed in the ArchiMate language. First we

show that ArchiMate models follow a certain structure that is explained by means

of an ‘analysis meta-model’. Our technique focuses on a subset of the ArchiMate

language, namely the modelling constructs encompassed by this simple meta-

model. Then we clarify what the necessary quantitative input is for our analysis

technique. We also introduce an example that shows how quantitative information

can be attached to model elements and their relations and that will later also

illustrate the application of the algorithms.

Model Structure

As shown in Sect. 5.2, many architecture models can be viewed as a hierarchy of

layers. We use this layered view for performance analysis as well, because it makes

the explanation of our approach easier. Furthermore, layering will help the modeller

to formulate and describe clearly the problem being analysed.

For each meta-model layer, we can distinguish one or more model layers of two

types: service layers and realisation layers. A service layer exposes functionality

that can ‘serve’ the next higher layer, while a realisation layer model shows how the

consecutive service layer is ‘realised’. The number of these layers is not fixed, but a

natural layering of an ArchiMate model will contain the succession of layers

depicted in Fig. 9.4.

Looking at the horizontal structure of the meta-model, we can see that realisation

layers typically contain three types of elements. They might model some pieces of

internal behaviour (expressed as processes or functions). Further, each behaviour

element can access one or more objects, and it is assigned to exactly one resource

(e.g. actors, devices, application components, etc.).

Thus, we can summarise our findings in terms of the ‘analysis meta-model’
depicted in Fig. 9.3, where

– ‘Object’ can be a business object, a data object or an artefact.

– ‘Resource’ can be a business role, a business actor, an application component, a

system software component, a node or a device.

– ‘Internal behaviour’ can be a business process, a business function, an applica-

tion function or a technology function.

– ‘Service’ can be a business service, an application service or a technology

service.

222 9 Architecture Analysis

http://dx.doi.org/10.1007/978-3-662-53933-0_5

Approach

Before we can analyse an ArchiMate model, we have to define clearly the quantities

that can be assigned to the different ArchiMate concepts and relations. In Sect. 9.2.1

we have identified the relevant performance measures, independent of any model-

ling language. However, we have to make these measures specific for ArchiMate

models. One may notice that not all the ArchiMate language elements are included

in the model structure given in Fig. 9.3. Indeed, we consider some of them

irrelevant for the current approach (e.g., the meaning concept, the aggregation

and association relations, etc.) and, therefore, they will be ignored.

Iacob and Jonkers (2005) explore possible ways in which the concepts and

relations that have been defined in the ArchiMate language can be quantified. An

important observation made is that the richest ArchiMate relations in terms of

quantification prospects are the ‘triggering’, ‘access’, ‘realisation’ and ‘serving’
relations. This is a good indication that any quantitative analysis method that might

be used in the context of ArchiMate (sub)models must focus on this type of relation.

The fact that ‘triggering’ relations are easily quantifiable does not come as a

surprise. In fact, triggering relations are essential in revealing the behaviour of

dynamic systems. Thus, we can draw the conclusion that any quantitative method

that works for (business) process-oriented modelling formalisms can be applied

(possibly after slight adaptations) as well for ArchiMate models. However, these

types of methods have certain limitations from the ArchiMate point of view for at

least two reasons. First, such methods are usually applied locally to partial

Fig. 9.3 Structural properties of ArchiMate models

9.2 Quantitative Analysis 223

architectural models that expose a mapping between a piece of behaviour and some

resources (see Jonkers and Swelm 1999). Second, because only two types of

elements, namely behaviour elements (e.g., processes, events, etc.), and resources

(e.g., actors, devices, etc.) are concerned, such methods do not traverse all the

architecture domains. They typically work within at most two layers of the archi-

tecture model (e.g. the application and the technology layer or within the business

layer). We will refer to such analysis methods as being horizontal methods. We

believe that apart from the classical horizontal methods we must expose vertical
methods that work across multiple domains. We anticipate that such methods must

focus on the ‘serving’ and ‘realisation’ relations bridging the different architectural
domains. Nevertheless, the distinction between horizontal and vertical methods

must not be considered restrictive at all, since (as it will also result from the

example we are giving) the two types of methods can be combined, such that the

output (i.e., calculated performance measures) of one type of method will provide

the input quantities for another ‘follow-up’ analysis method.

Analysis across an architecture model is possible through the propagation of

quantities through layers. A natural option for this is to consider workload measures

(e.g., arrival frequencies) that are imposed as a ‘demand’ on the model elements by

the users (located in the higher layers, e.g., customers). These quantities propagate

towards the lower layers, eventually being translated in demands on each model

element. Once workloads have been determined, we look at the effort these

workloads require from the resources (modelled by structural elements) and from

the behaviour elements (modelled by services, processes, and functions). This effort

can be expressed in terms of performance measures (e.g., utilisations for resources,

response and processing times for behaviour elements) and/or costs; it starts in the

technical infrastructure and propagates back to the higher layers. In summary, our

approach consists of the following two phases (see Fig. 9.4): a top-down calculation

of the workloads imposed by the users; this provides input for a bottom-up

calculation of performance measures.

workloadworkload performance
measures

performance
measures

Technical infrastructure

Infrastructural services

Application components

Application services

Business processes

Organisational services

CustomersCustomers
Fig. 9.4 Layers of

ArchiMate models

224 9 Architecture Analysis

Quantitative Input Data

One of the most difficult tasks related to quantitative analysis is to obtain reliable

input data. There are several possible sources for this data. For existing systems or

organisations, measurement can be one of the most reliable methods, although it is

not easy to do this in a correct way: among others, it should be clearly defined what

exactly is to be measured, the number of measurements must be sufficient, and the

measurements must be taken under various circumstances that can occur in practice.

In case the system or organisation is still to be developed, measurement is no

option. Possible alternatives are then the use of documentation of components to be

used, or to use estimates (e.g., based on comparable architectures). However, one

should keep in mind that it is often very difficult to interpret correctly the available

numerical data, and to evaluate the reliability of the available data.

We assume that the following quantitative input is provided for analysis (see

Fig. 9.3):

– For any ‘serving’ and ‘access’ relation e, a weight ne, representing the average

number of uses and accesses

– For any behaviour element a, a service time Sa, representing the time spent

internally for the realisation of a service (excluding the time spent waiting for

supporting services). We assume that a service inherits the service time value of

the element realising it.

– For any resource r, a capacity Cr.

– For any node a, an arrival frequency fa. Typically, arrival frequencies are

specified in the top layer of a model, although we do allow for the specification

of arrival frequencies for any node in the model.

These quantitative attributes are attached to the corresponding model elements

using the ‘profile’ mechanism described in Sect. 5.14.1.

Example

To show the practical use of this analysis technique, we illustrate our approach with

the following simple example.

Suppose we want to analyse an insurance company that uses a document

management system for the storage and retrieval of damage reports. We assume

that the document management system is a centralised system, used by multiple

offices throughout the country, which means that it is quite heavily used. A model

of this system is depicted in Fig. 9.5. This model covers the whole stack from

business processes and actors, through applications, to the technical infrastructure.

There are three applications offering services that are used directly by the

business actors. The Administrator can search in the metadata database, resulting

in short descriptions of the reports that meet the query and view reports that are

returned by a search. The report scanning application is used to scan, digitise, and

store damage reports (in PDF format). In addition to the two applications that are

used directly by the end user, there are two supporting application components: a

database access component, providing access to the metadata database, and a

9.2 Quantitative Analysis 225

http://dx.doi.org/10.1007/978-3-662-53933-0_5

document management component, providing access to the document base. Finally,

the model shows the physical devices of which the database access and document

management components make use. They use file access services provided by these

devices.

In the model we also specify the input quantities for the analysis. On the

‘serving’ relations, we specify workload values, in terms of the average number

of uses n of the corresponding service by the layer above. For the business

processes, an arrival frequency f is specified. In this example we assume that all

resources have the default capacity 1. Finally, for service elements we may specify

a service time S.

Fig. 9.5 Document management example

226 9 Architecture Analysis

9.2.4 Quantitative Analysis Technique

The goal of our approach is to determine the following performance measures (see

Fig. 9.3):

– the workload (arrival rate) λa for each node a (note that, provided that no resources
are overloaded, the throughput for each node is equal to its arrival rate);

– the processing time Ta and the response time Ra, for each behaviour element or

service;

– the utilisation Ur, for each resource r.

To derive the above-mentioned performance measures, given the input values,

we proceed in three steps:

1. We will first ‘normalise’ any input model, using model transformations, in order

to generate a model that is compliant with the structure presented in Fig. 9.3.

2. Top-down calculation of workloads (arrival rates) λ.
3. Bottom-up computation of performance measures T, U, and R.

Step 1: Model Normalisation

Typical ArchiMate models often do not fully conform to the ArchiMate meta-

model. This is due to the fact that during the modelling process, abstraction rules

are used to create simplified views of the architecture. These abstractions have,

however, a formal basis in an operator that has been derived for the composition of

relations. The derivation of this operator has been described in great detail in

Buuren et al. (2004). It allows, for instance, the composition of a realisation
relation with any consecutive serving relation, resulting in a new serving relation

that short-circuits, in this case, a service.

Therefore, the first step in our approach addresses a model transformation

procedure, which will derive from any input model a ‘normalised’ one, i.e. a

model, which is fully compliant with the structure described in Fig. 9.3. Since

some of the concepts and relations are not relevant for our approach, the

normalisation procedure starts by eliminating them from the original model. The

resulting model will then be subjected to a series of model transformations. One

example of such a transformation rule is given in Fig. 9.6. The set of all possible

transformation rules is finite, which makes the development of a normalisation

algorithm based on these rules rather straightforward.

The application (if needed), following such an algorithm, of the proper rule for

each edge in the input model will eventually lead to a normalised model.

Figure 9.7 shows the normalised version of the example model given in Fig. 9.5.

The input parameters for the workload on the ‘serving’ relations are the same as in

the original model. The service times are now transferred also to the inserted

internal behaviour elements.

However, since model normalisation is not the primary focus of this approach

we will not provide a formal description of the normalisation algorithm, although

such an algorithm was implemented in the quantitative analysis prototype described

in Sect. 11.5.

9.2 Quantitative Analysis 227

http://dx.doi.org/10.1007/978-3-662-53933-0_11

Fig. 9.6 Example of a normalisation step

Fig. 9.7 Normalised model

228 9 Architecture Analysis

Step 2: Top-Down Workload Calculation

Given a normalised model, we can now calculate the workload (i.e., arrival rate) for

any node a. The following recursive expression applies:

λa ¼ f a þ
Xdþa

i¼1

na,kiλki ,

where dþa denotes the out-degree of node a and ki is a child node of a. In other

words, the arrival rate for a node is determined by adding the requests from higher

layers to the local arrival frequency fa.
The results of this step in the ‘document management system’ example are given

in Table 9.1, which shows the workload for the services s in the model, in terms of

the arrival rates λs. The arrival rates depend on the frequencies of the customer input

requests and the cardinalities n of the ‘serving’ relations. The table also shows the

scaled arrival rates expressed in arrivals/second (assuming that systems are opera-

tional 8 h/day).

Step 3: Bottom-Up Performance Calculation

Once the workloads imposed on the various model components are calculated, we

can proceed with the last analysis phase, the bottom-up calculation of the afore-

mentioned set of performance measures. The approach we take is somewhat similar

to the top-down one. In this step we focus on the bottom-up propagation of values

corresponding to different time-related performance measures. The actual calcula-

tion can be done using the following recursive expressions:

– The utilisation of any resource r is

Ur ¼

Xdr

i¼1

λkiTki

Cr
,

Table 9.1 Workloads and performance results

Resource (r) Service (s))(1−ss)(sTs)(sRs rU
Doc. srv. Doc. acc. 0.0382 6.0 7.8 0.229

DB srv. Data acc. 0.0278 0.2 0.2 0.006

Doc.mgt.sys. Retr. doc. 0.0313 12.8 25.0 0.488

Doc.mgt.sys. Store doc. 0.0069 12.8 25.0 0.488

DB sys. DB query 0.0278 0.7 0.7 0.019

DB sys. DB entry 0.0069 0.7 0.7 0.019

Search comp. Search rep. 0.0278 1.2 1.2 0.025

View comp. View rep. 0.0313 27.0 174.0 0.843

Rep. scanning Store rep. 0.0069 33.7 44.0 0.234

l

9.2 Quantitative Analysis 229

where dr is the number of internal behaviour elements ki to which the resource is
assigned.

– The processing time and response time of any service a coincide with the

processing time and response time of the internal behaviour element realising

it, i.e., Ta¼ Tk and Ra¼Rk, where (k, a) is the only realisation relation having

a as end point.

– The processing time and response time of any internal behaviour element a can

be computed using the following recursive equations:

Ta ¼ Sa þ
Xd�a

i¼1

nki,aRki and Ra ¼ F a; rað Þ,

where d�a denotes the in-degree of node a, ki is a parent of a, ra is the resource
assigned to a, and F is the response time expressed as a function of attributes of

a and ra.

For example, if we assume that the node can be modelled as an M/M/1 queue

(Harrison and Patel 1992), this function is

F a; rað Þ ¼ Ta

1� Ura

ð9:1Þ

We can replace this by another equation in case other assumptions apply, e.g.,

the Pollaczek–Khinchine formula for an M/G/1 if Ta has a non-exponential distri-
bution, or the solution for an M/M/n queue based on the Erlang C formula for a

structural element with a capacity greater than 1 (Iacob and Jonkers 2005). We

might also consider more global solutions, e.g., operational performance bounds

(Eager and Sevcik 1986). In case more precise results are required, instead of

simple queuing formulae, more detailed techniques such as simulation can be

applied in combination with our approach.

Table 9.1 also shows the performance results for the example model after the

execution of step 3. We have calculated the processing and response times for the

services and the utilisations for the resources at the application and infrastructure

layers (in this example, the business layer is only relevant because it provides the

input for the workloads). However, the performance results can easily be extended

to the business layer as well.

For simplicity, we assume Poisson arrivals and exponentially distributed service

times in this example, so that every structural element a can be modelled as an

M/M/1 queue (Harrison and Patel 1992). Hence, the response time function is given

by Eq. (9.1).

The results show that queuing times from the lower layers accumulate in the

higher layers, which results in response times that are orders of magnitude greater

than the local service times. For example, the ‘view’ component of the ‘claim
handling support’ application has a utilisation of over 84%, which results in a

response time of the ‘view damage report’ application service of almost 3 min.

230 9 Architecture Analysis

Using our approach, it is easy to study the effect of input parameter changes on

the performance. For example, Fig. 9.8 shows how the response time of the View

component depends on the arrival frequency associated with the Administrator

(assuming a fixed arrival frequency for the Damage expert). The maximum arrival

frequency, which results in a utilisation of the View component of 100%, is

651 arrivals per day. In the design stage these results may help us to decide, for

example, if an extra View component is needed.

9.3 Functional Analysis

In this section we illustrate how functional analysis techniques can be based on

existing techniques in formal methods. Though these formal methods have been

developed for systems and problems which have been defined in a mathematically

precise way, and architecture descriptions in most cases have an informal character,

we show that these formal methods can be used when we introduce a few basic

definitions we briefly explained in Chap. 3, such as signature, symbolic model, and

interpretation.

In functional analysis of architectures, we distinguish between static or structural

and dynamic or behavioural aspects. For analysing the static structure of an

architecture, its signature (see Sect. 3.3) forms the basis. This focuses on the

symbolic representation of the structural elements of an architecture and their

relationships, abstracting from other architectural aspects like rationale, pragmat-

ics, and visualisation. It emphasises a separation of concerns which helps in

mastering the complexity of the architecture. Notably, the signature of an

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700

R
(V

ie
w

 c
om

po
ne

nt
)

f(Administrator)

Fig. 9.8 Arrival rate vs. response time

9.3 Functional Analysis 231

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_3

architecture can be expressed in XML for storage and communication purposes,

and can be integrated as an independent module with other tools including graphics

for visualisation.

For the logical analysis of the dynamics of an architecture, the formal semantics
(see also Sect. 3.3) of a symbolic model of that architecture provides a formal basis.

A signature of an architecture only specifies the basic concepts with which the

architecture is described, but an interpretation contains much more detail. In

general, there can be a large number of different interpretations for a signature.

This reflects the intuition that there are many possible architectures that fit a specific

architecture description.

By applying the techniques for static and dynamic analysis discussed in the next

subsections, we gain a better understanding of how enterprise architectures are to be

interpreted and what is meant by the individual concepts and relationships. In other

words, these techniques allow enterprise architects to validate the correctness of

their architectures, to reduce the possibility of misinterpretations, and even to

enrich their architecture descriptions with relevant information in a smooth and

controllable way.

We do not detail the formal methods themselves, which would require at least a

textbook for each method (and many good textbooks for these methods exist).

Instead, we use small example architectures to illustrate the use of these methods

for architectural analysis. More technical details can be found in Boer et al. (2004,

2005) and in Stam et al. (2004).

The structure of this section is as follows. In Sect. 9.3.1 we give an introduction

to static analysis, in particular of impact-of-change analysis on an architecture, and

we show how this can be applied to the ArchiSurance example case described

earlier. In Sect. 9.3.2, we go deeper into dynamic analysis. Using another example

architecture, we show how an ArchiMate description of an architecture can be

translated into a signature, illustrate how this signature can be extended to a

symbolic model, and how this symbolic model can be interpreted by a semantic

model. We briefly describe two relevant formal methods, namely process algebras

and data flow models. Finally, we show how we can interpret the example archi-

tecture as a process algebra and as a data flow network, respectively.

9.3.1 Static Analysis

For structural analysis of architectures, description logics are useful formalisms.

Description logics are knowledge representation languages tailored to express

knowledge about concepts and concept hierarchies. They are considered an impor-

tant formalism unifying and giving a logical basis to the well-known traditions of

frame-based systems, semantic networks, and KL-ONE-like languages (Woods and

Schmolze 1992), object-oriented representations, semantic data models, and type

systems. Description logic systems have been used for building a variety of

applications including conceptual modelling, information integration, query

232 9 Architecture Analysis

http://dx.doi.org/10.1007/978-3-662-53933-0_3

mechanisms, view maintenance, software management systems, planning systems,

configuration systems, and natural language understanding. In the case of enterprise

architecture, the main application of description logics is in determining the impact

of a change to an architecture: what elements of the model will be ‘touched’ by this
change?

As an example of static analysis, we again consider our fictitious ArchiSurance

company, which offers insurance to customers. ArchiSurance sells its products by

means of intermediaries. Intermediaries investigate the concerns of customers,

negotiate a policy contract and take care of the administrative work and the

communication with ArchiSurance (see also Fig. 8.9, the Actor Cooperation view

of ArchiSurance).

The role of the intermediary is purely commercial: he or she only sells products

to customers and makes sure all paperwork is done correctly until the customer has

signed a contract. After this, the intermediary is only involved in case of problems

with the collection of premiums.

ArchiSurance architects want to investigate quickly if it would be possible to

eliminate the entire idea of intermediaries. What would be the consequences of such

a drastic change of the business model on the enterprise architecture of

ArchiSurance?

The starting point of this analysis is the relationship between the various views

and a logical theory. As we explained in Chap. 3, underlying these views is a single

architecture model, which corresponds to a signature, which is used in the logical

analysis.

In this signature there are sorts for roles, collaborations etc., and there are

domain-dependent sorts, such as ‘insurance company’ and ‘customer’. Performing

such a structural analysis implies ‘traversing’ the architecture and taking into

account each relation and its meaning to determine whether the proposed change

might ‘propagate’ through this relation. If, for example, a service provided by an

application changes, every user of that service may be affected.

To express this, every relation in the architecture model is translated into a

relation in the logic. In the translation there are also some constraints between the

sorts and the relations to make the correspondence precise. Examples of such

constraints, expressed in first-order logic, are the following:

8x: Customer(x) ! Role(x)
8x,y: Participate(x,y) ! Role(x) /\ Collaboration(y)

The first rule states that every Customer is also a Role; the second states that only
Roles can participate in Collaborations, and, vice versa, that participants of Col-
laborations are Roles. Of course, much more complex rules are used to express the

impact of a change of a model element on related elements. Such logic rules can be

processed by a ‘rules engine’ that automates the impact analysis. A prototype of

such an analysis tool is described in Sect. 11.6.

In our example, if ArchiSurance wants to change the role of the intermediary,

this will have an impact on all collaborations in which this intermediary participates

9.3 Functional Analysis 233

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_11

(Fig. 9.9). Several business processes will be involved in this through interactions

performed by these collaborations; one of these is the ‘Close Contract’ process,
shown in Fig. 9.10. This uses a number of applications, some of which may also be

influenced by the change (Fig. 9.11). Naturally, these examples show only a small

part of the actual impact of the proposed change, but they serve to illustrate the

general idea.

In these examples, we have not shown how an architecture description in the

ArchiMate language can be translated into an underlying formalism that forms the

basis of these analysis techniques. In the next subsection, on dynamic analysis, we

will go deeper into this issue, and show how the signature of an architecture can be

Fig. 9.9 Impact (in red and pink) on collaborations

Fig. 9.10 Impact (in red and pink) on ‘Close Contract’ business process

234 9 Architecture Analysis

defined, how this signature can be interpreted semantically, and how formal

analysis techniques can be built upon that.

9.3.2 Dynamic Analysis

For dynamic analysis of architectures, functional analysis techniques based on

formal approaches such as process algebras and data flow networks are useful.

Issues like two roles acting at the same time, overwriting or destroying each other’s
work, can be identified and then a suitable protocol can be designed to prevent the

problem. Thus, a functional behaviour analysis based on formal methods is primar-

ily a qualitative analysis that can detect logical errors, leads to a better consistency,

and focuses on the logic of models.

The dynamics of a concrete system with an architecture description given by its

signature can be specified in different ways; we distinguish between specifications

tailored towards control flow modelling and those tailored towards data flow

modelling. For control flow modelling, we give a brief introduction to process

algebra, while for data flow modelling, we introduce the reader to data flow

networks.

To illustrate the use of these formal methods, we use the enterprise architecture

of a small company, ArchiSell, modelled using the ArchiMate language. In

ArchiSell, employees sell products to customers. Various suppliers deliver the

products to ArchiSell. Employees of ArchiSell are responsible for ordering prod-

ucts and for selling them. Once products are delivered to ArchiSell, each product is

assigned to an owner responsible for selling the product. More specifically, we look

Fig. 9.11 Impact (in pink) on applications

9.3 Functional Analysis 235

at the business process architecture for ordering products, visualised in Fig. 9.12.

To describe this enterprise, we use the ArchiMate modelling concepts and their

relationships. In particular, we use structural concepts (product, business role and
business object) and structural relationships (association), but also behavioural

concepts (process) and behavioural relationships (triggering). Behavioural and

structural concepts are connected by means of the assignment and access relations.
In order to fulfil the business process for ordering a product, the employee has to

perform the following activities:

– Before placing an order, an employee must register the order within the Order

Registry. This Order Registry is for administration purposes. It is used to check

orders upon acceptance of goods later in the process. Orders contain a list of

products to be ordered.

– After that, the employee places the order with the supplier. Based on the order,

the supplier is supposed to collect the products and to deliver them as soon as

possible.

– As soon as the supplier delivers the products, the employee first checks if there is

an order that refers to this delivery. Then, the employee accepts the products.

– Next, the employee registers the acceptance of the products within the Product

Registry and determines which employee will be the owner of the products.

Although the example is rather trivial, it serves to illustrate how an architecture

description can be formalised and how it can be subjected to functional analysis.

Signature We first define the signature of the business process architecture

described in Fig. 9.12. The sorts of the example are simply enumerated as follows:

Role
Object
Employee

Fig. 9.12 ArchiSell: a business process architecture

236 9 Architecture Analysis

Product
product
Order_Registry
Product_Registry

Note that we did not include processes as a sort, because processes are modelled

below as functions.

Further information about the architecture is expressed symbolically in terms of

suitable extensions of one of its signatures. Usually, a signature is extended with

operations for constructing complex types from the primitive sorts. Examples are

the standard type operations like the product type T1 � T2 of the types T1 and T2,
and the function type T1!T2 of all functions which require an argument of type T1
and provide a result of type T2. Given functional types, the name space of a

signature can be extended with functions F(T1) : T2, where F specifies the name

of a function of type T1!T2. Functions can be used to specify the attributes of a
sort. For example, given the primitive sorts Employee and Ν, the function Age
(Employee) : Ν is intended for specifying the age of each person. Examples of the

sub-sort relation are the following:

Employee is_a Role
Product is_a product
Order_Registry is_a Object
Product_Registry is_a Object
Owns is_a association

Note that we have encoded meta-model information of an architecture descrip-

tion as part of the signature of the architecture itself. The relation between the meta-

model sorts and relations and architecture sorts and relations is expressed by the

respective partial orders between sorts and relations of the signature. For example,

the sort Product in Fig. 9.12 is modelled as a sub-sort of the ArchiMate concept

product. The ‘owns’ relation itself is specified by:

Employee owns Product
Also note that the triggering relation is not included in our concept of a

signature. In our view such a relation specifies a temporal ordering between the

processes, which are described in Sects. 10.1.3 and 10.1.4.

Interpretation

To obtain a formal model of a system as a semantic interpretation of the symbolic

model of its architecture description, we start with an interpretation of the signature.

An interpretation I of the types of a signature assigns to each primitive sort S a set I
(S) of individuals of sort S which respects the sub-sort ordering: if S1 is a sub-sort of
S2, then I(S1) is a subset of I(S2). Any primitive sort is interpreted by a subset of a

universe which is given by the union of the interpretation of all primitive sorts. The

subset relation expresses the hierarchy between primitive sorts. An interpretation

I of the primitive sorts of a signature of an architecture can be inductively extended

9.3 Functional Analysis 237

http://dx.doi.org/10.1007/978-3-662-53933-0_10
http://dx.doi.org/10.1007/978-3-662-53933-0_10

to an interpretation of more complex types. For example, an interpretation of the

product type T1� T2 is given by the Cartesian product I(T1)� I(T2) of the sets I(T1)
and I(T2). The function type T1!T2 thus denotes the set of all functions from the

universe to itself such that the image of I(T1) is contained in I(T2). In general, there
can be a large number of different interpretations for a signature. This reflects the

intuition that there are many possible architectures that fit a specific architecture

description.

The semantic model of a system involves its concrete components and their

concrete relationships, which may change in time because of the dynamic behav-

iour of a system. To refer to the concrete situation of a system, we have to extend its

signature with names for referring to the individuals of the types and relations. For a

symbolic model, we denote by n:T a name n, which ranges over individuals of

type T.
As an example, we introduce the following semantic model. We define only two

products: p1 and p2. In order to model the processing of orders and products,

individuals of the sort Employee have a product attribute and an order attribute.
These attributes indicate the order and product the employee is managing. In our

model, individuals of the sort Employee are fully characterised by these attributes.

Therefore, in our model the sort Employee contains four elements, namely:

e1 order ¼ p1 product ¼ p1
e2 order ¼ p1 product ¼ p2
e3 order ¼ p2 product ¼ p1
e4 order ¼ p2 product ¼ p2

Furthermore, we define the order and product registries as possibly infinite lists

of products.

Finally, in order to refer to the elements of the different sorts we introduce

individual names emp: Employee, order-reg: Order_Registry, and product-reg:
Product_Registry. A semantic model assigns individuals to these names. For

example:

emp ¼ e1 order ¼ p1 product ¼ p1
order-reg ¼ { p1}
product-reg ¼ { p2}

Note that this assignment describes an employee, who manages an order of

product p1 and a delivery of product p1, an Order_registry, which registers an order
of product p1, and a Product_registry, which registers the acceptance of a product

p2.

Process Algebras

Process algebra (Baeten and Weijland 1990; Bergstra et al. 2001) is a formal

description technique for specifying the control flow behaviour of complex sys-

tems. Starting from the language syntax, each statement of the language is supplied

238 9 Architecture Analysis

with some kind of behaviour, and a semantic equivalence says which behaviours

are identical. Process algebras express such equivalences in axioms or equational
laws. The axioms are to be sound, i.e., if two behaviours can be equated then they

are semantically equivalent. The converse statement is optional, and is called

completeness, i.e., if two behaviours are semantically equivalent then they can be

equated.

The system is captured as a set of processes interacting with each other

according to predefined rules. Starting from a set of basic actions, processes may

be hierarchically composed by means of operators, e.g., sequential composition,

choice, parallel composition.

We derive these basic actions from the functions of a symbolic model of an

architecture. To this end, we define the action of a function F(S) : T by an

assignment of the form n :¼ F(m) where n : T and m : S are names ranging over

the types T and S, respectively. The execution of such an action in a semantic model

Σ assigns to the name n the return value of Σ(F)(Σ(m)) which denotes the result of

applying the function Σ(F) 2 I(S!T) to the element Σ(m) 2 I(S). Note that actions
transform semantic models (i.e., the state of a system) but not the interpretation of a

signature (i.e., the structural information of a system).

Given this concept of an action as a transformation of semantic models, we can

define more complex processes by combining actions; that is, we can define

operations on actions determining the order of their execution. For example, we

can define the sequential composition n :¼ F(m); n0 :¼ G(m0) of two actions n :¼ F
(m) and n0 :¼ G(m0) as the composition of their transformation of semantic models.

Process algebras can be applied to model any business function and to prove its

correctness. They enable properties of the business of an enterprise to be expressed

in an abstract way and to deduce whether a specific process satisfies these

properties.

Now let us consider the process steps within the ArchiSell example. Within the

process algebra interpretation, processes are specified as functions. The types of the

arguments and result values are determined as follows:

– A role, which is assigned to a process, specifies the type of both an argument and

a result value of the corresponding function.

– An outgoing access relation from a process to a data object specifies the type of

both an argument and a result value of the corresponding function.

– An incoming access relation from an object to a process only specifies the type

of the corresponding argument (this captures the property of ‘read-only’).

This results in the following functions:

– Register_order_placement

• domain name¼Employee
• domain name¼Order_Registry
• codomain name¼Employee
• codomain name¼Order_Registry

9.3 Functional Analysis 239

– Place_order_for_product

• domain name¼Employee
• codomain name¼Employee

– Accept_product

• domain name¼Employee
• domain name¼Order_Registry
• codomain name¼Employee

– Register_product_acceptance

• domain name¼Employee
• domain name¼Product_Registry
• codomain name¼Employee
• codomain name¼Product_Registry

The interpretation of the processes can be specified in a pseudo-language. For

more simple functions, matrices of input/output pairs can be given. For example,

the interpretation of the Register_order_placement function can be as follows: add

to the Order_Registry (which is a list, as defined in the signature) the product of the
product attribute of the Employee. Other processes are formally described in a

similar manner.

Within a process algebra, we can now concatenate the individual functions in

order to model the transformation of an initial state of a concrete system to an

eventual state. In this way, we can reason about the correctness of the

transformation.

Data Flow Networks

A data flow network (Jagannathan 1995) is another formal description technique for

the behavioural specifications of complex systems. Such a network consists of some

processes, the functions of a symbolic model that communicate by passing data

over lines. A process is a transformation of data within the system, whereas a line is

a directed FIFO channel connecting at most two processes. Data passed over a line

by a process will arrive in an unspecified but finite amount of time at the destination

process in the same order as it was sent.

Data flow diagrams can be used to provide a clear representation of any business

function. The technique starts with an overall picture of the business and continues

by analysing each of the functional areas of interest. This analysis can be carried out

to the level of detail required. The technique exploits a method called top-down

expansion to conduct the analysis in a targeted way. The result is a series of

diagrams that represent the business activities in a way that is precise, clear, and

easy to communicate.

In a data flow interpretation of the ArchiSell process, we consider each individ-

ual process step as an independent data-consuming/data-producing entity. Such an

entity has input ports and output ports. Within the data flow interpretation, we are

interested in the data flow within the process, but not directly in the actors (or roles)

240 9 Architecture Analysis

that perform the process. Therefore, this interpretation is specifically suited for

situations in which many details are known about the data and less about the actors.

However, as we will illustrate, a data flow interpretation can help us in the

assignment of actors to process steps.

The way in which we can interpret the example as a data flow network is shown

in Fig. 9.13. Note the following:

– We leave out any information about roles and individuals within the role sort.

So, the data flow diagram does not contain information about which actor

performs which process steps.

– We specify registries as stores, i.e., special functions, which resemble places in

which information can be stored and from which the same information can be

retrieved later.

– We explicitly identify which input/output ports receive/send which kind of

values. A practical way is to begin with identifying the values on the input/

output ports, and then to connect the output ports to other input ports.

The following values are communicated:

1. list of products that have to be ordered;

2. list of products that have to be ordered;

3. order registry record;

4. list of products that have to be ordered;

5. supplier order;

6. list of products received;

7. order registry record;

8. list of products accepted;

9. list of products accepted;

10. product registry record;

11. product registry record;

12. order registry record;

13. order registry record.

With such a data flow diagram, we can define data flow for each individual

process step. The functions transform certain inputs into a certain output. Such

Register order
placement

Place order
for product

2 Accept
product

Register
product

acceptance
4 5

3 7
8 9

6
10

12 13 11

1

OR PR

Fig. 9.13 ArchiSell as a data flow network

9.3 Functional Analysis 241

functions can be defined in, for example, a pseudo-language, but it is also possible

to derive a working simulation of the process architecture in this way.

The data flow diagram also enables us to reason about the assignment of process

steps to actors. For example, the process diagram, correct as it is, does not reveal if

the step ‘register order placement’ should be fulfilled by the same actor as the step

‘accept product’. The data flow diagram reveals what is needed in order to assign

actors correctly to process steps.

An example of this is the following. Suppose that we would like to have the first

two process steps to be performed by an actor different from the one that performs

the last two process steps. The data flow diagram reveals that this is no problem,

since no values are communicated directly between those two sets of process steps.

In other words, the data flow diagram shows that, given this interpretation of the

process architecture, it facilitates separation between order placement and product

acceptance.

9.4 Risk Analysis

In recent years, organisations have started to realise that the IT security challenge

cannot be solved in isolation by security specialists. Rather, it should be incorpo-

rated in an integral Enterprise Risk and Security Management (ERSM) approach. It

is only natural to place ERSM in the context of enterprise architecture, for a holistic

view that not only looks at IT-related risk and security but also at the social and

business aspects. Therefore, it is not surprising that enterprise architecture frame-

works such as TOGAF (The Open Group 2011) include chapters on risk and

security, and a security framework such as SABSA (Sherwood et al. 2009) shows

a remarkable similarity to the Zachman framework.

Seen in this light, it also makes sense to use the ArchiMate language to model

risk and security aspects as an integral part of an enterprise architecture and use

analysis techniques such as those outlined in Sect. 9.3 to assess vulnerabilities,

threats and the ensuing risks. In a white paper published by The Open Group (Band

et al. 2015), it is shown how concepts found in leading risk and security standards

and frameworks can be mapped to ArchiMate concepts. Figure 9.14 summarises

this risk and security ‘overlay’. Specific icons, different from the standard

ArchiMate icons, are used to denote risk and security-specific specialisations of

concepts (in the white paper, a stereotype notation is used).

For the purpose of risk analysis, we can assign risk-related attributes to these

concepts. The Factor Analysis of Information Risk (FAIR) taxonomy (The Open

Group 2013) adopted by The Open Group provides a good starting point for this. If

sufficiently accurate estimates of the input values are available, quantitative risk

analysis provides the most reliable basis for risk-based decision-making. However,

in practice, these estimates are often difficult to obtain. Therefore, FAIR proposes a

risk assessment based on qualitative (ordinal) measures, e.g. threat capability

ranging from very low to very high and risk ranging from low to critical. Figure 9.15

242 9 Architecture Analysis

shows how these values can be linked to elements in an ArchiMate model, how they

are related and how they can be visualised in heat maps:

– The vulnerability level (VL) depends on the threat capability (TC) and the

control strength (CS) of the control measures applied. A high control strength

reduces the vulnerability level. In case of multiple threats or multiple control

measures, we assume that the maximum threat capability and maximum control

strength determine the outcome, although more advanced ways to combine them

are also conceivable.

– The loss event frequency (LEF) depends on both the threat event frequency
(TEF) and the vulnerability level (VL). A higher vulnerability level increases the

probability that a threat event will actually trigger a loss event.

– The risk factor (RF) is determined by the loss event frequency (LEF) and the

probable loss magnitude (PLM). Informally, risk is the product of the ‘likeli-
hood’ or frequency of a loss occurring and the ‘impact’ of the loss.

The example in Fig. 9.16 shows a simple application of a vulnerability and risk

assessment. The ‘traffic lights’ show the ordinal values of the risk attributes as

defined in the FAIR Body of Knowledge and summarised above.

Fig. 9.14 ArchiMate risk and security ‘overlay’

9.4 Risk Analysis 243

A vulnerability scan of the transmission of payment data from a web shop to an

online payment provider has shown that the encryption level of transmitted pay-

ment records is low (e.g. due to an outdated version of the used encryption

protocol). This is classified as VL: ‘high’. Also, the transmission channel using

the public Internet is insecure, which is classified as a VL: ‘medium’. These two

vulnerabilities enable a man-in-the-middle attack, in which a cybercriminal may

modify the data to make unauthorised payments, e.g. by changing the bank account

number of the receiver. Assuming a cybercriminal with medium skills (TC:

‘medium’) and an average of multiple attempted attacks per week (TEF: ‘high’),
according to the loss event frequency matrix shown in Fig. 9.16, the expected value

for LEF is ‘high’. Finally, assuming that a potentially large sum of money may be

lost (PLM: ‘high’), the resulting risk factor RF is ‘critical’.
Assuming that this risk is deemed unacceptable, a control objective can be

defined to prevent unauthorised access to payment data. We can also attach a

security profile to this control objective, specifying the security parameters that

we require for payment data: confidentiality and integrity must be high (it should be

prevented that unauthorised persons can view or modify the data), and the required

level of availability is medium (payment data does not have to be available 24/7).

This is illustrated in Fig. 9.17.

Fig. 9.15 Overview of risk analysis

244 9 Architecture Analysis

Fig. 9.17 Risk mitigation example

Fig. 9.16 Risk analysis example

9.4 Risk Analysis 245

Based on the security profile of the control objective and the outcome of the risk

analysis, specific requirements for control measures are elicitated. For example, as a

preventive control measure that helps to achieve the required levels of confidenti-

ality and integrity, a stronger encryption protocol is needed (which can be realised

by e.g. 256-bit encryption instead of 128-bit encryption), as well as a secure

transmission channel (which can be realised by using a VPN solution). Incorporat-

ing the control strengths of these measures in the risk analysis, an estimate can be

made of the effect of the control strengths on the residual risk. Further reduction of

this risk may also require other measures, e.g. a reduction of the probable loss

magnitude by limiting the maximum amount of money that can be transferred using

this payment provider.

9.5 Portfolio Analysis

Analysis of enterprise architecture models can provide important input for portfolio

management, as is described by Quartel et al. (2010). A desired organisational or

technical change requires the investigation of the stakeholders that are involved and

their concerns regarding the change. New goals and requirements are identified, or

existing ones are changed, to address these concerns. Analysis of these goals and

requirements is needed to guarantee consistency and completeness and to propose

one or more alternative architecture designs that realise the goals and requirements.

Validation of these alternative designs aims at assessing their suitability and

selecting the best alternative.

As we have outlined in Sect. 5.6, the ArchiMate Motivation concepts help you in

modelling stakeholders, their goals and drivers and the resulting requirements.

Since the various elements of the enterprise architecture can be related to these

motivational elements, we are now able to assess in more detail how architectural

decisions contribute to the organisation’s goals. Quantifying such contributions

helps in evaluating your project or application portfolio and in making the right

investment decisions.

A contribution can be divided into two elements: its importance to a business

goal and the quality or effectiveness in supporting that goal. The value of an

organisation’s service portfolio thus depends on the contribution that its constituent
elements provide to the business. An interesting and useful way of computing a

service portfolio’s value based on these business contributions is Bedell’s method

(Schuurman et al. 2008). This method answers three questions:

1. Should the organisation invest in information systems/services?

2. On which business processes should the investment focus?

3. Which information systems should be developed or improved?

The underlying idea of the method is that a balance is needed between the level

of effectiveness of the information systems and their level of strategic importance

246 9 Architecture Analysis

http://dx.doi.org/10.1007/978-3-662-53933-0_5

(the diagonal in Fig. 9.18). Investments are more crucial if the ratio between the

effectiveness of an information system and its importance is worse. The example of

Fig. 9.18 shows that application a is a candidate for aggressive investment, since its

effectiveness is lower than its importance warrants; conversely, b can do with a

lower investment level.

To calculate these values, Bedell’s method uses:

– The importance of each business process to the organisation (IBO)

– The importance of each business activity to the business processes (IAB)

– The effectiveness of an information system (software application) in supporting

business activities (ESA)

From these inputs, various other values can be calculated, starting with the

effectiveness of an information system for a business process (ESB), computed as

ESB ¼ ESA � IAB; the effectiveness of all information systems for the business

process EIB ¼ ∑S ESB/∑A IAB; and so on, until we know aggregate measures of

the effectiveness and importance of each information system for the organisation.

These can then provide input for investment decisions, as outlined above.

This type of calculations can easily be transferred to our architecture models, as

shown in Fig. 9.19. However, Bedell’s method was not designed for use in

combination with architecture models, and it has two issues that we needed to

address. First, it has a fixed level structure consisting of organisation, business

processes, activities and information systems, whereas our models may have many

more levels. Second, it assumes a one-to-one relationship between activities and

information systems. In both areas, we have extended and generalised the method to

fit with our models; for more detail, see Quartel et al. (2010).

Measuring importance requires insight in the ways in which an IT system,

service or business process contributes to the business goals. This value can lie in

Aggressively
invest

Reduce
investment

Selectively
invest

Stable

Im
po

rta
nc

e
Effectiveness

a

b

Fig. 9.18 Investment

decisions

9.5 Portfolio Analysis 247

many different aspects, such as the timely and accurate information that the system

delivers as input for business decisions, the customer satisfaction and return

business created through its user-friendly interface or the value of future opportu-

nities opened up by IT.

Methods such as the Application Life Cycle Duration Measurement Method

(ALMM) from the Application Services Library (ASL) methodology (Pols and

Backer 2006) can provide relevant input for these calculations. The ALMM mea-

sures the life cycle of applications by determining their current Business Value

(BV) and the Technical Value (TV) and then by estimating the development of the

BV and TV in the future, assuming a continuation of the current IT policy. Business

Value is very close to Bedell’s definition of strategic importance, and Technical

Value is close to Bedell’s notion of effectiveness.

ALMM’s main limitation is that it addresses only a single level of abstraction,

that of applications. Complementing it with the calculations as outlined above

provides us with a better foundation for assessing the contributions of architecture

elements to business goals at different levels of our enterprise architecture.

Fig. 9.19 Bedell’s method and enterprise architecture model

248 9 Architecture Analysis

9.6 Capability Analysis

ArchiMate can be a very useful instrument in the context of capability-based

planning and analysis, as outlined by Aldea et al. (2015). Capability maps are an

essential component of this and are used by organisations to perform high-level

performance assessments. A very useful technique is capability heat mapping. It

uses capability maps (Sect. 8.7.1) and projects various kinds of data on top of these

using colours. An example is shown in Fig. 9.20. This depicts the capabilities of our

ArchiSurance example company and shows in red which capabilities are less

efficient than the benchmark and in green those which are more efficient.

The example below shows how you can use spider charts (which are not an

ArchiMate notation) to visualise a capability analysis in more detail. The chart

shows the current and desired performance of a capability along different axes. The

example shows the notion of incremental development of a capability. For the

‘Claim management’ capability, six dimensions are defined. The baseline analysis

for this capability results in values for the different dimensions, which are linked

using the red line. The required maturity, broken down into values for the individual

dimensions, is indicated with the green line (Fig. 9.21).

For the different dimensions of the capability analysis, we have defined a metric
concept as a specialisation of Driver, using the language customisation mechanism

described in Sect. 5.14.2.

Fig. 9.20 Capability heat map

9.6 Capability Analysis 249

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_5

Metric: the extent, quantity, amount or degree of something, as determined

by measurement or calculation.

A metric will have appropriate attributes for the measurements being made,

using the profile mechanism outlined in Sect. 5.14.1. Metrics can be composite, as

shown in the figure: the process dimension of the capability analysis consists of a

weighted average of process adaptability, maturity, performance and variance. Of

course, you will want to define metrics in such a way that they support the strategic

direction of the organisation.

Metrics get their data from external sources, but they can also be based on a

structural analysis of the architecture model. For example, you can trace the

importance of applications for your strategy via the processes they support, which

contribute to the capabilities needed to deliver the envisaged business outcomes.

This is an example of the structural analyses described in Sect. 9.3.1.

In a more general sense, capabilities prove to be a good starting point for capital

allocation aligned with your organisation’s strategy. Capability analyses may help

you draw up investment plans, for example, to allocate more budget to those

capabilities that need a substantial improvement in one or more dimensions.

This way, they may be useful input for portfolio management and analysis (see

Sect. 9.5).

Fig. 9.21 Capability analysis

250 9 Architecture Analysis

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_9

9.7 Summary

In this chapter we have considered the relation between enterprise architecture

models and architecture analysis. We addressed two main classes of methods,

quantitative analysis and functional analysis.

Although the importance of enterprise architecture modelling has been

recognised, hardly any attention has been paid to the analysis of its quantitative
properties. Most existing approaches to performance evaluation focus on detailed

models within a specific domain. We demonstrated the applicability of quantitative

modelling and analysis techniques for the effective evaluation of design choices at

the enterprise architectures level, in the context of ArchiMate models. We

discerned a number of architecture viewpoints with corresponding performance

measures, which can be used as criteria for the optimisation or comparison of such

designs. We introduced a new approach for the propagation of workload and

performance measures through a layered enterprise architecture model. This can

be used as an analysis framework where existing methods for detailed performance

analysis, based on, for example, queuing models, Petri nets or simulation, can be

plugged in. The presented example illustrates the use of our top-down and bottom-

up technique to evaluate the performance of a document management system for

the storage and retrieval of damage reports. Using a simple queuing formula for the

response times, we showed that queuing times from the lower layers of the

architecture accumulate in the higher layers, which may result in response times

that are orders of magnitude greater than the local service times. In order further to

illustrate and validate our approach, we have developed a prototype, which is

outlined in Chap. 11. The practical use of these techniques is illustrated in a case

study of the Dutch Tax and Customs Administration, which is described in

Chap. 12.

By applying functional analysis techniques, we aim for a better understanding of

how architectures are to be interpreted. These techniques allow enterprise architects

to validate the correctness of their architectures, to reduce the possibility of mis-

interpretations, and to enrich their architecture descriptions with relevant informa-

tion in a smooth and controllable way.

In functional analysis, we distinguished between static or structural and dynamic

or behavioural aspects. Furthermore, our approach is based on the distinction

between symbolic and semantic models of architectures. The core of a symbolic

model consists of its signature that specifies symbolically its structural elements

and their relationships. A semantic model is defined as a formal interpretation of the

symbolic model. Semantic models are at the centre of our logical perspective of

enterprise architectures, which integrates both static and dynamic aspects. This

leads to more precise characterisation of the architecture concepts and provides a

formal basis for functional analysis. The framework we have developed allows the

integration of various techniques, ranging from static analysis to process algebras

and data-flow networks. One important application of these techniques is impact-

of-change analysis, a prototype of which will be described in Chap. 11.

9.7 Summary 251

http://dx.doi.org/10.1007/978-3-662-53933-0_11
http://dx.doi.org/10.1007/978-3-662-53933-0_12
http://dx.doi.org/10.1007/978-3-662-53933-0_11

As we have seen, both quantitative and functional analysis techniques help

the architect in creating a better insight into the complexities of an enterprise

architecture. For further integration into the architecture design process, combining

quantitative and functional analysis (e.g., impact-of-change analysis based on

quantitative results) could be fruitful.

252 9 Architecture Analysis

Chapter 10

Architecture Alignment

Roel J. Wieringa, Pascal A.T. van Eck, and Dennis Krukkert

10.1 Introduction

The results presented in this chapter stem from the GRAAL project, a daughter

project of ArchiMate. In this project, we investigate Guidelines Regarding Archi-

tecture ALignment. The Dutch word ‘GRAAL’ means ‘grail’, and sometimes

during the project we felt like valiant knights in search of the holy grail of

architecture alignment. This goal turned out to be very elusive indeed.

We have used case studies in large organisations in the public and finance sectors

in the search for this grail. All organisations studied by us were actively seeking to

align their IT (information technology and related technology) architecture with

their business architecture. But the dynamics of current organisations are such that

perfect alignment is never attained. There are too many changes in technology,

business processes, organisation structure, and the business environment to make

that happen. Alignment is thus a regulating idea, like a Kantian goal that is always

hovering over the horizon wherever we are. It directs our decisions but it is never

fully reached.

Our goal is to derive operational guidelines for aligning IT architecture with

business architecture. At the time of writing, we have performed six case studies in

various organisations. The idea at the start of the project was to derive guidelines in

the form of patterns of well-aligned software applications that occur in different

R.J. Wieringa (*)

University of Twente, Enschede, The Netherlands

e-mail: r.j.wieringa@utwente.nl

P.A.T. van Eck

Software Improvement Group, Amsterdam, The Netherlands

D. Krukkert

TNO, Soesterberg, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_10

253

mailto:r.j.wieringa@utwente.nl

organisations. It turned out that there are very few such patterns: we found exactly

one. We did, however, learn many interesting and useful things about recurrent

problems in achieving alignment, about ways to structure the problem, and about

methods to achieve alignment (see also Eck et al. 2004). Our case studies also

showed us that organisations are not so much in need of a library of patterns. The

two major unsolved problems we encountered are how to govern the alignment

process (the governance problem) and how to communicate architecture (the

documentation problem). We return to these research questions at the end of this

chapter.

The structure of this chapter is as follows. In Sect. 10.2, we discuss our

architecture framework. In Sect. 10.3 we then summarise our observations and

conclusions from six case studies about architecture alignment, and in Sect. 10.4 we

present observations about the architecture process.

10.2 The GRAAL Alignment Framework

In order to be able to do a comparative analysis, we need a conceptual framework

that allows us to describe in a uniform manner any alignment phenomena we find in

different organisations. Our framework is based on an earlier analysis of similar

frameworks in systems engineering (Hall 1962, 1969), industrial product engineer-

ing (Pahl and Beitz 1986; Roozenburg and Eekels 1995), and software engineering

(Wieringa 1998b). The first version of our framework was published in 1996

(Wieringa 1996). It was further elaborated in later publications (Wieringa 1998a),

and the current version was published as a result of the GRAAL project (Wieringa

et al. 2003).

A conceptual framework is a collection of concepts and relations among them

that can be used to describe phenomena. After almost 10 years of using the

framework in describing IT architectures, the framework is now reduced to four

simple dimensions.

– System aspects: externally observable properties.

– System aggregation: the composition of complex systems from simpler systems.

– Systems process: the life of a system from creation to disposal.

– Description levels: refinement.

The first three dimensions cover three possible ways of considering a system: by

its externally observable properties, by its internal structure, and by the phases in its

life. The fourth dimension concerns the level of detail we include in our system

descriptions. In the next sections, we explain these dimensions and the way in

which they can be combined.

254 10 Architecture Alignment

10.2.1 System Aspects

The starting point for the GRAAL framework is that we consider systems, where a

system is a coherent set of elements, whose coherence produces an added value for

its environment (Blanchard and Fabrycky 1990; Hall 1962). Organisations are

systems, houses are systems, and software programs are systems. We have

borrowed the distinction made in general systems theory between aspect systems

and subsystems. Given that each system consists of a set of elements, we can define

two abstraction operations when we consider a system. An aspect system is the set

of all of these elements, with only some of their properties, and a subsystem is a

subset of these elements, but with all their properties. We can reduce the complexity

of a system model by focusing on an aspect system or by ignoring subsystems.

These are the first two dimensions of the GRAAL framework.

An analysis of a large number of software design techniques has resulted in a

simple classification of relevant software aspects, shown in Fig. 10.1 (Wieringa

1998b). A system offers services to its environment; quality properties characterise

the value that the system provides for stakeholders by the services it offers. For

example, usability, efficiency, and security are aspects of the value that system

services have for users of the system, and maintainability and portability are aspects

of the value of the system for developers.

A system exists to deliver certain services to its environment. System services in

turn are characterised by three functional properties. The behaviour aspect consists

of the ordering over time of services and the functions that realise them. The

communication aspect consists of the interactions with other entities (people,

devices, businesses, software) during the delivery of the service, and the semantic

aspect consists of the meaning of the symbols exchanged during the service. These

aspects can all be described in the ArchiMate language, as we have outlined in

Chap. 5.

The ‘meaning’ aspect is the only aspect typical of information systems. Other

kinds of systems deliver services by means of physical processes such as the

exchange of heat or electricity, which do not have a meaning. Software systems

deliver services by exchanging symbols with their environment, and these have a

meaning (usually documented in a dictionary).

System aspects

Services Quality

Behaviour Communication Meaning For user For developer

Usability Efficiency Security Maintainability Portability… …

Fig. 10.1 System aspects

10.2 The GRAAL Alignment Framework 255

http://dx.doi.org/10.1007/978-3-662-53933-0_5

10.2.2 The Aggregation Hierarchy

Next to focusing on one system aspect, ignoring subsystems is a major abstraction

operation. Every system can be placed in an aggregation hierarchy. In the GRAAL

framework, the system aspects can be observed at each level of the aggregation

hierarchy (Fig. 10.2).

When we study IT architecture alignment, this simple picture becomes more

complicated because there are different kinds of aggregation. Information system

architects must deal with three different aggregation hierarchies, namely the phys-

ical, social, and linguistic hierarchies. The physical world is the world of brick,

mortar, plastic, metal, and other things that can drop on the ground. More in

general, it consists of all entities and processes that can be described using the

physical measures of metres, kilograms, amperes, and seconds. Relevant for the IT

architect is that the physical world includes computers, printers, wires, glass fibre,

wireless access points, radio waves, etc. The social world is the world of business

processes, needs, added value, money, norms, laws, etc. Part of the social world is

the linguistic world of symbol manipulation. We treat this separately because it is

the world of software and documents. Note that software exists only in the linguistic

world; computers exist only in the physical world; and people exist in all three

worlds.

In the physical world, aggregation seems to be a relationship between smaller

things that are contained in bigger things. In the three-dimensional world of

physical things, this often amounts to a physical containment relationship. But

what is aggregation in the social world? There are no big or small things in the

social world, and physical containment does not exist in the social world. What

does it mean to say that a department is part of an organisation? The department and

the organisation have no physical place and size and if we say that one is contained

Composite
system

System

Component

External
entity

External
entity

service
behaviour
communication
meaning
quality

service
behaviour
communication
meaning
quality

service
behaviour
communication
meaning
quality

service
behaviour
communication
meaning
quality

service
behaviour
communication
meaning
quality

… …

Fig. 10.2 Repetition of aspects at all levels of an aggregation hierarchy

256 10 Architecture Alignment

in the other, then this is a metaphorical use of the verb ‘to contain’. A similar

problem exists in the world of software. What does it mean to say that a module is

contained in a program, if this module may exist in several fragments in several

physical places (on disk, in memory, in a cache) and may be used by several

programs?

Rethinking the concept of aggregation, we identify the following two charac-

teristic features (Wieringa 2003, p. 234). Consider a component C of an aggregate

A. To say that C is a component of A means the following:

– Service provisioning: C provides a service to A. In other words, C plays a role

in the realisation of the services of A itself.

– Encapsulation: An external entity, i.e., an entity that is not a component of A,

can only interact with C through the interface of A. In the physical world, this

means that A provides a protective cover for C. In the social world, this means

that C is ‘owned’ by A, so that an interaction with C is always also an interaction

with A. In the symbolic world of software, this means that an interaction with C

requires interaction with the interface offered by A to its environment.

The aggregation hierarchies in these three worlds are independent. For example, if

we observe that a software system is composed of subsystems, modules, components,

etc., then this hierarchy can be mapped in any possible way to a physical hierarchy

consisting of a computer network, computers and backup systems. The design

problem is to find the most suitable way given some measure of suitability. This

means that there are really three alignment problems, as suggested by Fig. 10.3.

Each of the three worlds in Fig. 10.3 has its own aggregation hierarchy, and each

must be aligned to the other two.

– To align software (in the symbolic world) to people (in the social world), we

must ensure that the meaning attached by people to the symbols at the software

interface agree with the manipulations of these symbols by the software, and that

these manipulations have value for the people. To align software (symbolic) to

business processes (social), we must align the services offered by the software to

the services needed by these processes.

– To align software to the physical world, we must allocate it to processing

devices, which have a location in the physical world. In general, this is a

many-to-many mapping.

Physical
world

Social
world

Symbolic
world

Fig. 10.3 Three alignment

problems

10.2 The GRAAL Alignment Framework 257

– To align the physical world to the social world, we must consider the physical

location where software is running, and align this with the physical location

where a business process service is needed.

None of these alignment problems is trivial.

10.2.3 The System Process

The third dimension of the GRAAL framework consists of the stages that a system

goes through in its life, from conception to creation, use and disposal (Fig. 10.4). We

can abstract from the complexity of real life by considering each system in its current

stage only. However, in all the cases we studied, an important part of the alignment

problem was the coordination of future development of IT systems. This problem is

sometimes complicated because, for every system, several versions may exist. Because

many systems are supplied by third parties, each with their own release frequency,

coordinating the successive versions that all systems go to is a major problem in

practice. The process dimension of the GRAAL framework draws attention to this.

10.2.4 Refinement Levels

The fourth and last dimension of the GRAAL framework is not a system dimension

but a description dimension. It classifies the level of detail at which we describe

systems. Some illustrative refinement levels in the three worlds are shown in

Fig. 10.5.

10.2.5 Comparison with Other Frameworks

Zachman distinguishes three kinds of descriptions, the data, process, and network

description (Sowa and Zachman 1992; Zachman 1987), which correspond, roughly,

to our meaning, behaviour, and communication aspects. These descriptions can be

used according to Zachman to describe the system from a great number of perspec-

tives, namely the scope of the system, the business view, the system model, the

Conception
Acquisition
(build or buy) Usage

Maintenance

Disposal

Fig. 10.4 Typical stages in the life of a system

258 10 Architecture Alignment

technology model, the component model, people, external business events, and

business goals. This seemingly unrelated and arbitrary list of perspectives can be

systematised by placing them at various levels in the service provision hierarchy

and refinement hierarchy of the GRAAL framework figure. Details of this and other

comparisons can be found elsewhere (Wieringa 1996, pp. 329–330; 1998b).

Our framework refines the alignment framework of Henderson and

Venkatraman (Henderson and Venkatraman 1993; Eck et al. 2004), which is also

described in Chap. 1. They distinguish two dimensions, the service provision

dimension (IT infrastructure level and business level) and a refinement dimension

(strategic and operational levels).

Most frameworks for software system development distinguish three views,

namely the function view, the behavioural view, and the data view of the system

(e.g., Olle et al. 1988). These views correspond to our service, behaviour, and

meaning aspects. Harel and Pnueli (1985) add to this the aggregation dimension,

which corresponds to our composition dimension.

Kruchten’s 4þ1 model (Kruchten 1995), described in Sect. 8.1.3, defines the

logical and process views of a software system, which correspond roughly with our

aggregation dimension and behaviour view, respectively. His physical and devel-

opment view correspond roughly to the infrastructure layer (see our next section)

and to our system process dimension, respectively.

The two basic abstraction operations of focusing on aspect systems and focusing

on a subsystem correspond to the two semantic data modelling operations of

generalisation (reducing the number of aspects considered) and aggregation (con-

sidering an overall system), introduced by Smith and Smith (1977). This seems to

have been a case of reinvention, for Smith and Smith do not refer to the systems

literature where this distinction originated.

Social

Symbolic

Physical

Market
distribution channel

strategy

System mission
infrastructure standard

Geographic areas

Abstract
(few details)

Refined
(many details)

Event,
communication channel,
stimuli,
business transaction

System transaction,
software library

Network topology,
machines

Fig. 10.5 Refinement relations

10.2 The GRAAL Alignment Framework 259

http://dx.doi.org/10.1007/978-3-662-53933-0_1
http://dx.doi.org/10.1007/978-3-662-53933-0_8

10.3 Alignment Phenomena

In the various case studies we have carried out, we have attempted to identify

general alignment phenomena. In the next subsections, we present our observations.

We formulate a number of propositions that try to generalise from these

observations.

10.3.1 Service Provisioning Layers

All cases studied by us use a layered architecture that distinguishes at least software

applications from software infrastructure. Our generalisation of the many different

examples that we saw is shown in Fig. 10.6. Each layer in this figure contains

systems, represented by the rectangle at each layer, that are part of an aggregation

hierarchy. Each of these systems has internal components and may be part of a

bigger system. The physical layer contains buildings, computers, printers, wires,

wireless access points, etc. The infrastructure layer contains operating systems,

middleware, database management systems, etc. The business system layer con-

tains applications and information systems dedicated to particular business pro-

cesses. The business contains the people, departments, and processes that make up

the business, and the business environment consists of suppliers, consumers, and

other actors the business interacts with. These layers are a further refinement of the

business, application, and technology layers of the ArchiMate language, as

described in Chap. 5 and shown on the right of the figure.

Conception

Acquisition

Usage & maintenance

Disposal

Service Behaviour Communication Meaning Quality

System lifecycle

Aspects

Service
provision

Business environment

Business

Business systems
(special purpose)

Software infrastructure
(general purpose)

Physical infrastructure

Business

Application

Technology

Fig. 10.6 Layered architectures

260 10 Architecture Alignment

http://dx.doi.org/10.1007/978-3-662-53933-0_5

Systems at each layer provide services to systems at higher layers (see also Sect.

5.2, Fig. 5.2). They may directly interact with systems at any higher layer. The

layering only represents one service provisioning relationship, which is primarily

because the systems at each level exist in order to satisfy this relationship. There is

also a secondary service provisioning relationship that implements system man-

agement. For example, some people in the business provide services to the infra-

structure, because they keep this infrastructure running and repair it when it is

broken. This secondary service provisioning relationship is not represented in the

figure.

Layering is of course the basic architectural structuring technique (Dijkstra

1968; Buschmann et al. 1996). In Sect. 10.2.2 we saw that service provisioning is

one of the two elements in the concept of aggregation. A component is encapsulated

by its aggregate, and delivers a service to it. When we drop the concept of

encapsulation from the concept of aggregation, we get the concept of layering. So

if we allow a component to be used by several systems, none of which is a unique

‘owner’ of the component, then the component in effect moves to a lower layer in a

layered architecture, and all systems that use it are located at some higher layer.

In Fig. 10.6, we see that at each layer, systems have the same aspects. Each

system at any layer provides services, has behaviour, and, above the physical level,

communicates with other systems by exchanging symbols with a meaning. And

each system has certain quality properties.

Finally, each system at any layer has a life that starts with conception and ends

with disposal. Some organisations studied by us maintained elaborate documenta-

tion of systems at different stages of their life. Often, organisations have difficulty

managing this documentation and keeping it mutually consistent.

The fourth dimension of the GRAAL framework, the abstraction level of system

descriptions, is not represented in Fig. 10.6. This figure gives a three-dimensional

classification of system views, which we used in all our case studies. The success in

using this framework to analyse IT architectures in different organisations leads us

to our first proposition:

Proposition 1 All organisations exhibit the layered architecture of Fig. 10.6.

We now look closer at the infrastructure and business system layers.

10.3.2 Infrastructure Architecture

Infrastructure is the set of systems that should be available for use by all users

whenever they need it. In GRAAL, we are interested in the software infrastructure

of a business, but a large part of infrastructure is physical. It consists of the

electricity network, telecommunication networks, the water provision network,

10.3 Alignment Phenomena 261

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_5

the sewage disposal network, the central heating network, the network of roads, the

rail network, broadcasting networks and other widely available service networks

that provide services for the general public. Most of these networks were introduced

in the twentieth century. Software infrastructures are just the latest addition to this

set of infrastructures.

Because infrastructures provide services to a large heterogeneous set of user

groups, they often have a network nature that allow users to use the services

wherever they are in physical space. The software infrastructures that we found

are no exception to this. They are usually partitioned into domains that have a rough

layered structure, which partitions the infrastructure layer of Fig. 10.6; Fig. 10.7

shows a typical partitioning of the software infrastructure into domains. It also

shows some physical infrastructure domains relevant for IT.

Each domain is a knowledge area; it is not a system, but a type of system.

Experts in one domain are expert in this kind of system. They follow the trade press,

follow trends in the technology market of that domain, and understand the offers

made by technology vendors in that domain.

The hierarchy of domains in Fig. 10.7 represents a hierarchy of service provi-

sioning levels to the user of the infrastructure. Software at higher levels uses

services of software of lower levels, and so for higher-level software, the lower

levels jointly form an implementation platform. At the same time, each higher level

of software offers services with a semantics closer to the business concerns of the

end user. At the highest level, personal productivity software (e.g., word processors,

e-mail client) and business intelligence software (e.g., decision support tools) offer

services that can be defined in terms of the concerns of the end user.

Human
interaction

device
Processor Storage Network

Operating system Network software

Application
server

Database
management

system
Connectivity Directory

services

Integration middleware

Web
infrastructure
components

Contact
centre

Application
components

Personal
productivity

collaboration

Business
intelligence

Application
development

Security
framework

Enterprise
systems

management
framework

Software
infrastructure

Physical
infrastructure

Fig. 10.7 A typical set of infrastructure domains

262 10 Architecture Alignment

Infrastructure components can be classified according to the size of the set of

processes that they support and the speed at which their services change.

Proposition 2 In general, the slower an infrastructure component’s services
change, the larger its set of users and vice versa.

The reason is that slow change allows a larger set of users to learn to use the

infrastructure component, and the larger its user base, the more difficult it is to

change anything in the component. Weill and Vitale (2002) classify infrastructure

components according to scope and speed of change. At the lowest level of change,

and the largest scope of users, we find commodities such as operating systems and

certain user interface hardware such as credit card terminals. On top of that, we find

stable services such as database management systems and workflow management

systems. At the next higher level, we find standardised applications such as HRM

applications, accounting applications and other components that might be included

in an ERP system. We see this hierarchy roughly illustrated in the example

infrastructure domains of Fig. 10.7.

An infrastructure architecture consists of a partitioning of the infrastructure into

a set of domains, such as in Fig. 10.7, plus a set of company-wide standards for each

infrastructure domain. A standard might be a de jure or de facto standard, or a

selection of one or two vendors of software in one domain, company-specific

agreements, branch-specific agreements, agreements with customers or suppliers,

etc. In the companies we investigated, the infrastructure software is never built but

bought.

Procurement decisions for infrastructure software are driven by four sources, as

shown in Fig. 10.8. Business goals may lead to certain infrastructure decisions. For

example, the business goal to facilitate location-independent work can be supported

by the installation of wireless networks, groupware infrastructure, and standard

browser interfaces accessible from anywhere. Business problems may lead to yet

other decisions, such as the installation of more storage servers to solve perfor-

mance problems, or the move to another network software supplier to solve

problems with maintenance. Against these business drivers act forces coming

from already existing software (legacy) and new software (technology trends).

All organisations must deal with legacy systems. In fact, our six case studies lead

us to formulate this tentative proposition:

Infrastructure
procurement

decision

Business goals

Business problems

Legacy systems

Technology trends

Fig. 10.8 Infrastructure

drivers

10.3 Alignment Phenomena 263

Proposition 3 New technology is added to old technology. It almost never

fully replaces old technology.

Organisations differ widely in the relative priority given to these forces. We

encountered organisations were the attention to business goals and business prob-

lems was merely symbolic and technology trends where the driving force. In other

organisations, all four forces where given due weight in procurement decisions.

10.3.3 Business System Architecture

A business system is a software system used in some, but not all, business

processes. It is developed or bought to provide certain services in certain business

processes, and therefore has particular user groups. Infrastructure software can be

found in all businesses, but business systems are often local to one business. A

government organisation might have business systems to compute subsidies,

income tax, or other legal obligations, and a financial organisation might have

business systems to compute risk, mortgage interest, or an insurance premium.

It is customary to distinguish two types of business systems: information sys-

tems, which store data, and applications, which use data. Because of their close

relationship with business processes, organisations can maintain a landscape map of

business systems in tabular format such as shown in Fig. 10.9 (see Sect. 8.2.2 for

more about landscape maps).

Each business process is represented by a column that contains the business

systems used by that process. A system used in more than one process spans several

columns. (If these columns are not adjacent, the business system must be

represented by a rectangle fragmented over several columns.) If an application

and an information system are in the same column, then the application has some

interface to this information system. This interface can be made explicit in a CRUD

table such as shown in Table 10.1, which gives more information about the

interfaces between business systems in one column of the landscape map of

Fig. 10.9. CRUD tables were introduced in the 1970s in information engineering

and related methods (Martin 1982, 1989).

In terms of the GRAAL framework, landscape maps and CRUD tables are

communication models. They represent communication interfaces among systems.

These can be represented in yet another way, conveying other information, in a

communication diagram. In Fig. 10.10, we see an ArchiMate diagram of the

systems of Fig. 10.9 that shows the possible communication between business

systems. It shows that information systems do not communicate directly but only

through applications. This information is not visible in the landscape map or in the

CRUD table. The communication diagram can be used to trace possible impacts of

264 10 Architecture Alignment

http://dx.doi.org/10.1007/978-3-662-53933-0_8

changes. If a system is changed, then we must trace communication links to

neighbouring systems to see if those systems are impacted by the change.

Applications can be grouped into application areas, which are coherent groups of

business activities, that require the same business knowledge. For example, an

insurance business might distinguish application areas such as claims handling,

mortgages, life insurance, health insurance, etc. Each of these application areas

requires certain expertise, and for each there are certain groups of applications that

may be used in various business processes. In Fig. 10.9, two application areas are

represented: the first area contains applications 1 and 3, and the second one contains

applications 2 and 4.

Information systems can be grouped into subject areas, which are coherent parts

of the world about which data is stored in information systems. Example subject

areas in an insurance business are customers and insurance contracts. Two subject

areas are shown in Fig. 10.9, one containing information systems 1, 2 and 4 and the

other with information system 3.

If an information system is used by many different business processes, it spans

many columns. This means that all these processes use the same data with the same

definition, which is good for the coherence among these processes. On the other

Application
area

Process 1

Application 1

Information system 2

Application 4

Information system 3

Information system 1

Business
systems

Business
processes

Subject
area

Application 2

Application 3

Process 2 Process 3 Process 4

Fig. 10.9 Format of a landscape map of business systems

Table 10.1 Format of a CRUD table of business systems

App. 1 App. 2 App. 3 App. 4

Information system 1 CR UD

Information system 2 U

Information system 3 CD RU R U

C create, R read, U update, D delete

10.3 Alignment Phenomena 265

hand, the more business processes an information system spans, the more difficult

the system is to manage. Different processes usually have different data needs and

different data definitions, and the more processes a system is to support, the more

complex requirements negotiations become and the more complex data definitions

result. A similar observation can be made of applications spanning more than one

column. This leads us to the following proposition.

Proposition 4 The manageability of a business system is inversely propor-

tional to the number of business processes supported by the system.

The reason for this is that the semantics, behaviour, and interfaces needed to

support different business processes are usually different.

Another generalisation we can make from our observations is the following:

Proposition 5 Business systems tend to gravitate to infrastructure.

As a business system becomes standardised, more users start using it until it is so

generally available that it has become part of the infrastructure (Weill and Vitale

2002). Many components of ERP systems started out as special-purpose business

systems and by the time they have become part of an ERP system, they are part of

the infrastructure.

Process 1 Process 2 Process 3 Process 4

Information
system 1

Application 1 Application 2 Application 3 Application 4

Information
system 3

Information
system 2

Fig. 10.10 Communication diagram of business systems. A bi-directional arrow represents the

possibility of communication between the two systems

266 10 Architecture Alignment

10.3.4 Strategic Misalignment

In a well-known paper, Henderson and Venkatraman identify different ways to

align what they call IT infrastructure to the business (Henderson and Venkatraman

1993). We have also described their approach in Chap. 1. The GRAAL framework

is a refinement of the Henderson–Venkatraman framework for strategic alignment

because the GRAAL framework uses the same distinction between business sys-

tems and IT infrastructure. Three layers of our framework are shown in Fig. 10.11:

infrastructure, business systems and business. It shows the framework along the

refinement dimension, where on the left-hand side we have strategic, long-term

descriptions and on the right-hand side we have operational descriptions of the IT

infrastructure, business systems, and the business. The common way of working in

the organisations we studied is that business operations, in particular business

processes, drive the design decisions about business system architecture. Landscape

maps in one form or another play a central role in this. Infrastructure decisions, on

the other hand, are driven by various forces, one of which is business strategy. This

leads to an infrastructure architecture that may not necessarily align very well with

business system operations.

Proposition 6 Business system architecture is driven by business operations

and infrastructure architecture is driven by the IT infrastructure strategy.

The result is a strategic misalignment that is hard to repair. This misalignment is

aggravated because the business system development process is usually out of

phase with the infrastructure development process. Business systems are (re)devel-

oped when the business calls for it; for example, because users ask for

it. Infrastructure, by contrast, is (re)developed on a time-driven bases; for example,

once a year. The two processes are usually out of step with each other. One solution

to this problem is to (re)develop business systems in a time-driven manner too, and

synchronise this with the infrastructure process. Although this solves the problem

of synchronisation of the two processes, it introduces the problem that the response

to business needs is slowed down. We have not seen this solution practised in the

Refinement

Business strategy Business operations

Business system operations

IT infrastructure operationsIT infrastructure strategy

Technology LegacyProblems possible strategic misalignment

Fig. 10.11 Strategic misalignment

10.3 Alignment Phenomena 267

http://dx.doi.org/10.1007/978-3-662-53933-0_1

organisations we studied, so we cannot comment upon the effectiveness (or lack of

it) of this solution.

10.3.5 Conway’s Law

In a landmark article published in 1968, Conway claimed that the structure of a

designed system will be isomorphic to the communication structure of the design-

ing system (Conway 1968). This has become known as Conway’s law. The reason
is simple: if the system to be designed is too large to be understood by one person,

then several persons will be involved in the design. But these must agree a work

breakdown among themselves. This work breakdown will be reflected in the

structure of the designed system, because each designer will work on his or her

own part.

We see this law at work in the way infrastructure is managed. Infrastructure is

partitioned into domains, and for each domain there are one or more infrastructure

domain specialists who follow the technology market, translate business strategy

into acquisition decisions for their infrastructure domain, and generally manage that

domain. In all organisations studied, we found an isomorphism between the infra-

structure domain architecture and the infrastructure management department,

which was organised according to the same domains. This has an unexpected

consequence for any reorganisation of the infrastructure architecture.

Proposition 7 A change in infrastructure architecture should be accompa-

nied by a change in the infrastructure management structure.

This can be a hindrance to change, because infrastructure managers tend to

derive their status, and also their salary, from the number of domains they manage.

In the business system architecture, Conway’s law implies that the business

system layer will be isomorphic to the business system design department (align-

ment 1 in Fig. 10.12). This means that, say, different application areas and subject

areas are designed by different design groups. But we have already seen that to

align business systems to the business, there must be a structural similarity between

the two (alignment 2 in Fig. 10.12) as represented by the landscape map. As a

consequence, in order to achieve alignment, the business system department should

Business

Business system
design department

Business system
layer

1

23

Fig. 10.12 Conway’s law
for the business system

layer

268 10 Architecture Alignment

structure itself according to the business supported by the systems they design

(alignment 3 in Fig. 10.12).

Proposition 8 Business system alignment is achieved by aligning the busi-

ness system design department with the supported business operations.

For example, if the business is structured according to departments, where each

department handles a set of business processes, then the business system design

group should organise itself in the same way. This has the consequence that

business system architects are in fact requirements engineers for particular business

departments. They build a relationship with that department in which they build up

implicit knowledge of user requirements, and develop an early warning system for

impending changes in user requirements long before these changes are ratified

officially.

The importance of such a relation was emphasised in one of the case studies we

did. The organisation in question was divided into a number of departments, all of

which served a specific part of the company’s market. The IT department was

organised according to the company’s structure: for each department there was a

business unit in the IT department that handled all IT-related work for the specific

department. Each unit had its account managers, architects, software developers,

and maintenance personnel. The advantage of structuring the IT department in such

a way is that specific knowledge about a department is concentrated in one

business unit.

At a certain point in time the IT department was reorganised according to the

software development process. All account managers were put in their own busi-

ness unit, as were all architects, software developers, and all maintenance person-

nel, respectively. The original idea was that each member of a business unit (e.g., an

architect) could be assigned to projects of different departments, depending on

availability of personnel within the business unit. Note that this is in contrast to

Conway’s law, and in practice meant that specific knowledge of a department’s
market was no longer available within projects. This problem was solved infor-

mally by forming teams within the business units, each of which (again) serving a

specific department. When a project is started from a certain department, personnel

from the related team are assigned to this project. Although the teams are informal

units (and cannot be found on the organisation chart), the relation between the

departments and people designing systems for these departments is restored,

thereby confirming Conway’s law.

10.3 Alignment Phenomena 269

10.3.6 The FMO Alignment Pattern

There are very few alignment patterns to be found at the business level. Neverthe-

less, one pattern can be widely observed, not because it is a fact of nature that will

emerge in any case, but because it is a pattern consciously strived for by many

businesses. This is the front-office/mid-office/back-office pattern, or the FMO

pattern for short. An example of this pattern for the insurance business is given in

Fig. 10.13. In the back office, operational excellence is obtained by managing large

volumes of cases under white-label products that could be supplied as services to

various insurance businesses. The front office, by contrast, presents branded prod-

ucts to its customers and focuses on customer intimacy (Treacy and Wiersema

1997). The mid office acts as an interface between the two and takes care of

workflow, quality assurance, and other process-related matters.

10.4 The Architecture Process

Alignment is not just a matter of correctly coupling the diverse types of systems in

the social, symbolic, and physical worlds of an enterprise, but also a matter of

adjusting the development and management processes responsible for these systems.

10.4.1 Methods

The architecture design methods in the organisations studied by us were all based

on information engineering, itself a method developed in the 1970s (Martin 1982,

Control domain (workflow management, security, QA)

Front office
domain 1

(e.g. CRM)

Front office
domain m

(e.g. Risk management)

Back office
domain 1

(e.g. Claim processing)

Back office
domain k

(e.g. Mortgages)

Channel 1
(e.g. website)

Channel n
(e.g. call centre)

…

…

…
Front office
(branded products)

Mid office
(process control)

Back office
(white-label products)

Fig. 10.13 The front/mid/back-office organisational pattern

270 10 Architecture Alignment

1989; Sanden and Sturm 1997). The products delivered by an information-

engineering-like method are shown in Fig. 10.14. In order to get a list of applica-

tions and information systems, a business process model is delivered. This may be

represented by a simple bulleted list of activities, or it may be a complex UML

diagram of activities and objects passed around among activities.

Our observation about business process modelling is this:

Proposition 9 The more complex a process modelling notation, the more

decisions must be made to build the model, and the more errors are made in

the model.

While some complex and mission-critical business processes may require a

complex notation, we think that many business processes are not that complex

and can do with a simpler notation. Process notations such as Testbed (Eertink et al.

1999) or the ones used in the area of process management may be suitable

(Hardjono and Bakker 2001; Velzen et al. 2002).

Whatever the case, the business process model yields a list of business activities

to be supported, and for each of these an application may be acquired to support

executing the activity. Applications use data, and this is stored in information

systems. In order to find the relevant information systems, the subject domain of

the business processes is modelled, usually in an entity model. The subject domain

of a business process is the part of the world about which the process needs data.

Consistency between applications and information systems is maintained by means

of CRUD tables or similar techniques. Because all of these models must show a lot

Business process
model

Business activity

Application

Consistency:
CRUD tables

Information systems

Process area

Subject domain
entity model

Application
area

Consistency:
landscape map

Subject area

Fig. 10.14 Products delivered by an information-engineering-like method

10.4 The Architecture Process 271

of information, usually abstractions are made in the form of process area models,

application area models, and subject area models. Our observation is that mutual

consistency among all these models is never obtained.

Proposition 10 Consistency among process models, application models, and

subject domain models is never achieved completely.

The reason for this is that these models represent a large amount of information

that is managed and owned by different organisational actors who do not coordinate

all their activities among each other. There are just too many organisational change

processes going on concurrently to keep all models mutually consistent. In this

context, the following observation is relevant:

Proposition 11 Current architecture methods and notations are too complex

and inflexible to be used in the current dynamic business environment.

Notations like UML are at most used very fragmentarily, and architecture

methods, if used at all, are used very opportunistically. There is a need for

lightweight methods and techniques for architecture design. Furthermore, none of

the organisations we studied incorporated techniques to deal with cross-

organisational IT. Nevertheless, cross-organisational IT has been important since

the rise of EDI in the early 1980s and the current trends in networked business,

value networks, value chain automation, and outsourcing create an urgent need for

incorporating network aspects in IT architecture alignment. Finally, the rapid rise of

mobile and ubiquitous technology such as Radio Frequency Idenfication (RFID),

cell phones, and wireless PDAs create an additional need to get to grips with the

alignment between software infrastructure and physical infrastructure. With mobile

technology, the physical location of software is important and this has conse-

quences for the services offered by mobile technology, as well as for the manage-

ment of this technology.

10.4.2 IT Governance

IT governance is the activity of controlling IT. It consists of making decisions about

acquisition, change, and disposal of IT, as well as monitoring IT performance data

in order to be able to control IT more effectively and efficiently. IT governance is

part of corporate governance. As we discussed in Chap. 1, recent developments

such as the Sarbanes–Oxley Act in the USA and the Basel II agreements in the

financial sector have brought corporate governance, and in its wake IT governance,

to the centre of attention of management of large corporations.

272 10 Architecture Alignment

http://dx.doi.org/10.1007/978-3-662-53933-0_1

We view IT governance as a coordination problem. Some of the relationships to

be coordinated in IT governance are shown in Fig. 10.15. In different companies,

different organisational entities are involved, but usually there are executive man-

agement, CIOs, business units, and IT architects involved. Whatever the configu-

ration of managers, committees, and other stakeholders, we can make one simple

generalisation from our cases studies: architecture design is a top-down process that

conflicts with the local interests. This tension occurred in all organisations studied

by us as a tension between the architects of the business system layer and project

managers who implement one particular business system.

Business
unit

Board of
directors

Executive
management

Chief CIO

BU CIO

Business unit
management

Business systems
requirements engineer

Business
systems

management

Business
unit

BU CIO

Business unit
management

Business systems
requirements engineer

Infrastructure
domain CIO

Infrastructure
domain

management

Business
systems

development
department

Business
systems

architecture
group

Fig. 10.15 A sample of coordination relations to manage. Each line represents one coordination
relation

10.4 The Architecture Process 273

Proposition 12 Architecture design of the business system layer uses global

optimisation criteria. Architects of individual systems within the business

system layer use optimisation criteria that are global for their project, but

local for the business system layer.

The architecture of a business system layer is designed with global cost reduc-

tion in mind. This always requires reuse of components in different systems, or the

imposition of standards that globally make sense but locally may seem awkward to

follow. When an individual system is designed, the project manager or business unit

manager responsible for the project will always find good reasons why this globally

optimal design is not optimal for his or her system, and will try to get around the

global architecture. The only way around this tension is to make the project

manager directly accountable to someone responsible for maintaining the global

architecture, such as the chief CIO in Fig. 10.15. In practice, the project manager

often comes from a business unit and is accountable to a BU manager. This then

leads to the conflict between local and global optimisation. In the USA, this is

identified as a major concern. The Clinger–Cohen Act of 1996 (see Sect. 1.4.2),

which aims to establish better IT governance in government agencies, tries to

improve the situation somewhat by giving explicit responsibility for a coherent

project portfolio to the CIO.

IT governance is currently for a large part addressed from the perspective of

management science. This means that solutions for IT governance are sought solely

in the business domain, e.g., by organisational change (as required by the Clinger–

Cohen Act, for example), by control frameworks such as COBIT (see Sect. 2.1.5),

but also by improving personal skills of CIOs and architects. It is doubtful whether

this is sufficient. In addition to the management science approach, research is

needed to develop an engineering approach that seeks to develop IT architectures

with attention to governance at all stages of the system life cycle and for all layers,

from IT infrastructure to the business layer.

10.5 Summary

We presented a framework for describing alignment phenomena consisting of three

system dimensions: system aspects (services, behaviour, communication, seman-

tics, and quality), system aggregation, and system life cycle states. The fourth

dimension of our framework is not about systems, but about system descriptions,

and concerns the abstraction level at which we describe systems. We have used this

framework to analyse six cases of architecture alignment in large organisations in

the government and finance sector. In all these organisations, IT architecture has a

layered service provision structure. The infrastructure layer contains systems that

must be available for all users; the business system layer contains systems available

274 10 Architecture Alignment

http://dx.doi.org/10.1007/978-3-662-53933-0_1
http://dx.doi.org/10.1007/978-3-662-53933-0_2

for particular business processes. Business systems have a tendency to gravitate

towards the infrastructure layer. Because infrastructure is driven, among others, by

the business strategy, and the business system layer is driven primarily by the actual

business operations, there is usually a misalignment between these two layers. By

Conway’s law, this misalignment in the software architecture corresponds to a

misalignment among system development departments. Most organisations struc-

ture their infrastructure layer into a number of technology domains, and structure

their business system layer into a number of business domains. This roughly

corresponds to a front/mid/back-office structure where the front office contains

the business-specific systems and the back office contains generic, white-label

systems.

10.5 Summary 275

Chapter 11

Tool Support

Hugo W.L. ter Doest, Diederik van Leeuwen, Peter Fennema, Leon van der

Torre, Andries W. Stam, J. Jacob, and Farhad Arbab

11.1 Reasons for Enterprise Architecture Tooling

There are a number of reasons for dedicated tool support for enterprise architecture.

First of all, tools help to standardise the semantics and notation of architecture

models. If the use of tools is accompanied by proper training and education, a

company-wide introduction of a tool (or set of tools) is a big step towards

standardisation of the architecture languages and practice within the organisation.

Second, tools can support the design of correct and consistent models through

automated constraint checking and application of architecture principles. Third,

tools can support the architect in the application of architecture patterns and reuse

of components and solutions already in use in the organisation. Fourth, tools can

support the comparison of alternatives, comparison of ‘as is’ and ‘to be’ situations,
impact-of-change analysis and quantitative analysis of models. Moreover, tools can

H.W.L. ter Doest

Dimpact, Enschede, The Netherlands

D. van Leeuwen (*)

BiZZdesign, Enschede, The Netherlands

e-mail: d.vanleeuwen@bizzdesign.com

P. Fennema

Freelance, Enschede, The Netherlands

L. van der Torre

University of Luxembourg, Luxembourg, Luxembourg

A.W. Stam

Almende, Rotterdam, The Netherlands

J. Jacob

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

F. Arbab

University of Leiden, Leiden, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_11

277

mailto:d.vanleeuwen@bizzdesign.com

support migration paths from the current situation to a newly designed ‘to be’
situation.

Modelling tools are of course an important category of tools for enterprise

architecture, but not the only category. Architecture models need to be stored

somehow for later reference, and it must be possible to publish architectures to

other stakeholders. Support for enterprise architecture can therefore be subdivided

into the following categories:

– Modelling and design: Tools that support modelling and design of architecture

models.

– Reporting and publication: Tools that allow the design, either interactively or

through configuration, of reports and viewpoints for specific stakeholders.

– Storage and retrieval: Metadata repositories that store meta-models, models, and

viewpoint specifications.

11.2 The Architecture Tool Landscape

The market for enterprise architecture tools has matured over the last few years.

However, the number of tools available is still fairly limited compared to

e.g. software development tools, and those available often suffer from limited

interoperability with other tools. Furthermore, tools presented as tools for enterprise

architecture sometimes originated as domain-specific tools developed for purposes

such as configuration management, software development or business process

design. This origin is often reflected in their approach to enterprise architecture.

Weak interoperability between tools has both a technical and a conceptual

aspect. Technically, tools are not designed with interoperability in mind. Of course,

many tools have the ability to import or export XML Metadata Interchange (XMI)

(Object Management Group 2015b) for UML, and some have features to import file

formats of other tools. However, often these functionalities have the sole purpose of

facilitating the migration from one modelling tool to another. Conceptually, tools

are built for creating models in a specific modelling domain, and not for modelling

relations to models or objects outside that domain. Depending on the starting point

for setting up tool support for enterprise architecture, a number of tool categories

are of interest (Fig. 11.1):

– Enterprise architecture modelling tools: Tools for enterprise architecture support

the complete range of architecture domains, in most cases at a higher abstraction

level than domain-specific tools.

– IT management tools: These tools are geared towards managing the IT assets of

the enterprise, sometimes called portfolio management tools.

– Software design and development tools: These are software modelling tools that

extend their scope to business process modelling and enterprise architecture

modelling by adding concepts and diagram types.

278 11 Tool Support

– Business process design tools: Similar to the software modelling tools, business

process modelling tools extend their scope with IT-related concepts and higher-

level concepts for enterprise architecture modelling.

– Business process management tools: These are aimed at the operational man-

agement of business processes, e.g., by providing process measurements and

other management data.

– Repositories: Metadata repositories and IT management tools that add modelling

and analysis capabilities that partly cover the functionality expected from

enterprise architecture modelling tools.

11.3 Tool Infrastructure

In order to make our vision tangible, we have defined a reference architecture that

integrates both domain-specific tools and (new) tools for enterprise architecture.

The foundation of the architecture is a repository for storage and retrieval of

models, meta-models, viewpoint specifications and views. Another key element

of the architecture, although not explicitly mentioned, is a language for describing

enterprise architectures that enables integration of existing domain-specific archi-

tectures, architecture design and analysis, decision support and communication.

This tool infrastructure is depicted in Fig. 11.2. The Enterprise Architecture

Service Layer in between the repository and the enterprise architecture tools at the

top provides services for the manipulation of models and views:

– selection of content from domain-specific and enterprise architecture models;

Repositories

EA Modelling

Software
Design and

Development

Business
Process
Design

Business
Process

Management

IT
Management

Fig. 11.1 Tool categories

11.3 Tool Infrastructure 279

– transformation of domain-specific models to an enterprise architecture language

and vice versa;

– creation and maintenance of views;

– specification and management of viewpoints.

The infrastructure outlined here requires the integration of existing tools with a

repository, and the integration of enterprise architecture tools with the Enterprise

Architecture Service Layer. Technically, the integration of tools can be

characterised by the following aspects (Schefstroem and Broek 1993):

– Data integration addresses the issue of sharing data between tools and the

storage of diagrams, models, views, and viewpoints.

– Control integration addresses the issue of communication and coordination

between tools (and the integration framework, if existent).

– Presentation integration concerns the user interaction with the integrated set of

tools. Some frameworks completely wrap the existing interfaces whereas others

keep original interfaces intact and offer integration through a repository (model

integration).

This is similar to the well-known ‘model–view–controller’ pattern. In our vision,
a well-integrated suite of cooperating enterprise architecture tools should address

all three integration aspects. Based on the reference architecture from Fig. 11.2, the

ArchiMate project defined a tool architecture for the so-called ArchiMate work-

bench that does exactly that.

EA Modelling
Tool

Viewpoint
Designer

View
Presentation

Tool

Impact
Analysis Tool

Quantitative
Analysis Tool

Enterprise Architecture Service Layer
Content Selection , Model Transformation , Viewpoints , Views

Repository
EA

Model
UML

Model
BPMN
Model

Data
Model

Workflow
Model ...

Domain-
Specific

Tool

Reporting
Tool

Scanning &
Monitoring

Fig. 11.2 Tool infrastructure for enterprise architecture

280 11 Tool Support

11.4 Workbench for Enterprise Architecture

This section presents the software architecture for the ArchiMate workbench. First,

a number of design principles are identified that guided the design, then we present

the workbench architecture.

The most essential design principle behind the ArchiMate workbench is that the
workbench integrates existing modelling languages. The workbench does not

integrate existing modelling languages one-to-one, but brings them to the abstrac-

tion level of enterprise architecture, by translating them to one general modelling

language as advocated by Creasy and Ellis (1993).

A second important design principle is that the workbench is viewpoint driven. The
workbench serves as an instrument to construct views of existing or future models and

a modelling tool at the same time. The starting point of each workbench session is a

viewpoint definition that specifies how to visualise and model a view. Furthermore,

the workbench is transparent and extensible. The workbench can open architectural

constructs in their native modelling tools. In addition, new modelling languages and

associated modelling tools can easily be integrated with the workbench.

The following subsections zoom in on model integration, viewpoint definition,

transparency and extensibility, the workbench architecture, and finally exchange

formats. A more elaborate explanation is given in Leeuwen et al. (2004).

11.4.1 Model Integration

To integrate existing models expressed in heterogeneous modelling languages, the

ArchiMate modelling language described in Chap. 5 is used. The ArchiMate

modelling language is not ‘just another modelling language’, but integrates

existing, more specific modelling languages, as we have outlined in Sect. 5.1.

Here, we will describe in more detail how this language integration can be realised

in a tool integration environment.

To integrate fully a specific modelling language with the workbench, both a

bottom-up and a top-down transformation are required between that language and

the ArchiMate language. Due to the potentially different abstraction levels between

a specific language and the ArchiMate language, a bottom-up transformation is

likely to lose details and a top-down transformation is likely to be incomplete. In

extreme cases a top-down transformation may only produce a template.

To reduce the abstraction mismatch, ArchiMate constructs may be specialised

by means of ‘is-a’ relations. The workbench may still treat these constructs as

native ArchiMate constructs, while at the same time the transformations to and

from these constructs can be made more exact. For example, the ArchiMate

construct application component may be specialised to UML application compo-
nent in order better to match the UML construct component (Fig. 11.3). Such a

specialisation may add attributes or assign a more specific semantics to the concept

of component.

11.4 Workbench for Enterprise Architecture 281

http://dx.doi.org/10.1007/978-3-662-53933-0_5
http://dx.doi.org/10.1007/978-3-662-53933-0_5

11.4.2 Viewpoint Definition

As we have described in Chap. 8, a viewpoint is a pattern or template from which to

construct individual views. A viewpoint establishes the purposes and audience for a

view and the techniques or methods employed in constructing a view.

The ArchiMate workbench adopts an operational interpretation of viewpoints. A

viewpoint consists of different types of rules governing the selection and presenta-

tion of view content, and controlling the interaction with, and interpreting changes

to, the view presentation. Furthermore, a view might itself be based on another

view, leading to a chain of views instead of a single step from a model to a view.

Ultimately the distinction between model and view is rather arbitrary.

As the workbench aims to support the architecture design process, it focuses on

the basic design viewpoints that are dedicated to the design process and were

outlined in Sect. 8.5. These viewpoints consist of straightforward selection, pre-

sentation, interaction, and interpretation rules. In the context of the workbench, a

design viewpoint simply defines which modelling constructs are allowed, with

which symbols these constructs are presented, and which connections these con-

structs are allowed to have. Nevertheless the workbench may well serve as a

starting point for more complex viewpoints that are based on more complex rules

and designed to consult models rather than to manipulate models. In Sect. 11.5 we

will focus in more detail on the design of such a more complex, interactive

viewpoint infrastructure.

UML – ArchiMate concepts Testbed – ArchiMate concepts

UML concepts Testbed concepts
transformation transformation

Application
Component

UML
Application
Component

UML
Application
Component

Business
Process

Testbed
Business
Process

Behaviour
Block

ArchiMate concepts

Fig. 11.3 Specialised ArchiMate constructs for UML and Testbed (Eertink et al. 1999)

282 11 Tool Support

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_8

11.4.3 Transparency and Extensibility

To allow easy integration of new modelling tools, the workbench adopts an adapter

pattern (Gamma et al. 1995) with the motivation that modelling tools should be

made to integrate by means of ‘plug and play’.
The workbench prescribes the tool adapter interfaces. The workbench trusts each

adapter to be capable of bottom-up and top-down transformations, between the

adapter’s associated modelling language and the ArchiMate modelling language.

To obtain transparency, the workbench uses the tool-specific adapter associated

with a modelling construct to open that modelling construct in its associated

modelling tool.

11.4.4 Software Architecture

The workbench architecture consists of four tiers: a tool tier, an integration tier, a
view tier and a presentation tier (Fig. 11.4). The main component in the workbench

tier is the ArchiMate workbench: the workbench allows the manipulation of

ArchiMate models. Each ArchiMate model conforms to an ArchiMate viewpoint

that defines which modelling constructs are allowed, with which symbols these

constructs are presented, and which connections these constructs are allowed to

have. The view presenter and interactor is responsible for visualising the resulting

view, and for interacting with the user. A specific implementation of the view

manager and the view presenter and interactor is described in Sect. 11.5.

ArchiMate Workbench

<X>
Integrator

View
Manager

View
Presenter &
Interactor

User

<X>
model

ArchiMate
model

Viewpoint
specification

<X>
Tool

Tool tier Integration tier View tier

Symbol
library

ArchiMate
view

Presentation tier

Fig. 11.4 The four-tier workbench architecture

11.4 Workbench for Enterprise Architecture 283

In the tool tier, domain-specific modelling tools may be used to design tool-

specific models according to a specific modelling language, such as UML

or BPMN.

To allow ArchiMate models to elaborate upon or break down into tool-specific

models, the integration tier links modelling tools and their languages to the

ArchiMate workbench. The glue used is a tool adapter specific to each modelling

tool: a tool-specific integrator. This integrator can perform transformations

between tool-specific models and ArchiMate models. The ArchiMate workbench

controls the integrator: the workbench dictates when to transform what models or

what content and decides when to open a model in its native modelling tool.

11.4.5 Exchange Formats

ArchiMate models and integration content can be stored and exchanged using

standard XML-based (W3C 2008) formats. These formats not only prescribe the

way content should be formatted, but also provide a meta-language to express meta-

information about the content, which helps to interpret that content. When a tool-

specific integrator (see Fig. 11.4) provides integration content in XML, it uses this

meta-language to express the integration schema, i.e. what modelling constructs

that content uses. For example, a UML-specific integrator would use the meta-

language to specify a schema with a UML-specific version of the ArchiMate

concept Application Component.
Examples of XML-based exchange formats that come with meta-languages are

XML itself, XMI (OMG 2015c) and OIFML (ODMG 2000). Corresponding meta-

languages are XML Schema (W3C 2004) and ODL (ODMG 2000) respectively.

For ArchiMate itself, The Open Group have published the XML-based ArchiMate

Model Exchange File Format (The Open Group 2015).

11.4.6 Workbench at Work

To illustrate the value of the workbench, we present an example: an existing UML

model and an existing Testbed model (Eertink et al. 1999) are integrated in an

ArchiMate model (Fig. 11.5).

The UML model depicts a number of application components that are used by

our imaginary insurance company ArchiSurance. The components are translated to

ArchiMate components in a straightforward way. The Testbed model represents a

number of process blocks that realise claim handling from registration to payment.

This model is translated to ArchiMate concepts as well. Now, the workbench can be

used to order the objects and define relations between them. In this case a layered

architecture is created with services that are realised by components and provided

to business processes. This results in a view relating business processes to IT

284 11 Tool Support

components by means of service concepts. The following operations are applied in

the creation of the integrated model:

– Translation: The interface offered by the Claims administration component is

translated to the Claim information service. UML dependency relations are

translated to ArchiMate use relations.

– Selection: Mainly processes and components are selected. Several objects from

the models on the left are not relevant in the ArchiMate model. For example, the

Central administration component is left out because it is not used by the

business process.

– Extension: Services offered by components to processes are added; concepts are

grouped using ArchiMate grouping constructs.

The GUI of the workbench divides the application window into three frames

(Fig. 11.6): a content explorer, a canvas for modelling and a concept explorer.
The canvas (centre) shows the currently opened ArchiMate model. Objects may

be added to the model in two ways:

– Objects from the content explorer may be dragged and dropped onto the canvas.

These objects are in fact references to objects in the underlying tool-specific

models.

– Constructs from the concept explorer may be dragged and dropped onto the

canvas. In this way, newly created instances of those constructs are added to the

model.

The content explorer (left) shows hierarchical representations of the tool-specific

models on which the currently open ArchiMate model is based. These tool-specific

models have been translated into (possibly specialised) ArchiMate concepts, as was

explained in Sect. 11.4.1. The concept explorer (right) shows only those concepts

from the ArchiMate language that are relevant to the current viewpoint.

Application components and services

External application services

 Damage claiming process

Registration PaymentValuationAcceptance

Claims
administration

service

Risk
assessment

service

Payment
service

 Risk
 assessment

 Claims
 administration

 Financial
 application

Claim
information

service

Customer
administration

service

 Customer
 administration

ValuationAcceptanceRegistration Payment

Claims
administration

Customer
administration

Risk
assessment

Financial
application

Formal
claim

Policy
(contract)

Central
administration

Fig. 11.5 An ArchiMate model (right) based on a Testbed model (top left) and a UML model

(bottom left)

11.4 Workbench for Enterprise Architecture 285

11.5 View Designer Tool

The view designer tool supports the visualisation and editing of enterprise views

and forms a proof of concept of several key concepts introduced in this book, in

particular the separation of a model and its visualisation (Sects. 3.3 and 8.2) and

actions in models and views (Sect. 8.3). A viewpoint describes both model opera-

tions and visualisation issues. These two activities are strictly separated in the view

designer tool. It consists of two main interacting components, a view manager that
updates the views and models and a view presenter and interactor that visualises
the models and views and handles the interaction with the user (Fig. 11.7). These

components were also identified in the overall software architecture of the

ArchiMate workbench (Fig. 11.4).

A model or view contains not only concepts and relations, but also actions that
describe how the model or view can be changed. This includes a description of the

parameters needed to execute an action. The viewpoint specifies how these param-

eters can be collected, i.e., which input devices should be used and in which order

they should be invoked. Designing a viewpoint comes down to the following steps:

1. Define the static part of the viewpoint using viewpoint rules for the model and

viewpoint rules for its visualisation.

2. For every model and view, define the actions that can change the model or view.

3. For every action, define which parameters it needs to have to be executed.

4. Define how these parameters can be collected.

5. Define the order of steps (protocol), including the use of virtual input devices

(menus, text input, buttons, etc.), variables, and constants.

Fig. 11.6 Workbench user interface

286 11 Tool Support

http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_8

We illustrate the view designer by explaining how it has been used to develop

the landscape map viewpoint introduced in Sect. 8.2.2. To understand how the view

designer can be used, the user has to understand some technical details. For

example, a model or view is represented in XML, and a viewpoint is based on

XML transformations expressed as transformation rules (see also Sect. 11.4.2). We

therefore also explain in this section how the designer realises the separation

between model and its visualisation, and the use of actions in models and views.

We do not discuss the reasons for a separation between a model and its visualisa-

tion, or the need for actions in models or views, as we have already explained these

in Sects. 3.3, 8.2, and 8.3.

11.5.1 Viewpoint Rules for Creating Views
and Visualisations

As outlined in the previous section, the first step we must take is to define the static

part of a view and a viewpoint. When using the view designer, it is important to

distinguish between the part of the viewpoint that is concerned with the models or

views, and the part that is concerned with their visualisation. This is based on the

distinction between the content of a model or view and its presentation or visual-

isation, as described in Sect. 8.2. When designing views and viewpoints, it is

important to distinguish the two. Typically, first the models and views are defined,

and only in a second phase their visualisation. Models and views should not contain

visual references (‘above’), but should be phrased in semantically meaningful terms

(‘more important’). Moreover, there are typically multiple visualisations of the

same model, either to satisfy distinct stakeholders or to address distinct concerns.

In the landscape map viewpoint, the viewpoint rules for creating a view define a

three-place relation from the relation available in the model. The three-place

View Designer

ArchiMate Workbench

<X>
Integrator

View
Manager

View
Presenter &
Interactor

User

ArchiMate
model

Viewpoint
specification

Symbol
library

ArchiMate
view

Fig. 11.7 High-level software architecture of the view designer

11.5 View Designer Tool 287

http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_3
http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_8
http://dx.doi.org/10.1007/978-3-662-53933-0_8

relation details, for each pair of product and business function, which applications

are used. The viewpoint rules for visualisation map this three-place relation to

visual objects, like those depicted in Fig. 11.8.

In the software architecture of the view designer, the conceptual distinction

between a model and its visualisation has led to a distinction between a view

manager and a visualisation engine: the view manager updates the views and

models, and the view presenter and interactor visualises the models and views

and handles the interaction with the user.

11.5.2 Defining Actions in Models and Views

Having defined the static part of the viewpoint, we define the dynamic part. In Sect.

8.3 we introduced the concepts and the rationale behind embedding action in

models and views. The basic idea is that enterprise models contain information

about how the enterprise might change. For example, an organisation may specify

what happens when two departments are merged. In the view designer, such

changes to an enterprise can be mapped to meaningful actions in views, which

are represented as action names with lists of parameters and their types. For

example, a ‘merge’ action may exist with parameters to specify which departments

should be merged. The viewpoint also contains a mapping from these parameters to

Maintaining

Customer &

Intermediary

Relations

Claim

Handling

Contracting

Document

Processing

Liability

Insurance

Car

Insurance

Travel

Insurance

Home

Insurance

Legal Aid

Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business

Functions

Products

Financial

Handling

Car insurance
application

Fig. 11.8 Visualisation of a three-place relation: landscape map of ArchiSurance

288 11 Tool Support

http://dx.doi.org/10.1007/978-3-662-53933-0_8

(virtual) input devices. A department can be identified by entering its name, or by

using the mouse to click on it. Finally, the viewpoint contains a routine name that

should be executed (with the collected parameters as inputs) when the action is

carried out. This routine defines the actual (XML) transformation of the view

content. For example, when two departments are merged, the routine also specifies

what happens with relations of the old department, which may or may not become

relations of the newly created department.

It would not be feasible to construct all kinds of meaningful actions from scratch,

therefore we first define atomic actions and thereafter composite actions. The basic

atomic actions usually come down to adding and deleting concepts and relations.

However, it is good practice to define the actions in model as meaningful operations

from a business perspective: for example, as creating a new department, hiring a

new employee, etc. Furthermore, we define a set of actions for each viewpoint. For

example, for the landscape map viewpoint we define the move of an application to

another cell, we define changing the columns and rows of the matrix, and we define

the addition and deletion of applications. We determine for each action what kind of

parameters it needs as input, and define the consequences of executing the action.

Next, larger actions can be defined as compositions of these atomic actions. For

example, consider a view in which we define the action ‘Decrease the average

wage’. We can define this action in terms of actions on the underlying model

containing the wages of the employees. For example, we can define this complex

action as firing the boss, or decreasing everyone’s wages by some percentage.

During this specification of the dynamic part of the model, in which we define

the actions in models and views, we still have to respect the separation of the model

or view from its visualisation as we already discussed for the static part. The actions

should be defined in terms of concepts of the model, not in terms of interaction with

the user—just like the static concepts and relations of a model should not be defined

in terms of visual elements like boxes and lines. For example, the specification of an

action should not deal with interaction issues such as the ordering of the values of

the parameters of the action, how the values for the parameters are collected, when

the action is evoked, why the action is evoked, etc.

For example, let us again consider an architect or stakeholder who wishes to

change an existing landscape map. First, the effects of this change on the underlying

model need to be assessed. Some changes may be purely ‘cosmetic’ in nature, e.g.,
changing the colour of an object. Other changes need to be propagated to the

underlying model, e.g., if an object is added or deleted.

As a more complex example, consider a view of a business process model, and

an action that merges two processes into a single process. Parameters of these action

are two identifiers for the processes to be merged. Issues which are relevant for the

action of merging processes are the effects of the merger: for example, the removal

of processes, addition of a new process, transferring some relations from the old,

removed process to the new process. Issues such as which processes are merged,

when processes are merged, and why processes are merged, are not relevant for the

specification of the action itself, but are part of the interaction with the user.

11.5 View Designer Tool 289

11.5.3 Interactive Visualisation

In the view designer, we have to bring the actions to life. Here, traditional

visualisation techniques are not sufficient. We need an interactive type of visuali-

sation and we also need interactions with the user, for instance, to obtain values for

the parameters of the action. For example, when merging two business processes, it

is the user who decides which processes have to be merged, and when.

A crucial mechanism underlying the actions is the protocol for interaction

dialogues. For example, assume that the editor visualises the landscape map actions

as a set of buttons, and that pressing a button triggers the associated interaction

protocol. If the user presses the button for adding an object on the X-axis, the

system responds with a question for the name of the object, and asks the user where

the new column must be added. Clearly, there are also interactions that are not

visualised by buttons. For example, the action ‘change columns’ is typically

triggered by a user clicking on the column to be moved. If we look at the interaction

of the user with the landscape map editor in more detail, we can distinguish the

trigger, the atomic steps and the protocol:

1. Typically, the dialogues start with a trigger from the user, such as pressing a

button on the screen.

2. The dialogue may contain several atomic interactions. For example, when an

item is added to an architecture, there are atomic interactions of selecting the

kind of item, typing in the name of the item, pointing at a place on the canvas

where the item should appear, etc.

3. The protocol states in which order the atomic interactions should be done. We

assume that the protocol consists of a complete ordering of atomic interactions,

such that each new atomic interaction can be done only when the previous one

has been finished.

For example, when a user presses a ‘delete’ button, the editor asks the user which
object is to be deleted (Fig. 11.9).

An example of interaction with a landscape map view that is concerned with

both the view and the underlying model is represented in the sequence diagram of

Fig. 11.10. The user presses the delete button, and the landscape view asks which

application should be deleted. The user clicks on an application, which we

abstractly describe by use(a,b,c). Now for the system to delete this relation from

R3(a,b,c)

User Landscape view

press delete

ask object

Fig. 11.9 Interaction with

landscape view

290 11 Tool Support

the model, it can, due to the construction of our relation, use from support and
realise, either delete support(a,b) or realise(b,c). When the user has selected realise
(b,c), the action del in the model is called, and finally the landscape map is rebuilt.

Actions may be interpreted in different ways, depending on the stakeholder and

his or her role. The user in Fig. 11.9 is presumably allowed to change the underlying

model. However, we can block this permission by updating the action in the view

such that the del-realise(b,c) is not triggered by the delete action. Since the actions
are specified in the view, and not in the landscape map tool, this blocking can be

realised by another landscape map action.

11.5.4 Example: The Landscape Map Tool

The first contours of a landscape map are usually drawn on a whiteboard, flip-over,

or piece of paper. Together with the stakeholders the architect tries to address their

concerns. The map should be such that it concentrates on the choices that must be

made. The drawing must also be such that consequences are visible. In this

interaction the architect chooses the concepts on the axes and the plane, and the

level of detail, leaving out the facts that are less important. For the sake of

readability and acceptance the architect juggles a little bit with the (unwritten)

rules of the landscape map. With pen and paper this can obviously be done.

Back at the desk and using the tool we envisage, the landscape map must be

constructed in a more formal way. First, the architect needs to select the type of

concepts used on the X-axis, on the Y-axis and on the plane (see Fig. 11.11). In our

ArchiSurance example, the X-axis contains products, the Y-axis signifies business

functions, and the plane holds applications.

Next, the objects on these axes must be chosen (the X1, . . ., Xm and Y1, . . ., Yn in

the figure). If a landscape map is used to define a new architecture, these objects can

be freely chosen (of course conforming to the type of the axes). Alternatively, if an

existing model is visualised they may be selected from this model. By choosing the

concepts for the axes the playing field is defined.

After this, the architect must choose the type of assertions that are made by putting

an object Zk somewhere on the plane, i.e., the relations R1 and R2. In our example, the

architect chooses business functions on the vertical axis, products on the horizontal

rebuild
del realise(b,c)

realise(b,c)
ask subrel

use(a,b,c)

press delete
ask object

Model User Landscape viewFig. 11.10 More complex

interaction with landscape

view and underlying model

11.5 View Designer Tool 291

axis, and applications on the plane. The most obvious, intuitive assertion is that an

application is used by activities required within the business function in realising the

product, giving us R1 ¼ support and R2 ¼ realise. For every object the architect

places on the plane, these relations between Xi, Yj, and Zk are instantiated.

Furthermore, if the rectangle of the application Zk is not exactly aligned within a

row and/or column, then the relations with the X and Y elements are in a sense

‘incomplete’. For example, an application may deliver only some of the function-

ality needed to support a business function.

The landscape map editor can be described in terms of a number of basic actions

that can be performed on the map. The initial state of the landscape map editor is an

empty canvas. However, the landscape map view is not empty. It contains actions

for selecting the type of concepts on the X-axis, on the Y-axis, and on the plane.

Once these have been selected, a new view is created which contains actions that

allow the user to select and draw the applications, such as the following:

– Draw a rectangle (rubber band) covering one or more cells of the map. A user

may choose the colour and assign an object (instance of a concept) to the

rectangle.

– Extend an existing rectangle with another rectangle that overlaps the original.

Colour and label are inherited.

– Modify a rectangle, e.g., its coverage, colour, and value.

– Delete a rectangle.

In this way, the landscape map actions work as a kind of bootstrapping mech-

anism for the landscape map editor. All interaction mechanisms are defined in the

actions, not in the editor itself. In other words, the editor is generic, and can be used

for any other task as well.

Generating a Landscape Map from the Model Moreover, a landscape map can

be generated from a model. In Fig. 11.12 a model is shown together with its

landscape map. The left canvas visualises five products on the left, five business

functions on the right, and ten application components in the middle. The right

canvas visualises a landscape map as before.

Each canvas has its own set of actions. Only the actions of the active canvas can

be invoked. Most actions are invoked by buttons on the left side of the figure, where

inactive buttons are shown in grey. If an action is invoked that changes the

underlying mode, such as deleting a component, then both views are regenerated

and redrawn.

Y1

Yn

Yj

X1 Xi Xm
Y-axis

X-axis

Zk
R2

R1

Fig. 11.11 Elements of a

landscape map

292 11 Tool Support

The user can add actions by adding them to the XML file that represents the view;

for example, by adding a viewpoint rulewith the desired effect. Thus, the user interface

of the tool can be configured by the viewpoint being visualised, adding an extra layer of

flexibility not normally present in typical modelling and visualisation tools.

11.5.5 Comparison with Model–View–Controller
Architecture

If we compare our visualisation and interaction model with the popular model–

view–controller or MVC architecture used in user interface frameworks, we see a

number of differences. Consider an MVC architecture in which a model contains a

description of the architecture, and the view is a landscape map. Moreover, assume

that removing an object from the landscape map leads to several updates of the

underlying model, maybe involving the same object, maybe involving only other

objects. The effect of this interaction is defined in the controller. The point of the

MVC pattern is that it is good software engineering practice to separate these

concerns of storing a model in a database, and updating the database.

According to Eriksson and Penker (1998, pp. 219–222), the MVC architecture

may be seen as an instance of the Core-Representation pattern used in business

modelling:

Fig. 11.12 Model with associated landscape map view

11.5 View Designer Tool 293

The Core-Representation pattern structures the essentials in a problem domain

with the purpose of building well-structured and easily changeable models. The

core objects of a business, such as debt, agreement, customer, product, delivery, and

order, are objects that rarely change fundamentally; conversely, the representations

of these objects often change or are extended. A modeller should take this into

consideration and separate the core objects from their representations. This process

is added by the Core-Representation pattern.

Summarising, in the MVC and CR patterns, one rightly discriminates among the

model, the view (which contains both the selection and visualisation aspects), and

the interaction. However, the interaction in the controller is typically domain- or

application-specific. Our approach departs from this assumption in that there is not

a controller for each application, but there is a generic controller to be used for all

applications, which is configured by the actions in the views.

11.6 Impact-of-Change Analysis Tool

The impact-of-change analysis tool illustrates the way in which structural impact

analysis of an architecture can be done. By ‘impact analysis’, we mean the

following: given an entity within the architecture which is considered to be mod-

ified or changed, which other entities in the description are possibly influenced by

this change?

Users can use the analysis tool for these kinds of analyses. They can open

different views of an architecture and select a model element within one of these

views. After that, the tool shows the impact a change to this model element would

have on the architecture. It does this by analysing the direct and indirect relations

between the selected model element and other model elements within the

architecture.

Within the ArchiMate language, there are many different relations between

concepts. The tool allows the user to select a subset out of the entire set of relation

types. If a subset of relation types is selected, only relations of the types within the

subset are involved in the impact analysis. By including or excluding certain

relation types, architects gain insight into the mutual dependencies between the

entities within an architecture.

The core of this analysis tool is the Rule Markup Language (RML) (Jacob 2004;

de Boer et al. 2005). RML is an XML-based language for transforming XML

documents. Whereas the existing transformation techniques for XML such as

XSLT (W3C 1999) are geared towards syntactic transformation, RML is aimed at

expressing mathematical and logical rules and transformations. It consists of a set

of XML constructs that can be added to an existing XML vocabulary in order to

define RML rules for that XML vocabulary. These rules can then be executed by

RML tools to transform the input XML according to the rule definition.

Rules defined in RML consist of an antecedent and a consequence. The ante-

cedent defines a pattern and variables in the pattern. Without the RML constructs

294 11 Tool Support

for variables this pattern would consist only of elements from the chosen XML

vocabulary. The pattern in the antecedent is matched against the input XML. The

variables specified with RML constructs are much like the wildcard patterns like *

and + and ? as used in well-known tools like grep, but the RML variables also

have a name that is used to remember the matching input. If the matching of the

pattern in the antecedent succeeds, the variables are bound to parts of the input

XML, and they can be used in the consequence of an RML rule to produce

output XML.

The main benefit of RML is its ease of use. In XSLT, for example, it is very hard

to specify that the XML expression

<apply>

<and/>

<ci>P</ci>

<ci>P</ci>

</apply>

meaning ‘P AND P’ in MathML, should be transformed into

<ci>P</ci>

according to the logic rule of ‘AND-elimination’. This is because XSLT is

targeted at transformations of single XML elements, not element patterns. In

RML+MathML the antecedent of the ‘AND-elimination’ rule above is expressed as

<apply>

<and/>

<rml-tree name=‘A’ />

<rml-use name=‘A’ />

</apply>

and the consequence as

<rml-use name=‘A’ />

where the tool applying this rule binds an XML tree to the variable ‘A’ at<rml-
tree name¼‘A’ /> and then later uses that variable to match and reproduce. In

the above example variable A will be bound to <ci>P</ci>.

Rules for static analyses such as those described in Sect. 9.3.1 can be expressed

in RML, and the RML rules engine embedded in the impact-of-change analysis tool

applies these to an XML representation of the architecture to arrive at the analysis

results. As in the ArchiMate workbench described in Sect. 11.4, the analysis tool is

viewpoint based, and RML specifications of viewpoints are used to extract the

relevant views from an underlying architecture model.

11.6 Impact-of-Change Analysis Tool 295

http://dx.doi.org/10.1007/978-3-662-53933-0_9

The following two figures illustrate the use of the analysis tool. Within Fig. 11.13,

three different views of a certain architecture are shown. Note that the views overlap,

which is allowed: the same model elements can be included in more than one view.

If we select one of the model elements, we get the picture of Fig. 11.14. Within

this figure, all instances that are directly or indirectly related to the selected model

element are coloured red. The selected model element itself is coloured dark red, in

order to distinguish it from the model elements on which it has impact.

11.7 Quantitative Analysis Tool

To validate the quantitative analysis techniques described in Chap. 9, a prototype

was built and applied in practice. This quantitative analysis prototype consists of

two components:

– The analysis component implements the analysis algorithms. It reads an input

model, normalises and analyses this model, and returns the original model

extended with the values that resulted from the calculations. It can accept

input models from file or from internal memory (string objects). The analysis

logic is separated from the data source format by letting the logic operate on an

Fig. 11.13 The impact-of-change analysis tool showing multiple views of the same model

296 11 Tool Support

http://dx.doi.org/10.1007/978-3-662-53933-0_9

interface that represents a model. Different data sources require different

implementations of this interface, but the analysis logic is not affected.

– TheWeb service component wraps the analysis component into a web service that

can be accessed remotely on the Internet by other applications. A user can start an

analysis from the workbench by opening a model and selecting the ‘Analyse
content’ menu item. The workbench submits the model to the Web service. This

returns the analysis results, and the workbench presents the results to the user.

11.8 Commercial Tool Support for ArchiMate

Over the last years, we have seen a steady progression in the maturity of the

enterprise architecture tool market. Although the vision outlined in the previous

sections has yet not been realised fully, many available tools contain elements of

this vision. The most prominent aspect in which they are still lacking is interoper-

ability: most tools are relatively good at importing other file formats, but their

support for exporting to (standardised) formats is often weaker. Hopefully, the

ongoing standardisation efforts in this field will improve this situation.

We will not go into a detailed comparison of commercially available tools.

Overviews of the enterprise architecture tool market are published by, for example,

Fig. 11.14 The impact of a selected model element

11.8 Commercial Tool Support for ArchiMate 297

Gartner (James 2008) and Matthes et al. (2008, 2014). At the time of writing, the

ArchiMate language is supported in many commercially available architecture

modelling tools, provided by companies such as Avolution, BiZZdesign, Corso,

Orbus, Visual Paradigm and others.

The Open Group is responsible for certification of these tools with respect to

their correct implementation of the language. There are other tools providing

non-certified implementations, and there are also several open source

implementations, of which Archi by the University of Bolton in particular deserves

to be mentioned. Free sets of symbols for drawing tools such as Microsoft Visio and

Omnigraffle are available from various sources.

11.9 Summary

In our vision, enterprise architecture will become a real-time tool for management

and redesign of the enterprise for better performance, flexibility, and agility. The

alignment of business and IT will be managed through a series of integrated views

of the enterprise, each covering an appropriate set of concerns for the stakeholder

addressed. To realise this vision, tool integration is of critical importance. We

believe that tool support for enterprise architecture will not be realised by a single

tool, but will be realised by a combination of domain-specific tools and enterprise

architecture tools that add the enterprise architecture concepts and establish rela-

tions between domain-specific models.

The tool integration workbench we have presented is such an enterprise archi-

tecture tool that is able to integrate domain-specific models. Leaving existing

modelling environments intact, the workbench allows the concurrent design of

enterprise architecture domains: each domain may still be designed using its own

languages, tools, and techniques. More importantly, with the ability to reason

across domain boundaries the workbench introduces an instrument for collaborative

design.

By adopting the ArchiMate modelling language, the workbench not only allows

the integration of existing modelling languages, but provides a language to com-

municate across domain boundaries as well. Moreover, the workbench serves as a

starting point for the analysis of enterprise architectures using generic analysis

techniques that rely on the ArchiMate modelling language.

The view designer we described serves as a proof of concept of the separation of

concerns, as it distinguishes the model, views of the model, visualisation, and

interaction aspects. Moreover, it also serves as proof of concept for embedding of

actions in models or views, which describe the dynamics of a model as an integral

part of its semantics. These dynamics must be represented explicitly. The tool

illustrates also that it is feasible to develop a very generic and therefore very

powerful visualisation engine, which separates interaction from visualisation

aspects. Moreover, the actions in models and views demonstrate the feasibility of

interactive visualisation. In the tool these dynamic changes, such as hiring a new

298 11 Tool Support

employee, are used via the visual interface. However, the changes could also be

used by other programs.

The future of tool support for enterprise architecture requires better integration

between the various tools used in the enterprise architecture field. The success of

this integration depends heavily on standardisation organisations and tool vendors.

Vendors of modelling tools need to standardise their modelling languages and

concepts and also their interfaces and storage formats. Repository vendors need

to offer ‘model-intelligent’ repositories and standardised interfaces and exchange

formats for models.

Important steps in this direction have been taken, e.g. the MOF standard for

repositories (Object Management Group 2015d) and the ArchiMate Model

Exchange File Format (The Open Group 2015), but there is still a long way to

go. Nevertheless, we see a clear evolution of the tools market and many tool suites

are moving in a similar direction, with an increasing focus on the use of enterprise

architectures for management purposes.

11.9 Summary 299

Chapter 12

Case Studies

Hans Bosma, Henk Jonkers, Math J. Cuvelier, Peter G.M. Penders,

Saco F. Bekius, and Maria-Eugenia Iacob

12.1 Process and Application Visualisation at ABP

ABP is a pension fund for employees of the Dutch government and the educational

sector. ABP is one of the largest pension funds in Europe with total assets of more

than 156 billion euros serving more than two million customers.

In the year 1998, triggered by the millennium problem, ABP realised that a

better grip was needed on the increasing complexity of the ICT situation. ABP

decided to start an information planning and architecture program. Several products

came out of this project, as follows:

– Architecture principles, such as:

• a process starts with a client and ends with a client;

• every process has a process owner;

• the organisation works client-oriented;

H. Bosma

Ordina, Nieuwegein, The Netherlands

H. Jonkers (*)

BiZZdesign, Enschede, The Netherlands

e-mail: h.jonkers@bizzdesign.com

M.J. Cuvelier

Retired, Heerlen, The Netherlands

P.G.M. Penders

Crescimento Universal, Amsterdam, The Netherlands

S.F. Bekius

Dutch Tax and Customs Administration, Apeldoorn, The Netherlands

M.-E. Iacob

University of Twente, Enschede, The Netherlands

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_12

301

mailto:h.jonkers@bizzdesign.com

• ABP should not ask for certain information from clients if this information is

already available within the organisation.

– An architecture vocabulary.

– An information systems blueprint to guide ICT development.

Some of the examples below are in Dutch, because they are taken from real-life

data, but they serve to illustrate the type of diagram we are discussing.

12.1.1 ABP Meta-model

ABP divides the architectural universe of discourse into five domains: business,

process, application, data and technology (Fig. 12.1). A further detailing in the form

of a conceptual meta-model is shown in Fig. 12.2. Notice that the technology

domain has not yet been covered by this meta-model.

From a first rough comparison with the ArchiMate meta-model (see also

Fig. 5.4), the following differences can be identified:

– ABP uses a fixed decomposition of processes and systems, while ArchiMate

uses a variable decomposition mechanism.

– The service concept is not used by ABP (although the process implementation
concept comes close).

– The data domain of ABP has a more extensive set of concepts than the data

domain of ArchiMate.

– ABP has no organisational concepts in its meta-model.

12.1.2 Case Essentials

ABP realised that keeping track of the current situation is an important requisite for

disciplined ICT management. For that reason, ABP selected a repository in order to

store metadata about ICT and in a later phase about other domains. The meta-model

of Fig. 12.2 is used as the database scheme of this repository.

Business

Process

Data Applications

Technology

Business

Process

Data Applications

Technology

Fig. 12.1 ABP architecture

domain model

302 12 Case Studies

http://dx.doi.org/10.1007/978-3-662-53933-0_5

The repository data is disclosed via a Web portal. However, a graphical presen-

tation of the contents was missing, impeding the wider use of this information.

Presentations could be made manually of course, but this requires a considerable

effort. Therefore, ABP recognised a need for automatic generation of visualisations.

To this end, a tool was built that generates visualisations of the data about

information systems, interfaces, and databases. A typical example of such a dia-

gram is shown in Fig. 12.3. For more information about this first ArchiMate case,

we refer to Iacob and Leeuwen (2004).

Being able to visualise system information, ABP’s next wish was to connect

systems data with process data. However, information about processes was not yet

stored in the repository: this process data was stored in a process modelling tool and

in a workflow tool. Thus, the goal of the case was to integrate data from different

sources and subsequently generate visualisations. The tool infrastructure was to be

based on the generic ArchiMate concepts; hence an extra requirement was added,

namely to map the (relevant parts of the) ABP meta-model to the ArchiMate meta-

model.

Constraint

Sub-
system

Database
part

Client
process

Business
sub-

function

Calculation
function

Business
unit

process

Process
implem.

Sub-
process

Business
function

Appli-
cation

System

Process
implem.

step

Attribute
type Relation

Activity

Entity
type

Business
entity
type

Database

Domain

Event

Product Constraint

Sub-
system

Database
part

Client
process

Business
sub-

function

Calculation
function

Business
unit

process

Process
implem.

Sub-
process

Business
function

Appli-
cation

System

Process
implem.

step

Attribute
type Relation

Activity

Entity
type

Business
entity
type

Database

Domain

Event

Product

Fig. 12.2 Meta-model of ABP

12.1 Process and Application Visualisation at ABP 303

12.1.3 Concepts

To connect system and process information, only part of the ABP meta-model was

relevant (Fig. 12.4). The mapping of the ABP meta-model to the ArchiMate meta-

model was achieved via an intermediary bridging level, a specialisation of the

ArchiMate meta-model. Subtypes of process and application component are intro-
duced, and the service concept is mapped onto process implementation.1

The concept mapping is depicted in Fig. 12.5. Note that the horizontal use
relations are derived relations, based on the more detailed usage of services of an
application component by a business activity.

12.1.4 Viewpoints

From the four types of design viewpoints identified in Sect. 8.5, the Composition
and Support viewpoints are relevant to visualise the integrated process and system

information.

DUAS

DUAS_ALGEME
EN

DUAS_BASISR
EGISTRATIE

DUAS_FINANCIEE
L_AFHANDELEN

DUAS_MIS

DUAS_STANDA
ARD_QUERIES

DU

AANLEVERING_VAN
_VC_ZOETERMEER

FB01_/
_INTERFACE_NAA

R_SAP-R3

INTERFACE_NAAR
_SUU

SPONTANE_MEL
DERS_NR_VCZ SPONTANE_MEL

DERS_VCZ

VCG-
REGU

ZOETERMEER__-
_BIV

OWNER

OWNER

OWNER

OWNER
OWNER

OWNER

OWNER

OWNER

OWNER

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT OUTPUT
OUTPUT

Fig. 12.3 Example of a generated system structure diagram (partial view)

1Actually, the relation between the concept process implementation step and the ArchiMate

concept of a service is an indirect relation: the existence of a process implementation step is

only an indicator that an application service is provided by an application component.

304 12 Case Studies

http://dx.doi.org/10.1007/978-3-662-53933-0_8

ArchiMate namespace

ABP namespace

Deelproces Activiteit DeelsysteemApplicatieProcesimple -
mentatie -stap

Bedrijfs -
eenheidproces

Systeem11..*11..*1..*1..* 0..*1..* 0..*1..* 10..*

Business
process

Business
subprocess

Business
activity

System
component

Subsystem
component

Application
component

Process Component

Service

Application
service

ArchiMate namespace

ABP namespace

Deelproces Activiteit DeelsysteemApplicatieProcesimple -
mentatie -stap

Bedrijfs -
eenheidproces

Systeem11..*11..*1..*1..* 0..*1..* 0..*1..* 10..*

Business
process

Business
subprocess

Business
activity

System
component

Subsystem
component

Application
component

Process Component

Service

Application
service

Fig. 12.5 Connecting the ArchiMate meta-model with the ABP meta-model

Fig. 12.4 Relevant parts of the ABP meta-model

12.1 Process and Application Visualisation at ABP 305

Composition Viewpoints The Composition viewpoints focus on the structure of

processes and systems. The ‘System component composition’ viewpoint shows a
system component or subsystem component and the subsystem components or

application components it consists of (Fig. 12.6). The ‘Business process composi-

tion’ viewpoint shows a business process or sub-process and the sub-processes or
activities it consists of (Fig. 12.7).

Support Viewpoints The Support viewpoints show the usage relations between

processes and applications. The ‘Business process dependencies’ viewpoint shows
a business process, sub-process or activity and the system, subsystem or application
components it uses (Fig. 12.8). The ‘Application component use’ viewpoint shows a
system, subsystem or application component and the business process, sub-process
or activities it uses (Fig. 12.9). The ‘Process–component relation’ viewpoint zooms

in on a particular use relation between a system, subsystem or application compo-
nent and a business process, sub-process or activity (Fig. 12.10).

12.1.5 Design of the Visualiser

The overall design of the visualisation tool for ABP was based on the general

workbench architecture described in Sect. 11.4. A logical first step in the integration

of the different data sources mentioned in the previous section would have been to

add the process data to the repository and integrate it with the systems data.

However, integrating data from these different sources proved to be a cumbersome

affair because of model and naming incompatibilities. Therefore, the decision was

made to concentrate on a subset of the data and use a temporary data store for the

GP_AANWEN
DEN

AANWENDEN_
AUTOMATISCH

AANWENDEN_I
NTERACTIEF

BERICHT_VER
WERKING

VERZAMELEN_
MUTATIES_BNU

Fig. 12.6 A ‘system component composition’ view

306 12 Case Studies

http://dx.doi.org/10.1007/978-3-662-53933-0_11

proces
toekennen OP

automatisch
aanwenden

Betalen

informeren OP
65-6

intrekken
beeindigen

signaleren OP

SVB
rechtsgegevens

versneld
uitkeren

Verwerken
aanvraagformulier

Verwerken externe
pensioenverzekeraar

Verzamelen
mutatiesv0_1

Fig. 12.7 A ‘Business process composition’ view

proces
toekennen OP

GP_AANWEN
DEN

GP_ONDERSTEUN
ENDE_FUNCTIES

Fig. 12.8 A ‘Business process dependencies’ view

12.1 Process and Application Visualisation at ABP 307

AANWENDEN_I
NTERACTIEF

Betaalgegevens Betalen

Fiscale situatie

Fiscale situatie
twk

Heroverweging
Bezwaar en Klacht

informeren 65+
informeren OP

65-6

Inhouding
derden

intrekken
beeindigen

signaleren OP

SVB
rechtsgegevens

Verwerken externe
pensioenverzekeraar

Verzamelen
mutatiesv0_1

Verzoek info
eigen situatie

Ziektekostenve
rzekering

Ziektekostenve
rzekering twk

Fig. 12.9 An ‘Application component use’ view

GP_AANWEN
DEN

proces wijziging
ziektekosten klant

AANWENDEN_I
NTERACTIEF

Betalen

Verzamelen
mutatiesv0_1

Ziektekostenve
rzekering

Ziektekostenve
rzekering twk

Fig. 12.10 A ‘Process–component relation’ view

308 12 Case Studies

integrated data. The data integration itself was done by a technical integration

component with data matching algorithms.

Collecting and integrating data are the first two steps of the process. Subse-

quently, data is selected and presented by the Visio View Explorer on the basis of

user specifications. The high-level architecture of the visualiser is depicted in

Fig. 12.11. In this figure, the different phases in creating a visualisation are

shown. The Visio View Explorer is worked out in Fig. 12.12. The viewpoints are

specified in an XML viewpoint configuration file. Together, these two figures are a

specialisation of the generic architecture of the ArchiMate workbench shown in

Figs. 11.4 and 11.7.

An important part of the generation of visualisations is creating the layout of

diagrams. Diagram layout addresses the problem of positioning (possibly nested)

boxes and connections on a canvas such that the resulting diagram becomes

intuitively acceptable.

In our approach we confined the layout space to a two-dimensional grid. Such an

approach is appropriate, because (1) a limited layout space speeds up the layout

algorithm, and (2) using a grid causes the resulting diagram to have nicely arranged

boxes. Roughly, our diagram layout strategy consists of (1) the estimation of the

necessary grid size and (2) the actual positioning of boxes on the grid.

The actual positioning of boxes on the grid was done via a special purpose

optimisation strategy.2 It generates a layout by minimising the number of crossing

connections, box–connection intersections, and the total length of all connections.

ABP Visualiser

Integrator Visio View Explorer

ABP
Viewpoint

specification

Collecting Integrating Selecting

ABP
Symbol
library

Presenting

User

Workflow
models

IPI

Interacting

Testbed
models

ABP
content

ABP
view

Fig. 12.11 High-level architecture of the ABP Visualiser

2The layout can also be created using general-purpose optimisation technology (e.g., genetic

algorithms). We experimented with both the former and the latter, and finally opted for the latter.

The main reason for opting for our own optimisation strategy was the problem of level interfer-

ence: the quality of the visualisation is influenced by the layout of nested boxes.

12.1 Process and Application Visualisation at ABP 309

http://dx.doi.org/10.1007/978-3-662-53933-0_11
http://dx.doi.org/10.1007/978-3-662-53933-0_11

Furthermore, it is possible to fix boxes in a certain position. In this way we realised

a ‘centred’ diagram with one centre box and a ‘flow’ diagram with source and

destination boxes.

A typical result is shown in Fig. 12.13: the use of a system component by

business processes. A user then can navigate through the visualisations. For exam-

ple, Fig. 12.13 shows a user zooming in on a particular relation, resulting in

Fig. 12.14.

12.1.6 Case Study Results

The results of both case studies were received positively by ABP. Also, ABP’s
repository vendor recognised the added value of the case results and enhanced its

(newly released) visualisation engine with the insights gained. Via the new repos-

itory functionality, ABP’s system owners are now presented with visual represen-

tations of the systems for which they are responsible.

12.2 Application Visualisation at ABN AMRO

ABN AMRO is a global bank with a staff of more than 100,000 working in over

3000 branches in more than 60 countries. The bank has a federated, regionally

distributed structure with its headquarters in the Netherlands.

Presenting

ABP
view

Visio View Explorer

OleDb
Content
Provider

Visio
View

Manager

Visio View
Presenter

ABP
Viewpoint

specification

ABP
Symbol
library

Designed
ArchiMate

content

Selecting

ABP
content

Used
ArchiMate

content

Fig. 12.12 Detailed design of the Visio View Explorer

310 12 Case Studies

Fig. 12.14 Zooming in on a usage relation between a process and a system

Fig. 12.13 Example: the use of a system component by business processes

12.2 Application Visualisation at ABN AMRO 311

The bank started working with architecture in the middle of the 1990s. In 2000

this resulted in the first version of the Corporate IT Architecture (CITA) method,

which primarily defines the organisation of architecture processes and a mandatory

set of architecture concepts (in the form of an architecture meta-model). Soon after,

a large-scale implementation of this method took place in the Netherlands. The

experiences from that implementation and the setup of architecture departments in

other countries led to the first set of mandatory corporate policies and standards

(P&S) on IT Architecture, called CITA 2003. In 2004 implementation projects

started in the USA and Brazil.

One of the P&S of CITA 2003 defines a set of architecture concepts in the form of

an architecturemeta-model. Another P&S specifies the communication of architecture

deliverables, based on viewpoints and views (derived from the IEEE 1471 standard).

12.2.1 CITA Meta-model

The CITA meta-model is shown in Fig. 12.15.3 The overall structure of this meta-

model is very similar to the ArchiMate meta-model, with the service concept

having a prominent role.

Fig. 12.15 ABN AMRO CITA meta-model

3Actually, the business process quadrant is not yet mandatory.

312 12 Case Studies

Several differences from ArchiMate are also apparent. For example, although in

both meta-models the service concept is used, the meaning is subtly different. In

ArchiMate a service is a conceptual notion; it does not have to correspond to a

particular piece of software. In the CITAmeta-model a service is an invokable piece
of external functionality. The ArchiMate service concept resembles more the CITA

Business solution concept and also its counterpart IT facility. Finally, the domain
concept is important to assign domain owners and to group business solutions and
technical solutions. In ArchiMate one would use a grouping relation to achieve this.

The case study described here primarily focuses on the business and application

architectures. Based on the above explanation, a mapping between the CITA

concepts and the ArchiMate concepts is presented for these quadrants in Table 12.1.

12.2.2 Case Essentials

The case study has been carried out in close association with the CITA architecture

standard initiative and the work that the Business Unit C&CC (Consumer &

Commercial Clients) Brazil, locally known as Banco Real, is doing in the

architecture area.

Table 12.1 Mapping of CITA meta-model to ArchiMate meta-model

CITA concept ArchiMate concept

Business process Business process

Business activity Business activity

Business actor Business actor

IT facility Application service

Organisational domain Grouping relation

Application domain Grouping relation

Business solution Application service

Business application Application component + (External) service

Business service Application component + (Internal) service

Business application logic Application function

Business service logic Application function

Business application data Data object

(Enterprise) data Data object

12.2 Application Visualisation at ABN AMRO 313

The BU C&CC Brazil is in the process of setting up the architecture profession

within the organisation. Currently, it has the following initiatives:

– Introduce the domain architecture function within the organisation.

– Create an application architecture strategy.

– Create a migration plan for this strategy.

– Make an inventory of the ‘as is’ situation from an application architectural point

of view.

To support this last effort, BU C&CC Brazil collected information about its

information systems using a comprehensive questionnaire. To improve the main-

tainability and accessibility of this data, a joint effort called CABRI, was set up by

the Corporate Centre of ABN AMRO Bank between BU Brazil and ArchiMate. The

target for CABRI was to capture essential architectural data from the questionnaire

using CITA concept definitions, store them in a database, and generate

visualisations based on predefined viewpoints.

12.2.3 Concepts

The CITA standard incorporates the basic principle of a service-oriented environ-

ment (SOE) in its meta-model by distinguishing general-purpose service compo-

nents from specific business application components. In general this SOE is not yet

implemented in full. The goal of applying the CITA meta-model to describe the

current state of affairs in the BU Brazil was to identify the gap between the current

state and the new application architecture strategy. Several adjustments to the CITA

meta-model had to be introduced to show these potential areas for improvement

(e.g., reusable functionality and data, ownership of business applications and

business services).

Therefore, functionality of systems is split into external usable functionality

(services) and internal functionality (application logic), and the databases are

divided into two groups, namely those that contain general-purpose data (enterprise
data) and those that contain local data (business application data). In making this

distinction, one has the situation that business applications access enterprise data,
and that business services access local application data, a situation that the CITA

meta-model does not allow. In order not to lose this information, these two access

relations need to be added temporarily to the CITA meta-model. The extended

subset of the CITA meta-model used in this case study is shown in Fig. 12.16.

In the BU Brazil questionnaire, the primary concepts used were Systems,Macro
Functionality, Database, Domain, and Subdomain. The mapping of these inventory

concepts to the extended CITA meta-model is shown in Fig. 12.17. This mapping

was used to translate the inventory concepts into CITA concepts, and also to

facilitate communication with the Brazilian employees.

314 12 Case Studies

owner
name
description

Business Process

name
description

Business Actor

owner
name
description
requirements

IT Facility

name
description
pre-condition
post-condition

Business Activity

0..*

<< executes >>

<< use >>

owner
name
description

Business Solution

owner
name
description

Business Application

name
description

Business Application
Logic

name
description

Business Application
Data

owner
name
description
granularity level

Business Service

name
description

Business Service Logic

name
description
enterprise y/n

(Enterprise) Data

owner
name
description

Application Domain

provides

0..*
use

<< use >> << use >>

0..*
+ use

0..* + use0..*+ use

0..*0..*

Business Architecture

Application Architecture

<< use >><< use >>

provides

owner
name
description

Organizational Domain

Fig. 12.16 Extended meta-model used in the case study

12.2 Application Visualisation at ABN AMRO 315

12.2.4 Visualisation

To visualise the collected architectural information about the IT systems, the

following three types of viewpoints have been identified:

1. A global overview of the services and application components (landscape

viewpoint).

2. Insight into the support of processes (process support viewpoint).

3. Insight into the relations between applications, services, logic, and data (coher-

ence and dependency viewpoint).

Business Solution

Business Application

Business Application
Logic

Business Application
Data

Business Service

Business Service Logic

(Enterprise) Data

Subdomain

Application Domain

0..*use

<< use >> << use >>

0..* + use

0..* + use0..*+ use

0..*0..*

<< use >><< use >>

Domain

Organisational Domain

System

Macro
functionality

Subdomain

Database

Fig. 12.17 Mapping of inventory concepts to the CABRI meta-model

316 12 Case Studies

The viewpoint description consists of a textual explanation accompanied by an

example visualisation. The set of slightly modified ArchiMate symbols used is

shown in Table 12.2.4

Since the examples used to illustrate these viewpoints in the next subsections are

taken from real-life data, some of the text is in Brazilian Portuguese.

Landscape Viewpoints Landscape viewpoints show the overall application archi-

tecture, while abstracting from detailed information within these applications.

Three different viewpoints have been used: Application domain landscape, Busi-

ness service landscape, and Business solution landscape.

– The ‘Application domain landscape’ viewpoint shows Organisational domains
and their containing Application domains. This viewpoint is mainly concerned

with visualising (levels of) ownership (Fig. 12.18).

– The ‘Business service landscape’ viewpoint shows one organisational domain,
with all its application domains, and all their business services (Fig. 12.19).

– The ‘Business solution landscape’ shows one organisational domain, with all its
application domains, with all their business solutions (not shown here, but

analogous to the previous figures).

Table 12.2 Concepts and their visual representation

Concept Symbol Concept Symbol

Business process Business

solution

Business actor Business

application

Organisational

domain

Multiple

business

applications

Application

domain

Business

service

Business

application data

Business

application

logic

(Enterprise) data Business

service log-

ic

4The concepts for business activity and IT facility are not used in these visualisations.

12.2 Application Visualisation at ABN AMRO 317

Process Support Viewpoints Process support viewpoints facilitate insight into the

relation between processes and applications.

Currently, only one viewpoint has been identified and worked out: the ‘Business
activity–business service alignment’ viewpoint. This viewpoint shows one central

Business process, together with the Business activities involved in that Business
process. Each Business activity depicts the Business services that are used by it

(Fig. 12.20).

Contabilida
de

Recursos
Humanos

Administra
ção_Geral

Administração

Informa
s

Gerenc

Limites

Gestão
Contabilida

de

Gestão
troleG

Gestão e C

Captação

ProdutosS
ervBancari
os_Geral

Produtos e Servi

Cadastro
Cliente

Relaciona
mento

Relaciona
mento_Ger

al

Relacionamento com o Cliente

Operacion
al

Serviços
Comuns

Serviços Comuns e
Operacional

Fig. 12.18 An ‘Application domain landscape’ view (partial)

Formatar e
enviar dados para
processamento
(RIE-MF4)

Receber
arquivo para
processamento
e enviar retorno
(RIE-MF5)

Enviar arquivo
para
processamento
e receber retorno
(RIE-MF6)

Consultar
informações
(RIE-MF7)

Canais Internet

Tratar funções
operacionais do Call
Center (HB-MF3)

Tratar funções
administrativas
do Call Center
(HB-MF4)

Canais Assistidos

Canais de Distribuição

Fig. 12.19 A ‘Business service landscape’ view (partial)

318 12 Case Studies

Coherence Viewpoints Coherence viewpoints facilitate insight into the coherence

of the application architecture. They show how a particular element is used by other

elements. Three coherence viewpoints have been worked out: Business service

uses, Business application data uses, (Enterprise) data uses.

– The ‘Business service usage’ viewpoint shows one central business service
surrounded by the business applications and business actors that use it

(Fig. 12.21).

– The ‘Business application data usage’ viewpoint shows one central business
application data entity surrounded by the business application logic entities and
business service logic entities that use it (Fig. 12.22).

– The ‘(Enterprise) data usage’ viewpoint shows one central (enterprise) data
entity surrounded by the Business application logic entities and Business service
logic entities that use the central data entity (not shown here, but analogous to

Fig. 12.22).

Dependency Viewpoints Dependency viewpoints facilitate insight into the depen-

dencies of the application architecture. They show a central entity together with

certain entities on which this central entity depends. The following viewpoints have

been identified: Business application dependencies, Business application logic

dependencies, and Business service dependencies.

– The ‘Business application dependencies’ viewpoint shows one central Business
application surrounded by the Business services that are used by that central

Business application (Fig. 12.23).

– The ‘Business application logic dependencies’ viewpoint shows one central

Business application logic entity surrounded by the Business application logic
entities, Business application data entities and (Enterprise) data entities that are
used by the central entity (analogous to Fig. 12.23).

Captura Titulares

Captura
Endereço usando
CEP (ACC-BS2)

Prover lista de países
(ACC-BS2)

(ACC-BS1)

Prover lista de

Captura de Dados

Checar
Restrições
Financeiras

Checar
Cliente no
Cadastro

Validação de Dados

Inserir dados
do Cliente
no Cadastro

Manutenção no
Cadastro de Clientes

C
C
B

Abe
Corre

Abertura de Conta Corrente

profissões (ACC-BS4)

(ACC-BS5)

(ACC-BS6)

(ACC-BS7) (A

Fig. 12.20 A ‘Business activity–business service alignment’ view (partial)

12.2 Application Visualisation at ABN AMRO 319

Saldos Contábeis
Analíticos /
Consolidados
(CJ-BD2)

Cálculo de Impostos
(CPMF próprio, ISS,
IOF) e Compulsório
(CJ-MF6)

Geração de
Informações Oficiais,
Cadocs (IFT, Estfin, etc)
e CBS (Amsterdam)
(CJ-MF3)

Controle de
Recepção de
Lançamentos
Contábeis (CJ-MF5)

Geração de
Saldos a partir dos
Lançamentos
(CJ-MF2)

Consultas On-Line /
Relatórios Contábeis
(CJ-MF4)

Fig. 12.22 A ‘Business application data usage’ view

Controle de
Recepção de
Lançamentos
Contábeis (CJ-MF5)

Controle
Gerencial de
Produção (PA)

Conta Corrente
(CN)

Sistema
Empréstimos
(SE)

Contabilidade
Integrada (CJ)

Crédito em
Liquidação (KL)

Resultado
Efetivo (RE)

Câmbio (OX)

Fig. 12.21 A ‘Business service usage’ view

320 12 Case Studies

– The ‘Business service dependencies’ viewpoint shows one central Business
service entity surrounded by the Business service entities, Business application
data entities and (Enterprise) data entities that are used by the central entity

(analogous to Fig. 12.23).

12.2.5 Tool Design and Results

As in the case of ABP, the ABN AMRO case study uses the generic tooling

infrastructure described in Chap. 11. The way the tool is used in this case is

shown in Fig. 12.24. Input of system information is not yet automated, since this

is only available in the form of textual documents.

The practical results obtained with this visualisation infrastructure helped to

clarify various misunderstandings and inconsistencies in the systems landscape.

The visualisations are widely and interactively used in discussions about the current

and future application architecture.

ABN AMRO BU Brazil decided to keep using the tool and implement it in the

development organisation. It will capture systems that have not yet been assessed

and will maintain the data already captured.

Contabilidade
Integrada (CJ)

Gerar
Movimento
Contábil /
Tributos / IFT
(OR-MF2)

Contabilizar
e conciliar
(SE-MF03)

Consulta
Centro de
Responsabilidade
(GJ-AD2)

Gerar
Movimento
para
Contabilização
(TR-MF3)

Fig. 12.23 A ‘Business application dependencies’ view

12.2 Application Visualisation at ABN AMRO 321

http://dx.doi.org/10.1007/978-3-662-53933-0_11

12.3 Design and Analysis at the Dutch Tax and Customs

Administration

The Dutch Tax and Customs Administration (abbreviated TCA in the sequel) has a

long history of continuously improving its organisation of process and ICT devel-

opment. As early as the beginning of the 1980s, the ICT department started working

with architecture. In the TCA architecture plays a prominent role, which is also

exemplified by a total staff of over 100 architects. The importance of architecture

has also increased the need for an enterprise architecture language to connect

different architecture domains.

12.3.1 Case Essentials

In recent years, the organisation of social security in the Netherlands has changed

dramatically. The goal is to arrive at a situation with a central contact point for

organisations and citizens, and with unique ‘authentic’ data sources.
Within this context, the collection of employees’ social security premiums is

transferred from UWV (the central social security organisation) to the TCA. This

joint project of TCA and UWV is called SUB (‘Samenwerking UWV–

Belastingdienst’).
A major challenge in this project is to handle enormous flows of data within and

among the different organisations. This concerns more than 600,000 payroll tax

returns each month, a large proportion of which arrive within a peak period of a

couple of days. Moreover, it is expected that a substantial proportion of these tax

ABN AMRO Visualiser

Database
component Visio View Explorer

ABN AMRO
Viewpoint

specification

Collecting Integrating Selecting

ABN AMRO
Symbol
library

Presenting

User

Interacting

ABN AMRO
content

ABN AMRO
view

System
descriptions

Collector

Fig. 12.24 Tool design

322 12 Case Studies

returns need to be sent back for correction. Such requirements need to be addressed

early on in the project.

These aspects of this case study made it an ideal proving ground for the

modelling language, viewpoints, and performance analysis techniques described

in previous chapters. In the next subsections, we will show how the different aspects

of the business processes, applications, and infrastructure were modelled in a

coherent and consistent way, and also show how the quantitative analysis tech-

niques were used in the capacity planning of the infrastructure.

12.3.2 Views

By means of a number of different views, based on the design viewpoints described

in Sect. 8.5, the SUB information system architecture is presented from the perspec-

tive of the TCA.We have chosen not to show amodel of SUB as awhole; instead, we

start with a broad perspective and go into detail for a number of specific processes.

Subsequently, models are presented that describe the SUB business processes

(viewpoint Process cooperation), the SUB application support for these processes

(viewpoint Application usage), and the infrastructure support for the applications

(viewpoint Infrastructure support).5

Process Cooperation: Client-to-Client Processes The process architecture,

depicted in Fig. 12.25, shows the most important client-to-client processes within

the scope of SUB. Each process is initiated by a trigger. These triggers fall in one

the following categories:

– time triggers, indicating that a process is executed periodically;

– message triggers, indicating that an incoming message initiates a process;

– signal triggers, indicating that an incoming signal initiates a process.

For each trigger, a frequency is specified, expressed in terms of the average

number of ‘firings’ per month. Furthermore, the process architecture shows the

most important messages that flow between the processes.

Obviously, each of the above-mentioned client-to-client processes can be

described in more detail by further specifying the sub-processes of which they

consist, the actors that are involved, the incoming and outgoing messages and the

databases that are being used. Next, we present a more detailed decomposition of

the process ‘Payroll tax return’ (Fig. 12.26) from the overall SUB process archi-

tecture. The model shows, among others, which part of the process is executed by

the TCA and which by UWV.

5The actual design of SUB further evolved after completion of the case study.

12.3 Design and Analysis at the Dutch Tax and Customs Administration 323

http://dx.doi.org/10.1007/978-3-662-53933-0_8

Application Usage Going one level of detail deeper, we now zoom in on the

‘Receive tax return’ sub-process. The model of this sub-process and the

corresponding application support are shown in Fig. 12.27. A payroll tax return

(PTR) can be submitted in two main formats: on paper or electronically. The

Provide return/
payment forms

Process
payroll tax

return

Payment
processing

Process
signals and risks

Recalculate
nominative

part

Payroll tax
return msg.

Correction
request

rejection

Return
form

Correction
message

external
signal

Collections
administration

F=600 000/month

F=60 000/month

F=1/month

F=1/month

(F=360 000/month)

(F=60 000/month)

Payment
form

Fig. 12.25 Overview of the SUB client-to-client processes

Process payroll tax return

Chain “Process payroll tax return”
TCA

Chain “Process payroll tax return”
UWVPayroll tax

return

Correction
request

Receive tax
return

Collections
administration

Levyings
administration

Confirmation
Levy

Notification
rejection

Notification
error

Tax and Customs
Administration

Notify Process
corrections

Relations
information

Handle
received

rax returns

Policy
administration

Correction
requests

administration

UWV

F=660 000/month

Company/
Agent

Fig. 12.26 Client-to-client process ‘Payroll tax return’

324 12 Case Studies

electronic tax returns have three possible formats: Web-based messages, small

messages sent via SMTP, and large messages sent via FTP. The model shows the

expected distribution of the total number of messages over these different formats.

The first part of the ‘Receive tax return’ process transforms these formats into a

common, medium-independent format. We will refer to this phase of the process as

‘Medium-specific processing’. The second phase of the ‘Receive tax return’ pro-
cess, ‘Medium-independent processing’, processes all the payroll tax returns in the

same way, irrespective of their original format.6

Receive

Receive electronic PTR msg.

Nominative
data

FOS

MOS

Temporary
storage file

DCS

FOL

convert

Receive paper PTR msg.

Receive
PTR

document

Receive
PTR small

Receive
PTR large

Receive
PTR web

large:
0,17 %

Scan
document

decode
small:

98,10%

web:
1,72 %

OB2000

Payroll tax
return msg.

Paper PTR

Electronic
PTR

Legal
archive

F = 22 000/month

F = 638 000/month

FOS
external

FOS
internal

Fig. 12.27 Application and business process architecture for ‘Receive tax return’ (partial view)

6The applications shown in Fig. 12.27 with a lighter colour, i.e. BvR, BBA,WCA and Notification,

are mainly databases that are used in the processes, but play a secondary role. They are omitted in

the more detailed models and the analysis.

12.3 Design and Analysis at the Dutch Tax and Customs Administration 325

First, we detail the ‘Medium-independent processing’ phase. In the application

architecture, the behaviour of each application component is partitioned into one or

more application functions (denoting units of functionality used within the business
processes) and application interactions to model communication between applica-

tion components, as well as the data stores involved. Part of the resulting model is

shown in Fig. 12.28.

Infrastructure Usage The next step is to take a closer look at the infrastructure

support for the application architecture. We first illustrate the modelling approach

for the ‘Medium-independent processing’. A layer of infrastructure services sup-

ports the various application functions. We distinguish three types of infrastructural

services:

Medium-independent processing

Message
Store

FOS Intern

Structural conversion

convert receive
check

PTR file

Receive
message

XML-
message

conversion
& splitting

Store
message Remove

message

Temporary
storage file

Collective
part

Nominative
part

Nominative
lines

Collective
lines

Medium
independent

PTR

PTR data

Fig. 12.28 Application support for ‘Medium-independent processing’ (partial view)

326 12 Case Studies

– data storage and access services;

– processing services;

– communication services.

Data storage and access services are realised by, for example, a database man-

agement system. Processing services are typically realised by an execution environ-

ment or application server. Communication services support messaging between

applications which is realised by, for instance, message queuing software

(Fig. 12.29).

FOS Internal

XML-message conversion &
splitting

APFOSU4-FOS internal
production

message
switch

QM

XIB

MQ Gate cluster

Message
Store Store

message

MQ
messaging

DB
access

MB

Unix Server -
Message

Store

DBMS

QM

Ch.
FOS->

Msg. store

message
broker

Remove
message

Ch.
AVANTi ->
Msg. Store

MQ
messaging

Temp. storage

Collective
part

Nominative
part

Message
admin.

Fig. 12.29 Application and infrastructure architecture for ‘Medium independent processing’
(partial view)

12.3 Design and Analysis at the Dutch Tax and Customs Administration 327

In this case, WebSphere MQ technology is used, where message brokers and

message switches make use of functionality provided by queue managers. In MQ,

communication services are realised by so-called channels. A channel between two

devices is modelled as a communication path that represents a collaboration of two

QM system software components, one for the sender and one for the receiver.

As mentioned above, the first part of the ‘Return tax returns’ process, ‘Medium-

specific processing’, receives payroll tax returns from four information sources.

Following the same modelling guidelines as in the case of the ‘Medium-specific

processing’ part, we present in Fig. 12.30 the whole layered architecture

Receive small electronic PTR

MOS

MTA in P44 in
BAPI

unpack
MQ

dispatch

Security and decryptionMail handling

Archive

Decode and
authorise

Receive
msg.

Header
and body

Process msg.

BAPI
out-buffer

BAPI
in-buffer

MTA
buffer

PTR
message

F=626 000/month

PTR data

OB2000 Sybase
access

Ch. MOS
->FOS

APMOSU7-MOS
production

Sybase
DBMS

BS

App.
hosting

Execution
environment

QM

APFOSU4-FOS
internal production

QM

FOS internal

Medium
independent

PTR

Message
switch

Discards
administration

P44
discards-
handling

MQ
messaging

Fig. 12.30 ‘Receiving small electronic payroll tax returns’ architecture

328 12 Case Studies

(i.e. business process, application and infrastructure architecture) of ‘Receiving
small electronic payroll tax returns’.

The models for the other three sources of tax returns will not be shown here, but

they can be constructed in a similar way.

Infrastructure Support So far, we have adopted a top-down approach: starting

with the business processes, we first identified the needed application support; then,

we specified the infrastructure needed to run the applications. In this view, we work

bottom-up: we show the complete infrastructure within the scope of the ‘Receive
tax return’ process for SUB, and show which of the infrastructure services are used

by which of the applications. Part of this view for the ‘Receive tax return’ process is
shown in Fig. 12.31.

MQ Gate cluster

 OB2000
Sybase
access

APMOSU7-MOS
production

Sybase
DBMS

BS

App.
hosting

Execution
environment

Message
switch

Ch. DCS
->FOS

Document
Conversion System

MQ
messaging

QM

BS

Message
switch

App.
hosting

Execution
environmentCh. FOL

->FOS

FOL – Online
Forms (2 of 3)

MQ
messaging

QM

BS

Message
switch

App.
hosting

Web
Application

server

MOS

DCS

FOL

Discards
Admin.

Fig. 12.31 Part of the SUB infrastructure support for applications (partial view)

12.3 Design and Analysis at the Dutch Tax and Customs Administration 329

12.3.3 Performance Analysis

This section illustrates the quantitative analysis of the model presented in the views

in the previous sections, using the analysis approach described in Chap. 9. The

results can be used to get an indication of the capacity that is required for the

different resources in the infrastructure layer.

Analysis Approach For the given type of analysis, the following input data is

required:

– For each trigger the arrival frequency (average and possibly also peaks).

– For each process, function, or service the average service time.
– For each actor, component, or device the capacity.

Given these inputs, we can estimate the following performance measures:

– For each concept in the model (service, process, function, and resource) the

throughput: the number of inputs/outputs that is to be processed per time unit.

This is the workload that is imposed by the processes.

– For each actor, component, and device its utilisation: the percentage of time that

it is active.

– For each process, function, and service the average processing time and response
time.

– For each client-to-client process the average completion time.

The analysis approach is portrayed in Fig. 12.32. Starting with the arrival

frequencies on the business process level, the workload (throughput) for all

model elements in the layers below is calculated (top-down analysis). Together

with the given service time of the infrastructure services, the utilisation of the

resources, and the processing and response times of the processes, functions, and

services are calculated (bottom-up analysis). In Sect. 9.2 there is a detailed descrip-

tion of the analysis algorithms.

Workload Calculations (Top-Down) Some of the results of the workload calcu-

lations are shown in Fig. 12.33 (in italics). These figures reflect the workload of

applications and infrastructure imposed by the sub-process Medium-independent

Technical infrastructure

Infrastructure services

Applications

Application services

Workload

(throughput)

Performance
measures

((utilisation
 response time)

,

Business processes

Fig. 12.32 Overview of the analysis approach

330 12 Case Studies

http://dx.doi.org/10.1007/978-3-662-53933-0_9
http://dx.doi.org/10.1007/978-3-662-53933-0_9

processing, given an average monthly supply of 660,000 payroll tax returns. This

workload is the basis for further performance analysis.

To obtain estimates of the total required infrastructure capacities, the same

calculations also have to be made for the different Medium-specific processing
parts of the Receive tax return process. The sum of the workloads from all the

sub-processes results in a total workload for the SUB infrastructure, part of which is

shown in Fig. 12.34. Similar calculations could be carried out for peak situations.

Medium-independent processing
Structural conversion

convert

PTR file

Nominative
lines

Collective
lines

Medium
independent

PTR

F=660 000/mth 660 000/mth
660 000/mth 6

FOS Intern

XML-message
conversion & splitting

APFOSU4-FOS internal
production

Message
switch

QM QQM

XIB

MQ
messag

Message
Store

Store
message

MQ
messaging

DB
access

MB

Unix Server -
Message Store

Message
database

QM

Ch.
FOS->

Msg. store

Message
broker

Remove
message

Ch.
AVANTi ->
Msg. Store

MQ
messaging

Temp. storage

Collective
part

Nominative
part

660 000/mth

660 000/mth

660 000/mth
660 000/mth

66 000/mth
66 0

660 000/m

660 000/mth

66 000/mth

66 000/mth

1 320

1 320 000/mth660 000/mth

660 000/mth

726 000/mth

726 000/mth

1 452 000/mth

1 320 000/mth

3 498 000/mth

660 000/mth

660 000/mth

1 320 000/mth

1 980 000/mth

PTR data
660 000/mth

Ch. FOS
AVANT

Fig. 12.33 Throughputs for the sub-process ‘Medium-independent processing’ (partial view)

12.3 Design and Analysis at the Dutch Tax and Customs Administration 331

Performance Measure Calculations (Bottom-Up) To calculate performance

measures such as response times and utilisation, service times are also needed as

input data. These figures are often difficult to establish, especially in a design phase

of a project when systems are not yet operational. Nevertheless, based on technical

documentation and available historical information (e.g., performance tests) of

existing system components, and together with experts on the matter, reasonable

estimates of these numbers could be made.

The numerical results of the bottom-up analysis of the process ‘Receiving small

electronic payroll tax returns’ are given in Fig. 12.35. According to these figures the
utilisation of the resources for an average workload is already quite high; this means

that at peak loads the resources will almost certainly be overloaded. A solution to

this problem may be to add additional resources or to increase the capacity of the

resources. Further analysis can help to determine by how much the capacity needs

to be increased.

12.3.4 Case Study Results

This case study shows that the ArchiMate language is suitable for modelling the

relevant aspects of the technical architecture, as well as the relations of this

626 000/mth22 000/mth

66 000/mth

10 915/mth 10 915/mth

10 915/mth

10 915/mth

MQ Gate cluster

OB2000

APMOS
produ

App.
hosting

Execution
environment

Ch. DCS
->FOS

Document
Conversion System

MQ
messaging

QM

BS

Message
switch

App.
hosting

Execution
environment

Ch. FOL
->FOS

FOL – Online
Forms (2 of 3)

MQ
messaging

QM

BS

Message
switch

App.
hosting

Web
Application

server

32 745/mth

22 000/mth

10 915/mth

10 915/mth

22 000/mth 22 000/mth

626 000/mth

626 000/mth

3 881 20

22 000/mth

22 000/mth

22 000/mth

66 000/mth

10 915/mth10 915/mth

Fig. 12.34 Total workload of the SUB infrastructure (partial view)

332 12 Case Studies

architecture to other architectures. The resulting models make the realisation of

generic infrastructure services explicit. Quantitative analysis offered a clear view of

how activities at the business process impose a workload on the application and

infrastructure levels, thus providing a basis for capacity planning of the infrastruc-

ture. Performing these quantitative analyses at an early stage, considerably helps

the realisation of the desired performance characteristics of the target system.

12.4 Summary

The case studies discussed in the previous sections represent only a small part of all

the applications and validations of the methods and techniques presented in this

book. However, they clearly show the feasibility and practical value of these results

in various real-life settings. Both the modelling language and the visualisation and

analysis techniques have shown their merit in providing more insight into complex,

wide-ranging enterprise architectures.

MOS

MTA in P44 in BAPI unpack MQ dispatch

Archive

Decode and
authorise

Receive
msg. Process msg.

F=626 000/mth

APMOSU7-MOS production

MQ
messaging

send

App.
hosting

APFOSU4-FOS
internal production

Message
switch

X = 626 000/mth
T = 0,11 s
R = 0,27 s

X = 1 252 000/mth
T = 0,14 s
R = 0,35 s

X = 626 000/mth
T = 0,14 s
R = 0,35 s

X = 626 000/mth
T = 0,06 s
R = 0,15 s

X = 46 950/mth
T = 1,00 s
R = 1,58 s

X = 1 940 600/mth
T = 0,09 s
R = 0,14 s

X = 2 613 550/
mth X = 626 000/mth

F=626 000/mth

F=626 000/mth

F=626 000/mth

MQ
messaging

receive

X = 626 000/mth
T = 0,018 s
R = 0,018 s

U=60%

U=37% U=1,8%

n=1n=1n=0.1n=1n=1n=0,075

S = 0,018 sS = 0,018 sS = 0,09 sS = 1,0 s

X = 626 000/mth
T = 0,018 s
R = 0,028 s

T = 0,28 s T = 0,35 s

T = 0,35 s

T = 0,35 s

F=626 000/mth

F=626 000/mth

Fig. 12.35 Utilisation and response times for ‘Receive tax returns (small)’

12.4 Summary 333

Chapter 13

Beyond Enterprise Architecture

Wil P.M. Janssen and Marc M. Lankhorst

In the previous chapters we have discussed enterprise architecture modelling and

analysis, its roots and foundations, and have seen enterprise architecture being

applied in a number of industrial cases. The practice and possible added value have

clearly been put forward. But what is next in the field of enterprise architecture?

13.1 The World Before Enterprise Architecture

This book is on enterprise architecture. Although the term has become quite

common, enterprise architecture has only relatively recently reached a level

where it is well understood and practically applicable. As we discussed in

Chap. 2, Zachman (1987) can be seen as one of the first authors to define the

concept in its full richness. But it took until the end of the twentieth century for

enterprise architecture to be widely accepted. Why did this take so long?

Enterprise architecture is very much a holistic approach to the design of orga-

nisations. All different domains in enterprise design meet: organisation, informa-

tion, systems, products, processes, and applications. Understanding the individual

domains is complicated in itself, let alone their interdependencies. We have to look

at this from both a business and a technical perspective.

The 1980s and 1990s of the last century have seen a focus on changing the way

businesses operate. Business process redesign and business process re-engineering

were used to rationalise processes and products. In the past, the industrial revolution

W.P.M. Janssen

Innovalor, Enschede, The Netherlands

M.M. Lankhorst (*)

BiZZdesign, Capitool 15, 7521 PL Enschede, The Netherlands

e-mail: m.lankhorst@bizzdesign.com

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0_13

335

http://dx.doi.org/10.1007/978-3-662-53933-0_2
mailto:m.lankhorst@bizzdesign.com

automated many production activities in companies. Work shifted from ‘blue-collar
work’ to ‘white-collar work’. Improving the performance of white-collar work

cannot be achieved by simply automating it, but by working smarter, enabled by

information technology. As Hammer (1990) stated in the title of his provocative

article on business process reengineering: ‘Don’t automate, obliterate’, i.e., radi-
cally rethink illogical business activities, which are there because nobody dares to

challenge them. Introduce new information technology hand in hand with new

business process ideas. The capabilities of information technology enable this

smarter way of working (Davenport and Short 1990).

Another reason for changing business processes was customer focus. Companies

need to compete and excel to keep and expand their customer base. The customer

demands fast services, cost-efficiency, high, standardised quality, and flexibility.

Ultimately, cost, flexibility, improvement, and standardisation of quality need a

process focus. Looking at the business activities serving the end customer, they

appeared to be partitioned on the basis of, amongst others, historical evolution and

political power structures, existing departmental boundaries, and physical location

and geographical borders.

Given the complexity and risks involved in changing an organisational way of

working, a business process engineering approach is needed. Dealing with design

complexity demands abstraction using architectural methods and tools. By the end

of the last century, different methods and tools had been developed to assist

organisations in optimising processes and introducing customer focus. Business

process redesign has moved from an ill-understood skill, with a substantial failure

rate, to a repeatable exercise (see, e.g., Franken et al. 2000), in which business

process modelling and business process architecture play an important role.

From a technical perspective, modelling and architecture have a longer history.

In hardware design, the notion of architecture has been in use since the 1960s,

pioneered by the likes of Amdahl, Blaauw, and Brooks in their design of the IBM

S/360 mainframe (IBM Corp. 1964). In their research note Amdahl et al. (1964)

give probably the first definition of architecture in the IT world:

The term architecture is used here to describe the attributes of a system as seen

by the programmer, i.e., the conceptual structure and functional behavior, as

distinct from the organization of the data flow and controls, the logical design,

and the physical implementation.

Information modelling has also been a common practice for a long time. Entity–

relationship diagrams were developed in the 1970s. Nowadays, the class diagrams

of UML form a crucial element in object-oriented analysis and design. Beyond

information modelling, the picture is less clear. The UML standard, as was

discussed in Chap. 2, provides many ingredients for this, but in practice we come

across many proprietary and informal techniques.

Nevertheless, the role of architecture has been much more important on the

technical side than from an organisational or business perspective. One reason for

this is that the importance of architecture in this field is much more obvious than in

business processes: the performance and suitability of applications and systems is

immediately visible, and can lead to bad publicity and unsatisfied users; it is always

336 13 Beyond Enterprise Architecture

http://dx.doi.org/10.1007/978-3-662-53933-0_2

convenient to blame ‘the computer’. In the press we regularly see evidence of this

phenomenon. Therefore, robustness, scalability, reliability, and feasibility have

become key concepts in system analysis and design.

For business processes, bad performance is much more accepted. When does the

fact that it takes 12–18 weeks to settle a building permit, or that some insurers have

a backlog of almost half a year in their pension administrations, get into a newspa-

per? Oddly enough, this type of performance was accepted for ages, and hence the

need for business process architecture was barely felt. But times have changed.

13.2 The Advent of Enterprise Architecture

Architecture is progressively seen not just as a tactical instrument for designing an

organisation’s systems and processes, but as a strategic tool for enterprise gover-

nance. Yet, the architecture practice within most organisations is still focused on

design and has not yet progressed to the level of coordination, let alone to the level

of enterprise governance. Furthermore, the term ‘architecture’ and the role of the

‘architect’ are heavily overloaded and have faced serious inflation.

To really profit from the strategic potential of enterprise architecture, an orga-

nisation needs to optimise the skills, methods, and tools of its architects, and give

them the right position in the organisation. In this book, we have mainly concen-

trated on the first issue. However, without a proper organisational embedding of

architectural practice, the enterprise will reap none of its potential benefits.

Many organisations struggle with this problem. On the one hand, a close

relationship with business units and systems’ development is crucial for a detailed

understanding of the organisation. On the other hand, a certain distance and external

authority is important to keep an overview of different projects, processes, and

changes: the essence of architecture. In many companies, this has resulted in

organisational units such as ‘corporate architecture’ or ‘enterprise architecture’
that are either overwhelmed by the continuous interaction with business units, or,

worse, considered an ‘ivory tower’ and play a marginal role.

The acceptance of the role of the enterprise architect depends directly on its

perceived added value. As Fowler (2003) states, this added value does not come

from ‘drawing pictures’, but is based on shortened development times, reduced

budget overspending, and increased flexibility in the organisation as a whole.

Fowler shows that is it possible to play such a role, if skilled architects, supported

by effective tools, apply the right techniques. We are very close to that stage, but

have not reached it yet.

The organisations that participate in the ArchiMate project are to a certain extent

forerunners in this new era, and already face the difficulties of this struggle. In the

end, there is no real choice: the complexity and speed of change of society requires

enterprise architecture in order to keep up with that pace. Enterprise architects will

have to play a leading role, unless organisations are willing to spend too much

money or not to live up to their customers’ expectations.

13.2 The Advent of Enterprise Architecture 337

A key element in the recognition of the role of enterprise architecture is that we

should be able to quantify the impact of architecture, both financially as well as in

terms of the organisational performance. Unfortunately, it is difficult to quantify

precisely the benefits of a method of working that is so wide ranging as enterprise

architecture. Until recently, hard evidence for the value of enterprise architecture

has been hard to come by, beyond a certain ‘gut feeling’ and qualitative arguments.

But has anyone ever asked a CEO to quantify his or her added value for an

organisation? And evidence is mounting, as more and more case studies become

available that show real added value (see e.g. Garret (2004) for an early example),

and analysts such as Gartner and Forrester increasingly focus on enterprise archi-

tecture as an indispensable management practice. Furthermore, enterprise architec-

tures themselves are increasingly used as an instrument to assess the benefits of IT

projects (see, e.g., Romani 2003).

13.3 The Business Ecosystem

So enterprise architecture is here to stay, even though it may change its name or

become part of a larger discipline of ‘business design’. Architecture and architects

have become well established and have shown serious added value in many

organisations. Increasingly, their role is becoming that of both enterprise visionary

and enterprise supervisor. Such an architect acts as a linking pin between CIO, CTO

and CEO and the organisation, translator of strategic choices to tactical decisions

and changes, protector of the conceptual integrity of the enterprise’s processes and
systems and guardian of the relationship between the enterprise and its environ-

ment: he or she will be both guard and guardian angel. However, new challenges for

enterprise architects are just beyond the horizon.

Customers have become increasingly demanding and product innovation rates

are high. Globalisation of markets and the availability of new electronic media lead

to new players entering existing markets, disintermediation, and an ever higher

competitive pressure to work more effectively, reduce costs, and become more

flexible. The advent of e-business and e-government has definitely changed the way

organisations and cross-organisational processes function.

E-business introduced new business models and new ways of thinking.

According to Venkatraman (1995), IT-enabled business transformation can take

place at different levels, ranging from local optimisations to radical business

change or even business network redefinition, in e-business-like transformations

(Fig. 13.1).

E-business has changed our view of organisations, moving from an enterprise

perspective to a network and ecosystem perspective (e.g. see Dai and Kauffman

2002). The scope of an enterprise architect is increasingly the extended enterprise,

or business network, in which the enterprise operates (Kalakote and Robinson

2001; Hoque 2000). Business ecosystem architecture has become a new playing

field, determining the borders of business models and business network design.

338 13 Beyond Enterprise Architecture

Modelling techniques for this type of architecture may change, but more in the

sense that different views will be used rather than entirely new concepts. The

ArchiMate modelling language was originally inspired by business network con-

cepts, such as those described in Steen et al. (2002).

In several respects, networked business architecture and design differ from

‘traditional’ enterprise architecture (if there is such a thing). As stated in Janssen

et al. (2003), the networked business architect should:

– Start the development of business services supporting cross-company coopera-

tion from a business network perspective, not from the perspective of a single

organisation. This implies that in principle many different actors involved can

fulfil different roles at the same time, and that many relationships co-exist within

the network.

– Emphasise the roles of organisations in the business ecosystem with respect to

each other, instead of the actual actors themselves.

– Link cooperation between companies to internal business processes and existing

(legacy) systems.

– Assess the consequences and prerequisites of technology for business processes
and cross-company cooperation.

– Effectively allow knowledge on standards and available components to be

gathered and reused, preferably supporting component-based development and

reuse, designing for flexibility.

A specific issue in the design of such collaborative networks is that of transpar-
ency (Janssen et al. 2008). An organisation needs to make its architectures trans-

parent to its partners (up to a certain level) to be able to cooperate, and compliance

with various regulations (e.g. SOX, Solvency II and Basel II and III in finance,

HACCP and ISO 22000 in the food industry, data retention policies from the US

government or the EU) also requires organisations to be increasingly transparent.

This makes the need for a standard architecture language as described in this book

even more apparent.

Localized exploitation

Internal Integration

Business network redesign

Business process redesign

Business scope redefinition

Potential benefits

D
eg

re
e

of
 b

us
in

es
s

tr
an

sf
or

m
at

io
nFig. 13.1 Transformation

levels according to

Venkatraman (1995)

13.3 The Business Ecosystem 339

However, disclosing business strategies or private customer data might be

distinctly unwise or even illegal. Architectures of business networks need to

accommodate these conflicting requirements. Especially in public-private or

cross-border cooperation between government agencies and commercial organisa-

tions, with their often conflicting goals and requirements, we expect this to become

a crucial element in architectural design.

Moreover, organisations must deal with rapidly changing environments, adapt

their way of working and increase their capabilities to anticipate and respond to

such developments: they must become agile enterprises. Agile enterprises embrace

change as a positive force and harnesses it for the organisation’s competitive

advantage. This requires a combination of adaptive methods and flexible solutions

(Lankhorst 2012).

Models play a prominent role in achieving agility. By using declarative, rule-

based, and executable models instead of software code, systems can be adapted

much more quickly, in many cases by business experts instead of software devel-

opers. Moreover, architecture models help you to create a coherent, holistic

approach, relating high-level business goals and requirements, via the design of

the business operations, to the actual implementation and execution. This direct

connection between strategy and execution greatly improves the speed of action of

the enterprise.

However, this ever faster pace of change, the growing complexity of business

ecosystems and the limited span of control of each actor in such networks imply that

an architect can no longer pretend to provide complete designs for situations in the

distant future. Rather, architects will increasingly be pointing the way, creating the

conditions, and setting the boundaries for self-organisation and evolution of the

enterprise. In this complicated, networked and rapidly changing world, the role of

the enterprise architect as a ‘great communicator’ needs to grow, and even enter the
realm of the ‘great negotiator’, as architectural decisions move beyond the reach of

a single organisational unit or managerial entity. This will have serious conse-

quences for the skills and tools needed for the ‘agile business ecosystem architect’.
He or she will have to guard the interests of the different organisations involved,

balancing cooperation in the network, organisational impact, regulatory compli-

ance, speed of change, and individual benefits. The enterprise architect’s role

between guard and guardian angel will provide a decisive competitive edge to

organisations in this dynamic world.

340 13 Beyond Enterprise Architecture

Appendix: Graphical Notation

The symbols of the ArchiMate Core language are shown in Fig. A.1. Note that

several concepts can be denoted either by a ‘box’ with an icon, or by the icon by

itself. The symbols of the other concepts are shown in Fig. A.2, and the notation for

relationships is depicted in Fig. A.3.

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0

341

Fig. A.1 Symbols of the ArchiMate Core language

342 Appendix: Graphical Notation

Fig. A.3 Relationships

Fig. A.2 Symbols of motivation, strategy and implementation and migration concepts

Appendix: Graphical Notation 343

References

Acme (1998), http://www-2.cs.cmu.edu/~acme/.

Aldea A, Iacob M-E, Hillegersberg J van, Quartel DAC, Franken HM (2015), Capability-based

Planning with ArchiMate - Linking Motivation to Implementation. Proc. 17th International

Conference on Enterprise Systems (ICEIS), pp. 352–359.

Alter S, Ein-Dor P, Lynne Markus M, Scott J, Vessey I (2001), Does the Trend Toward E-Business

Call for Changes in The Fundamental Concepts of Information Systems? A Debate. Commu-

nications of AIS, 5(10):1–59, April.

Ambler SW (2002), Agile Modeling – Effective Practices for Extreme Programming and the

Unified Process. Wiley, New York.

Amdahl GM, Blaauw GA, Brooks Jr FP (1964), Architecture of the IBM System/360, IBM Journal

of Research and Development, 8(2):21–36.

Aquilani F, Balsamo S, Inverardi P (2001), Performance Analysis at the Software Architectural

Design Level. Performance Evaluation, 45(2–3), July.

Arbab F, Boer F de, Bonsangue M, Lankhorst MM, Proper HA, Torre L van der (2007), Integrating

Architectural Models: Symbolic, Semantic and Subjective Models in Enterprise Architecture,

International Journal of Enterprise Modelling and Information Systems Architectures

(EMISA), 2(1):44–57.

Baeten JCM, Weijland WP (1990), Process Algebra. Cambridge Tracts in Theoretical Computer

Science 18. Cambridge University Press, Cambridge.

Band I, Engelsman W, Feltus C, González Paredes S, Hietala J, Jonkers H, Massart S (2015),

Modeling Enterprise Risk Management and Security with the ArchiMate Language. White

Paper, The Open Group.

Basel II (2004), Basel II: International Convergence of Capital Measurement and Capital Stan-

dards: A Revised Framework, Basel Committee Publications No. 107, June. http://www.bis.

org/publ/bcbs107.htm.

Bass L, Clements P, Kazman R (1998), Software Architecture in Practice. Addison-Wesley,

Reading, Massachusetts.

Bergstra JA, Ponse A, Smolka SA (eds.) (2001), Handbook of Process Algebra. Elsevier,

Amsterdam.

Biemans FPM, Lankhorst MM, Teeuw WB, Van de Wetering RG (2001), Dealing with the

Complexity of Business Systems Architecting. Systems Engineering, 4(2):118–133.

Blanchard BS, FabryckyWJ (1990), Systems Engineering and Analysis. Prentice Hall, Englewood

Cliffs, New Jersey.

Bon J van (ed.) (2002), IT Service Management – An Introduction – Based on ITIL. Van Haren

Publishing, Zaltbommel.

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0

345

http://www-2.cs.cmu.edu/~acme/
http://www.bis.org/publ/bcbs107.htm
http://www.bis.org/publ/bcbs107.htm

Booch G, Rumbaugh J, Jacobson I (1999), The Unified Modeling Language User Guide. Addison-

Wesley, Reading, Massachusetts.

Bosch J, Grahn H (1998), Characterising the Performance of Three Architectural Styles. Proc.

First International Workshop on Software and Performance, Santa Fe, New Mexico.

Brooks FP (1975), The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,

Reading, Massachusetts.

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996), A System of Patterns: Pattern-

Oriented Software Architecture. Wiley, New York.

Business Architecture Guild (2016), A Guide to the Business Architecture Body of Knowledge®
(BIZBOK® Guide), Version 5.0, Business Architecture Guild.

Buuren R van, Jonkers H, Iacob, M-E, Strating P (2004), Composition of Relations in Enterprise

Architecture Models. In Ehrig H et al. (eds.), Graph Transformations. Proc. Second Interna-

tional Conference on Graph Transformation (ICGT 2004), Rome, Italy, LNCS 3256,

pp. 39–53. Springer, Berlin.

C4ISR Architecture Working Group (1997), C4ISR Architecture Framework Version 2.0, US

Department of Defense, December 18, 1997. http://www.c3i.osd.mil/org/cio/i3/AWG_Digi

tal_Library/pdfdocs/fw.pdf.

Chen P (1976), The Entity-Relationship Model – Toward a Unified View of Data. ACM Trans-

actions on Database Systems 1(1):9–36.

CIO Council (2004), Federal Enterprise Architecture Framework (FEAF), http://www.cio.gov.

Clinger–Cohen Act (1996), Information Technology Management Reform Act, August 8. http://

wwwoirm.nih.gov/policy/itmra.html.

CMMI Product Team (2002), Capability Maturity Model Integration (CMMI), Version 1.1, Staged

Representation, CMU/SEI-2002-TR-029, ESC-TR-2002–029, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania.

Conway ME (1968), How Do Committees Invent? Datamation, 14(4):28–31.

Creasy PN, Ellis G (1993), A Conceptual Graph Approach to Conceptual Schema Integration. In

Proc. ICCS’93, Conceptual Graphs for Knowledge Representation: First International Confer-
ence on Conceptual Structures, Quebec, Canada.

Cruse DA (2000), Meaning in Language – An Introduction to Semantics and Pragmatics. Oxford

University Press, New York.

Crystal D (1997), The Cambridge Encyclopedia of Language, 2nd edition. Cambridge University

Press, Cambridge, UK.

Dai Q, Kauffman R (eds.) (2002), B2B e-commerce revisited: revolution or evolution. Guest

Editors’ Preface to the Special section in Electronic Markets, 12(2):64–66.

Davenport T, Short JE (1990), The New Industrial Engineering: Information Technology and

Business Process Redesign, Sloan Management Review, Summer:309–330.

De Boer F, Bonsangue M, Jacob J, Stam A, Van der Torre L (2004), A Logical Viewpoint on

Architectures. Proc. 8th IEEE International Enterprise Distributed Object Computing Confer-

ence (EDOC’04), Monterey, California, September 20–24.

De Boer F, Bonsangue M, Jacob J, Stam A, Van der Torre L (2005), Enterprise Architecture

Analysis with XML. Proc. 38th Hawaii International Conference on System Sciences

(HICSS’05), Hawaii, January.
De Kinderen S, Gaaloul K, Proper HE (2012), Integrating Value Modelling into ArchiMate. In

Snene M, Exploring Services Science. Proc. Third International Conference (IESS 2012),

Geneva, Switzerland, February 15–17, pp. 125–139.

Di Marco A, Inverardi P (2004), Compositional Generation of Software Architecture Performance

QN Models. In Magee J, Szyperski C, Bosch J (eds.), Proc. Fourth Working IEEE/IFIP

Conference on Software Architecture, pp. 37–46, Oslo, Norway.

Department of Defense (2007), DoD Architecture Framework Version 1.5, Volume I: Definitions

and Guidelines. Department of Defense, Washington DC.

Dietz JLG (2006), Enterprise Ontology: Theory and Methodology. Springer, Berlin.

Dijkstra EW (1968), Structure of the ‘THE’-Multiprogramming System, Communications of the

ACM, 11(5):341–346.

346 References

http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/pdfdocs/fw.pdf
http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/pdfdocs/fw.pdf
http://www.cio.gov
http://wwwoirm.nih.gov/policy/itmra.html
http://wwwoirm.nih.gov/policy/itmra.html

Eager D, Sevcik K (1986), Bound hierarchies for multiple-class queuing networks. Journal of the

ACM, 33:179–206.

Eck PAT van, Blanken H, Wieringa RJ (2004), Project GRAAL: Towards Operational Architec-

ture Guidelines. International Journal of Cooperative Information Systems, 13(3):235–255.

Eertink H, Janssen W, Oude Luttighuis P, TeeuwW, Vissers C (1999), A Business Process Design

Language. Proc. 1st World Congress on Formal Methods, Toulouse, France.

EFQM (2003), EFQM Excellence Model, EFQM Brussels Representative Office, Brussels. http://

www.efqm.org/model_awards/model/excellence_model.htm

Eriksson H-E, Penker M (1998), Business Modeling with UML: Business Patterns at Work. Wiley,

New York.

Falkenberg ED, Hesse W, Lindgreen P, Nilsson BE, Oei JLH, Rolland C, Stamper RK, Van

Assche FJM, Verrijn-Stuart AA, Voss K (eds.) (1998), A Framework of Information Systems

Concepts, IFIP WG 8.1 Task Group FRISCO.

Ferris C, Farrell J (2003), What are Web Services? Communications of the ACM, 46(6):31.

Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992), Viewpoints: A Frame-

work for Integrating Multiple Perspectives in System Development, International Journal of

Software Engineering and Knowledge Engineering, Special issue on Trends and Research

Directions in Software Engineering Environments, 2(1):31–58.

Fitzsimmons JA, Fitzsimmons MJ (2000), New Service Development: Creating memorable

experiences. Sage, Thousand Oaks, California.

Fowler M (2003), Who Needs an Architect? IEEE Software, July–August:2–4.

Fowler M, Scott K (1999), UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 2nd edition. Addison-Wesley, Springfield, Virginia.

Franckson M, Verhoef TF (eds.) (1999), Information Services Procurement Library. Ten Hagen &

Stam, Den Haag.

Frankel DS (2003), Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley,

New York.

Franken H, Bal R, Van den Berg H, JanssenW, De Vos H (2000), Architectural Design Support for

Business Process and Business Network Engineering. International Journal of Services Tech-

nology and Management, 1(1):1–14.

Gamma E, Helm R, Johnson R, Vlissides J (1995), Design Patterns: Elements of Reusable Object-

Oriented Software, 1st edition. Addison-Wesley, Reading, Massachusetts.

Garrett GR (2004), Volkswagen of America’s Enterprise Architecture Story, Presentation at the

ACT/IAC Enterprise Architecture (EA) Best Practices Seminar, July 23.

Goldstein SM, Johnston R, Duffy J, Rao J (2002), The Service Concept: The Missing Link in

Service Design Research? Journal of Operations Management, 20(2):121–134.

Gordijn J (2002), Value-based Requirements Engineering: Exploring Innovative e-Commerce

Ideas. PhD thesis. Vrije Universiteit Amsterdam.

Greefhorst D, Proper HA (2011), Architecture Principles: The Cornerstones of Enterprise Archi-

tecture. Springer.

Grice HP (1975), Logic and Conversation. In Cole P, Morgan JL (eds.), Syntax and Semantics III:

Speech Acts. pp. 41–58. Academic Press, New York.

Hall AD (1962), A Methodology for Systems Engineering. Van Nostrand, Princeton, New Jersey.

Hall AD (1969), Three-Dimensional Morphology of Systems Engineering. IEEE Transactions on

System Science and Cybernetics, SSC-5(2):156–160.

Hammer M (1990), Reengineering Work: Don’t Automate, Obliterate, Harvard Business Review,

July–August:109–144.

Hanna A, Windebank J, Adams S, Sowerby J, Rance S, Cartlidge A (2008), ITIL V3 Foundation

Handbook. The Stationary Office, Norwich, UK.

Hardjono TW, Bakker RJM (2001), Management van processen: Identificeren, besturen,

beheersen en vernieuwen. Kluwer, Dordrecht (in Dutch).

Harel D, Pnueli A (1985), On the development of reactive systems. In Apt K (ed.), Logics and

Models of Concurrent Systems, pp. 477–498. NATO ASI Series. Springer, Berlin.

References 347

http://www.efqm.org/model_awards/model/excellence_model.htm
http://www.efqm.org/model_awards/model/excellence_model.htm

Harel D, Rumpe B (2004), Meaningful Modeling: What’s the Semantics of ‘Semantics’? IEEE

Computer, October:64–72.

Harrison P, Patel N (1992), Performance Modelling of Communication Networks and Computer

Architectures. Addison-Wesley, Reading, Massachusetts.

Henderson JC, Venkatraman N (1993), Strategic Alignment: Leveraging Information Technology

for Transforming Operations, IBM Systems Journal, 32(1):4–16.

Hermanns H, Herzog U, Katoen J-P (2002), Process Algebra for Performance Evaluation, Theo-

retical Computer Science, 274(1–2):43–87.

Hoque F (2000), e-Enterprise: Business Models, Architecture, and Components. Cambridge

University Press, Cambridge.

Horton W (1991), Illustrating Computer Documentation, Wiley, New York.

Iacob M-E, Jonkers H (2005), Quantitative Analysis of Enterprise Architectures. Proc. INTEROP-

ESA 2005 Conference, 23–25 February, Geneva.

Iacob M-E, Leeuwen D (2004), View Visualisation for Enterprise Architecture. Proc. 6th Inter-

national Conference on Enterprise Information Systems (ICEIS 2004), 14–17 April, Porto,

Portugal.

IBM Corp. (1964), IBM System/360 Principles of Operation. IBM Systems Reference Library,

File No. S360-01, Form A22-6821-0. Poughkeepsie, New York.

IDEF (1993), Integration Definition for Function Modeling (IDEF0) Draft, Federal Information

Processing Standards Publication FIPSPUB 183. U.S. Department of Commerce, Springfield,

Virginia.

IEEE Computer Society (2000), IEEE Std 1471-2000: IEEE Recommended Practice for Archi-

tecture description of Software-Intensive Systems. IEEE, New York.

IFIP-IFAC Task Force (1999), GERAM: Generalised Enterprise Reference Architecture and

Methodology, Version 1.6.3, March (Published also as Annex to ISO WD15704). http://

www.fe.up.pt/~jjpf/isf2000/v1_6_3.html.

Illeris S (1997), The Service Economy: A Geographical Approach. Wiley, New York.

Insurance Frameworks (2013), Panorama 360 Enterprise Business Architecture Framework.

Insurance Frameworks. http://www.insuranceframeworks.com.

ISO (2000), Quality Management Systems – Requirements, ISO 9000:2000. International Orga-

nization for Standardization, Geneva.

ISO/IEC/IEEE (2011), Systems and software engineering – Architecture description, ISO/IEC/

IEEE FDIS 42010:2011. International Organization for Standardization, Geneva.

ITU (1995a), Open Distributed Processing – Reference Model – Part 2: Foundations, ITU

Recommendation X.902 | ISO/IEC 10746-2. International Telecommunication Union, Geneva.

ITU (1995b), Open Distributed Processing – Reference Model – Part 3: Architecture, ITU

Recommendation X.903 | ISO/IEC 10746-3. International Telecommunication Union, Geneva.

ITU (1996), Open Distributed Processing – Reference Model – Part 1: Overview, ITU Recom-

mendation X.901 | ISO/IEC 10746-1. International Telecommunication Union, Geneva.

ITU (1997), Open Distributed Processing – Reference Model – Part 4: Architectural Semantics,

ITU Recommendation X.904 | ISO/IEC 10746-4. International Telecommunication Union,

Geneva.

Jacob J (2004), The RML Tutorial. CWI, Amsterdam. http://homepages.cwi.nl/~jacob/rml/

Jacobson I, Booch G, Rumbaugh J (1999), The Unified Software Development Process. Addison-

Wesley, Reading, Massachusetts.

Jagannathan R (1995), Data flow Models. In Zomaya EY (ed.), Parallel and Distributed Comput-

ing Handbook. McGraw-Hill, New York.

James GA (2008), Magic Quadrant for Enterprise Architecture Tools. Gartner, June 17.

Janssen WPM, Fielt E, Lankhorst, MM (2008) Transparency in Services Networks, Combining

Choice and Obligation. In Bouwman H, Bons R, Hoogeweegen M, Janssen M, Pronk H (eds.),

Let a Thousand Flowers Bloom: Essays in commemoration of prof.dr. René Wagenaar. IOS

Press, Amsterdam.

348 References

http://www.fe.up.pt/~jjpf/isf2000/v1_6_3.html
http://www.fe.up.pt/~jjpf/isf2000/v1_6_3.html
http://www.insuranceframeworks.com
http://homepages.cwi.nl/

Janssen WPM, Steen MWA, Franken H (2003), Business Process Engineering versus E-Business

Engineering: a summary of case experiences. Proc. 36th Hawaii International Conference on

System Sciences (HICCS’03), IEEE Computer Society Press, Silver Spring, Maryland.

Jonkers H, Boekhoudt P, Rougoor M, Wierstra E (1999), Completion Time and Critical Path

Analysis for the Optimisation of Business Process Models. In Obaidat M, Nisanci A, Sadoun B

(eds.), Proc. 1999 Summer Computer Simulation Conference, pp. 222–229, Chicago, Illinois.

Jonkers H, Iacob M-E (2009), Performance and Cost Analysis of Service-Oriented Enterprise

Architectures. In Gunasekaran A (ed.), Global Implications of Modern Enterprise Information

Systems: Technologies and Applications, IGI Global.

Jonkers H, Lankhorst MM, Buuren R van, Hoppenbrouwers S, Bonsangue M, Van der Torre L

(2004), Concepts for Modelling Enterprise Architectures, International Journal of Cooperative

Information Systems, special issue on Architecture in IT, Vol. 13, No. 3, Sept. 2004,

pp. 257-287.

Jonkers H, Swelm M van (1999), Queuing Analysis to Support Distributed System Design. Proc.

1999 Symposium on Performance Evaluation of Computer and Telecommunication Systems,

pp. 300–307, Chicago, Illinois.

Kalakote R, Robinson M (2001), e-Business 2.0. Addison-Wesley, Reading, Massachusetts.

Kaplan R, Norton D (1992), The Balanced Scorecard – Measures That Drive Performance,

Harvard Business Review, January–February:71–79.

Kaplan R, Norton D (2004), Strategy Maps, Converting Intangible Assets into Tangible Outcomes,

Harvard Business School Publishing.

Kazman R, Bass L, Abowd G, Webb M (1994), SAAM: A Method for Analyzing the Properties of

Software Architectures. Proc. 16th International Conference on Software Engineering,

pp. 81–90, Sorento, Italy.

Koning H (2002), Guidelines Concerning Readability of IT-Architecture Diagrams version 1.0,

May 17, 2002, http://www.cs.vu.nl/~henk/research/via/guidelines-readability-020517b.doc.

Kotonya G, Sommerville I (1992), Viewpoints for Requirements Definition. IEE/BCS Software

Engineering Journal, 7(6):375–387.

Krogstie J, Lindland OI, Sindre G (1995), Defining Quality Aspects for Conceptual Models. In

Falkenberg ED, Hesse W, Olive A (eds.), Information Systems Concepts: Towards a consol-

idation of views. Proc. IFIP international working conference on information system concepts,

pp. 216–231. Chapman & Hall, London.

Kruchten P (1995), Architectural Blueprints – The ‘4þ1’ View Model of Software Architecture,

IEEE Software, 12(6):42–50.

Kruchten P (2000), The Rational Unified Process: An Introduction, 2nd edition. Addison-Wesley,

Reading, Massachusetts.

Labovitz G, Rosansky V (1997), The Power of Alignment. Wiley, New York.

Lamsweerde A van (2004), Goal-Oriented Requirements Engineering: A Roundtrip from

Research to Practice. Proceedings of the 12th IEEE International Requirements Engineering

Conference, 4–7.

Lankhorst MM, Buuren R van, Leeuwen D van, Jonkers H, Doest HWL ter (2005), Enterprise

Architecture Modelling – The Issue of Integration, Advanced Engineering Informatics, special

issue Enterprise Modelling and System Support, 18(4):205–216.

Lankhorst MM, Proper HA, Jonkers H (2010), The Anatomy of the ArchiMate Language.

International Journal of Information Systems Modeling and Design (IJISMD), 1(1):1–32,

January–March.

Lankhorst MM (ed.) (2012), Agile Service Development – Combining Adaptive Methods and

Flexible Solutions. Springer, Berlin Heidelberg.

Leeuwen D van, Doest HWL ter, Lankhorst MM (2004), A Tool Integration Workbench for

Enterprise Architecture. Proc. 6th International Conference on Enterprise Information Systems

(ICEIS 2004), Porto, Portugal, 14–17 April 2004.

Lindland OI, Sindre G, Sølvberg A (1994), Understanding Quality in Conceptual Modeling, IEEE

Software, 11(2):42–49.

References 349

http://www.cs.vu.nl/~henk/research/

Lung C-H, Jalnapurkar A, El-Rayess A (1998), Performance-Oriented Software Architecture

Analysis: An Experience Report. Proc. First International Workshop on Software and Perfor-

mance, Santa Fe, New Mexico.

Martin J (1982), Strategic Data-Planning Methodologies. Prentice Hall, Englewood Cliffs, New

Jersey.

Martin J (1989), Information Engineering (3 vols.). Prentice Hall, Englewood Cliffs, New Jersey.

Martin RC (2002), Agile Software Development Principles, Patterns, and Practices. Prentice Hall,

Englewood Cliffs, New Jersey.

Matthes F, Buckl S, Leitel J, Schwerda CM (2008), EAMTS2008 - Enterprise Architecture

Management Tool Survey 2008. TU Munich.

Matthes F, Hauder M, Katinsky N (2014), EAMTS2014 - Enterprise Architecture Management

Tool Survey 2014 Update. TU Munich.

Mayer RJ, Menzel CP, Painter MK, deWitte PS, Blinn T, Perakath B (1995), Information

Integration for Concurrent Engineering (IICE), IDEF3 Process Description Capture Method

Report, Interim Technical Report April 1992–September 1995. Knowledge Based Systems,

College Station, Texas.

McGovern J, Ambler SW, Stevens ME, Linn J, Sharan V, Elias KJ (2004), A Practical Guide to

Enterprise Architecture. Pearson Education, Upper Saddle River, New Jersey.

Medvidovic N, Taylor RN (2000), A Classification and Comparison Framework for Software

Architecture Description Languages, IEEE Transactions on Software Engineering,

26 (1):70–93.

Menzel C, Mayer RJ (1998), The IDEF Family of Languages. In Bernus P, Mertins K, Schmidt G

(eds.), Handbook on Architectures of Information Systems, vol. 1 of International Handbooks

on Information Systems, Chap. 10, pp. 209–241. Springer, Berlin.

Miller GA (1956), The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity

for Processing Information. Psychological Review, 63:81–97.

Nadler DA, Gerstein MS, Shaw RB (1992), Organizational Architecture: Designs for Changing

Organizations. Jossey-Bass, San Francisco.

NASCIO (2003), NASCIO Enterprise Architecture Maturity Model Version 1.3, National Asso-

ciation of State Chief Information Officers. https://www.nascio.org/hotIssues/EA/EAMM.pdf

Nonaka I, Takeuchi H (1991), The Knowledge-Creating Company. Harvard Business Review,

November–December:97–130.

Nuseibeh BA (1994), A Multi-Perspective Framework for Method Integration. PhD thesis,

Imperial College, University of London.

Object Management Group (2013), Business Process Modeling Notation (BPMN), Version 2.0.2

(formal/2013-12-09), Object Management Group. http://www.omg.org/spec/BPMN/.

Object Management Group (2014), Model Driven Architecture (MDA) MDA Guide Revision 2.0

(ormsc/2014-06-01), Object Management Group. http://www.omg.org/mda/.

Object Management Group (2015a), OMG Unified Modeling LanguageTM (OMG UML) Version

2.5 (formal/2015-03-01), Object Management Group. http://www.omg.org/spec/UML/.

Object Management Group (2015b), Business Motivation Model (BMM), Version 1.3 (formal/

2015-05-19), Object Management Group. http://www.omg.org/spec/BMM/.

Object Management Group (2015c), XML Metadata Interchange (XMI) Specification, Version

2.5.1 (formal/2015-06-07). Object Management Group. http://www.omg.org/spec/XMI/.

Object Management Group (2015d), Meta Object Facility (MOF) Core Specification, Version 2.5

(formal/2015-06-05), Object Management Group. http://www.omg.org/spec/MOF/.

Object Management Group (2015e), OMG Systems Modeling Language (OMG SysML, Version

1.4 (formal/2015-06-03), Object Management Group. http://www.omg.org/spec/SysML/.

Object Management Group (2015f), Value Delivery Metamodel, Version 1.0 (formal/2015-10-

05), Object Management Group. http://www.omg.org/spec/VDML/.

Object Management Group (2015g), Semantics of Business Vocabulary and Business Rules

(SBVR) Version 1.3 (formal/2015-05-07), Object Management Group. http://www.omg.org/

spec/SBVR/.

350 References

https://www.nascio.org/
http://www.omg.org/spec/BPMN/
http://www.omg.org/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/BMM/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/SysML
http://www.omg.org/spec/VDML
http://www.omg.org/spec/SBVR/
http://www.omg.org/spec/SBVR/

Object Management Group (2016a), Decision Model and Notation (DMN) Version 1.1 (formal/

2016-06-01), Object Management Group. http://www.omg.org/spec/DMN/.

Object Management Group (2016b), Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification Version 1.3 (formal/2016-06-03), Object Management Group. http://www.omg.

org/spec/QVT/.

ODMG (2000), Using XML as an Object Interchange Format, Object Data Management Group.

http://www.odmg.org/.

Olle TW, Hagelstein J, Macdonald IG, Rolland C, Sol HG, van Assche FJM Verrijn-Stuart AA

(1988), Information Systems Methodologies: A Framework for Understanding. Addison-

Wesley, Reading, Massachusetts.

Op ’t Land M, Proper E, Waage M, Cloo J, Steghuis C (2008), Enterprise Architecture: Creating

Value by Informed Governance. Springer, Berlin.

Osterwalder A (2004), The Business Model Ontology – A Proposition in a Design Science

Approach. PhD Thesis, University of Lausanne.

Osterwalder A, Pigneur Y (2010), Business Model Generation: A Handbook for Visionaries,

Game Changers, and Challengers. Wiley.

Pahl G, Beitz W (1986), Konstruktionslehre. Handbuch für Studium und Praxis. Springer, Berlin.

Parker MM, Benson RJ (1989), Enterprise-wide Information Management: State-of-the-Art Stra-

tegic Planning, Journal of Information Systems Management, 6(3):14–23.

Paulk M, Curtis B, Chrissis M, Weber C (1993), Capability Maturity Model for Software (Version

1.1), Technical Report CMU/SEI-93-TR-024, Software Engineering Institute, Carnegie Mel-

lon University, Pittsburgh, Pennsylvania.

Peirce CS (1969a), Volumes I and II – Principles of Philosophy and Elements of Logic. Collected

Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts.

Peirce CS (1969b), Volumes III and IV – Exact Logic and The Simplest Mathematics. Collected

Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts.

Peirce CS (1969c), Volumes V and VI – Pragmatism and Pragmaticism and Scientific Metaphys-

ics. Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts.

Peirce CS (1969d), Volumes VI and VIII – Science and Philosophy and Reviews, Correspondence

and Bibliography. Collected Papers of C.S. Peirce. Harvard University Press, Boston,

Massachusetts.

Pols R van der, Backer Y (2006), Application Services Library – A Management Guide. ASL

Foundation/Van Haren Publishing.

Porter ME (1985), Competitive Advantage: Creating and Sustaining Superior Performance. Simon

and Schuster, New York.

Proper HA (ed.) (2001), ISP for Large-Scale Migrations, Information Services Procurement

Library. Ten Hagen & Stam, Den Haag.

Proper HA (2004), Da Vinci – Architecture-Driven Information Systems Engineering. Nijmegen

Institute for Information and Computing Sciences, University of Nijmegen.

Putman JR (1991), Architecting with RM-ODP. Prentice Hall, Englewood Cliffs, New Jersey.

Quartel DAC, Steen MWA, Lankhorst MM (2010), IT Portfolio Valuation: Using Enterprise

Architecture and Business Requirements Modeling. Proc. 14th IEEE International Enterprise

Distributed Object Computing Conference (EDOC 2010), 25–29 October 2010, Vitoria, Brazil,

pp. 3–13. IEEE Computer Society.

Rechtin E, Maier MW (1997), The Art of Systems Architecting. CRC Press, Boca Raton, Florida.

Reeves J, Marashi M, Budgen D (1995), A Software Design Framework or How to Support Real

Designers, IEE/BCS Software Engineering Journal, 10(4):141–155.

Rittgen P (2000), A Modelling Method for Developing Web-Based Applications. Proc. Interna-

tional Conference IRMA 2000, Anchorage, Alaska, pp. 135–140.

Romani MB (2003), Using the Enterprise Architecture to Quantify the Benefits of Information

Technology Projects, IR204L2/March 2003. Logistics Management Institute, McLean,

Virginia.

References 351

http://www.omg.org/spec/DMN/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.odmg.org/

Roozenburg NFM, Eekels J (1995), Product Design: Fundamentals and Methods. Wiley,

New York.

Ross JW, Weill P, Robertson DC (2006), Enterprise Architecture As Strategy: Creating a Foun-

dation for Business Execution. Harvard Business School Press.

Rueping A (2003), Agile Documentation: A Pattern Guide to Producing Lightweight Documents

for Software Projects. Wiley, New York.

Sanden WAM van der, Sturm BJAM (1997), Informatiearchitectuur, de infrastructurele

benadering. Panfox, Rosmalen (in Dutch).

Sarbanes–Oxley Act (2002), http://www.law.uc.edu/CCL/SOact/toc.html.

Schefstroem D, Broek G van den (1993), Tool Integration: Environments and Frameworks. Wiley,

New York.

Schomig A, Rau H (1995), A Petri Net Approach for the Performance Analysis of Business

Processes. Technical Report 116, Lehrstuhl für Informatik III, Universitat Wurzburg.

Schuurman P, Berghout EW, Powell P (2008), Calculating the Importance of Information Sys-

tems: The Method of Bedell Revisited, CITER WP/010/PSEBPP, University of Groningen,

June 2008. Sprouts Working Papers on Information Systems, http://sprouts.aisnet.org/8-37.

Sherwood J, Clark A, Lynas D (2009), Enterprise Security Architecture. White Paper, SABSA

Institute.

Shostack GL (1984), Designing Services that Deliver, Harvard Business Review, 62(1):133–139.

Smith C (1990), Performance Engineering of Software Systems. Addison-Wesley, Reading,

Massachusetts.

Smith JM, Smith DCP (1977), Database Abstractions: Aggregation and Generalization, ACM

Transactions on Database Systems, 2(2):105–133.

Sowa JF, Zachman JA (1992), Extending and Formalizing the Framework for Information

Systems Architecture, IBM Systems Journal, 31(3):590–616.

Spitznagel B, Garlan D (1998), Architecture-based Performance Analysis. Proc. 1998 Conference

on Software Engineering and Knowledge Engineering, San Francisco Bay.

Stam A, Jacob J, De Boer F, Bonsangue M, Van der Torre L (2004), Using XML transformations

for Enterprise Architectures. Proc. 1st International Symposium on Leveraging Applications of

Formal Methods (ISOLA’04), Paphos, Cyprus.
Steen MWA, Doest HWL ter, Lankhorst MM, Akehurst DH (2004), Supporting Viewpoint-

Oriented Enterprise Architecture. Proc. 8th IEEE International Enterprise Distributed Object

Computing Conference (EDOC’04), Monterey, California, September 20–24.

Steen MWA, Lankhorst MM, Wetering RG van de (2002), Modelling Networked Enterprises. In

Proc. Sixth International Enterprise Distributed Object Computing Conference (EDOC’02),
Lausanne, Switzerland, September, pp. 109–119.

Stevens M (2002), Service-Oriented Architecture Introduction, Part 1. www.developer.com/

design/article.php/1010451, April.

Stroud RE (2012), Introduction to COBIT 5. ISACA. http://www.isaca.org/education/upcoming-

events/documents/intro-cobit5.pdf.

Teeuw WB, Berg, H van den (1997), On the Quality of Conceptual Models. In Liddle SW (ed.),

Proc. ER’97 Workshop on Behavioral Models and Design Transformations: Issues and Oppor-

tunities in Conceptual Modeling, UCLA, Los Angeles. http://osm7.cs.byu.edu/ER97/work

shop4/tvdb.html.

The Open Group (2011), The Open Group Architectural Framework (TOGAF) Version 9.1. The

Open Group, Reading, UK. http://www.opengroup.org/togaf/.

The Open Group (2013), Risk Taxonomy (O-RT) Version 2.0. The Open Group, Reading,

UK. https://www2.opengroup.org/ogsys/catalog/C13K

The Open Group (2015), ArchiMate® Model Exchange File Format, Open Group Standard, The

Open Group, Reading, UK.

The Open Group (2016a), ArchiMate® 3.0 Specification, Open Group Standard, The Open Group,

Reading, UK. http://www.opengroup.org/archimate/.

352 References

http://www.law.uc.edu/CCL/SOact/toc.html
http://sprouts.aisnet.org/8-37
http://www.developer.com/design/article.php/1010451
http://www.developer.com/design/article.php/1010451
http://www.isaca.org/education/upcoming-events/documents/intro-cobit5.pdf
http://www.isaca.org/education/upcoming-events/documents/intro-cobit5.pdf
http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html
http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html
http://www.opengroup.org/togaf/
https://www2.opengroup.org/ogsys/catalog/C13K
http://www.opengroup.org/archimate/

The Open Group (2016b), Business Capabilities, Open Group Guide, The Open Group, Reading,

UK. https://www2.opengroup.org/ogsys/catalog/G161

The Open Group (2016c), Open Business Architecture (O-BA) – Part I, Open Group Preliminary

Standard, P161, The Open Group, Reading, UK.

Treacy M, Wiersema, F (1997), The discipline of market leaders. Perseus Publishing, Reading,

Massachusetts.

Turner KJ (1987), An Architectural Semantics for LOTOS. Proc. 7th International Conf. on

Protocol Specification, Testing, and Verification, pp. 15–28.

Ulrich, W, Rosen, M (2011), The Business Capability Map: The “Rosetta Stone” of Business/IT

Alignment. Executive Report, March 8, 2011, Cutter Consortium.

UN/CEFACT (2011), UMM Foundation Module Version 2.0, http://www.unece.org/cefact/.

Velzen RCG van, Oosten JNA van, Snijders T, Hardjono TW (2002), Procesmanagement en de

SqEME-benadering. Kluwer, Dordrecht.

Venkatraman N (1995), IT-enabled Business Transformation: From Automation to Business

Scope Redefinition, Sloan Management Review, Fall:32–42.

Veryard R (2004), Business-Driven SOA 2 – How business governs the SOA process, CBDI

Journal, June.

W3C (1999), XSL Transformations 1.0, World Wide Web Consortium. http://www.w3.org/TR/

xslt.

W3C (2004), XML Schema 1.1, W3C Recommendation 28 October 2004, World Wide Web

Consortium. http://www.w3.org/TR/xmlschema-0/.

W3C (2008), XML 1.0, W3C Recommendation 26 November 2008, World Wide Web Consor-

tium. http://www.w3.org/TR/xml/.

Weill P, Vitale M (2002), What IT Infrastructure Capabilities Are Needed to Implement

E-Business Models? MIS Quarterly Executive, 1(1):17–34.

Weinberg GM (1988), Rethinking Systems Analysis & Design. Dorset House Publishing,

New York.

White House (2013), Federal Enterprise Architecture Framework, Version 2.0. https://www.

whitehouse.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf

Wieringa RJ (1996), Requirements Engineering: Frameworks for Understanding. Wiley,

New York.

Wieringa RJ (1998a), Postmodern Software Design with NYAM: Not Yet Another Method. In

Broy M, Rumpe B (eds.), Requirements Targeting Software and Systems Engineering, LNCS

1526, pp. 69–94. Springer, Berlin.

Wieringa RJ (1998b), A Survey of Structured and Object-Oriented Software Specification

Methods and Techniques, ACM Computing Surveys, 30(4):459–527.

Wieringa RJ (2003), Design Methods for Reactive Systems: Yourdon, Statemate and the UML.

Morgan Kaufmann, San Francisco.

Wieringa RJ, Blanken HM, Fokkinga MM, Grefen PWPJ (2003), Aligning application architec-

ture to the business context. Proc. Conference on Advanced Information System Engineering

(CaiSE’03), LNCS 2681, pp. 209–225. Springer, Berlin.

Wieringa R, Eck P van, Steghuis C, Proper E (2008), Competences of IT Architects. Sdu

Uitgevers, The Hague.

Wijers GM, Heijes H (1990), Automated Support of the Modelling Process: A view based on

experiments with expert information engineers. In Steinholtz B, Sølvberg A, Bergman L (eds.),

Proc. Second Nordic Conference on Advanced Information Systems Engineering (CaiSE’90),
LNCS 436, pp. 88–108. Springer, Berlin.

Williams LG, Smith CU (1998), Performance Evaluation of Software Architectures. Proc. First

International Workshop on Software and Performance, Santa Fe, New Mexico, October,

pp. 164–177.

Wood-Harper AT, Antill L, Avison DE (1985), Information Systems Definition: The Multiview

Approach. Blackwell Scientific, Oxford, UK.

References 353

https://www2.opengroup.org/ogsys/catalog/G161
http://www.unece.org/cefact/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xml/
https://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf
https://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf

Woods WA, Schmolze JG (1992), The KL-ONE family, Computers & Mathematics with Appli-

cations, 23(2/5):133–177.

Yu ESK (1997), Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering, Proceedings of the 3rd IEEE International Symposium on Requirements Engi-

neering, 226–235.

Zachman JA (1987), A Framework for Information Systems Architecture, IBM Systems Journal,

26(3):276–292.

Zee H van der, Laagland P, Hafkenscheid B (eds.) (2000), Architectuur als Management Instru-

ment – Beheersing en Besturing van Complexiteit in het Netwerktijdperk. Ten Hagen & Stam,

Den Haag (in Dutch).

354 References

Trademarks

TOGAF®, ArchiMate® and The Open Group® are registered trademarks of The

Open Group.

MDA®, Model Driven Architecture®, OMG®, SysML® and UML® are regis-

tered trademarks and BPMN™, Business Process Modeling Notation™, MOF™,

Decision Model and Notation™, DMN™, Semantics of Business Vocabulary and

Rules™, SBVR™, VDML™ and Unified Modeling Language™ are trademarks of

the Object Management Group.

CMM® and CMMI® are registered trademarks of the Carnegie Mellon Software

Engineering Institute.

ITIL® is a registered trademark of the Office of Government Commerce.

COBIT® is a registered trademark of the Information Systems Audit and

Control Association and the IT Governance Institute.

BIZBOK® and A Guide to the Business Architecture Body of Knowledge® are

registered trademarks of the Business Architecture Guild®.

There may be other brand, company, and product names used in this document

that may be covered by trademark protection. We advise the reader to verify these

independently.

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0

355

Index

A
ABN AMRO, 310, 314, 321

ABP, 301–310, 321

Abstraction, 63, 155

level, 63, 155

Acme, 36, 37

Activity diagrams, 35, 57

Actor

business, 88

ADL.SeeArchitectureDescriptionLanguage (ADL)
ADM. See The Open Group Architectural

Framework (TOGAF)

Alignment, 6, 7, 10, 39, 43, 98–99, 102–103,

121, 144, 253–275

Analysis

capability, 249

functional, 216, 231

impact-of-change, 251, 294

performance, 220

portfolio, 246–248

quantitative, 217, 296

risk, 242–246

Application Life Cycle Measurement Method

(ALMM), 248

Architecture, 2

business, 15

description, 59

enterprise, 3

service-oriented, 37

Architecture Description Language (ADL), 36,

37, 221

Artefact, 24, 34, 62–64, 100–103, 108, 135,

137, 139, 207, 208, 213, 222

Assessment, 13, 27, 30, 81–82, 125, 130, 131,

210, 242, 243, 249

B
Balanced scorecard, 12, 125

Basel II framework, 9

Bedell’s method, 246

Behaviour

business, 90

Business capability. See Capability
Business Model Canvas, 12–15, 126, 128

BusinessMotivationModel (BMM), 84, 125, 126

Business process design, 279

Business process management, 279

Business Process Modelling Notation

(BPMN), 33

C
Capability, 15, 85

Capability-based planning, 249

Capability Maturity Model (CMM), 21

CIM. See Computation-Independent Model

(CIM)

C4ISR Architecture Working Group, 29

Class diagrams, 35

Clinger–Cohen Act, 9

Cloud computing, 39

CMMI, 21

COBIT. See Control Objectives for
Information and Related Technology

(COBIT)

Coherence, 74

Collaboration

application, 96

business, 89

diagrams, 35

technology, 99

© Springer-Verlag Berlin Heidelberg 2017

M. Lankhorst et al., Enterprise Architecture at Work, The Enterprise Engineering
Series, DOI 10.1007/978-3-662-53933-0

357

Colour, 167

Component

application, 96

diagrams, 35

Composite element, 80

Compositionality, 42

Computation-Independent Model (CIM), 28

Conceptual integrity, 141

Concern, 46, 62

Constraint, 83

Contract, 95

Control Objectives for Information and Related

Technology (COBIT), 18

Course of action, 84

Customer journey map, 130

Customisation, 110

D
Data flow networks, 240

Decision Model and Notation (DMN),

134–136

Deliverable, 106

Department of Defense Architecture

Framework (DoDAF), 29, 30

Deployment diagrams, 35

Device, 100

Domain, 48

Driver, 82

E
Economy, 142

Ecosystem

business, 338–340

Enterprise, 2

Enterprise Risk and Security Management

(ERSM), 242

Entity-Relationship (ER) Model, 138

Equipment, 103

European Foundation for Quality Management

(EFQM), 16

Event

application, 98

business, 93

implementation, 106

technology, 102

F
Facility, 104

Flow relation, 109

Frameworks, 22

Function

application, 98

business, 91

technology, 102

Functional analysis. See Analysis, functional

G
Gap, 106

Generality, 142

The Generic Enterprise Reference Architecture

and Methodology (GERAM), 30

Goal, 82

Grice’s Maxims, 150

Grouping, 80

I
IDEF, 32

IEEE 1471 Standard, 22

Impact-of-change analysis. See Analysis,
impact-of-change

Infrastructure-as-a-Service (IaaS), 39

Interaction

application, 98

business, 91

technology, 102

Interface, 78

application, 97

business, 89

technology, 100

Investment decisions, 247

ISO 9001, 17

ISO/IEC 42010 Standard, 22

IT Infrastructure Library (ITIL), 20

L
Landscape map, 291

Layering, 157

Layout, 165

Location, 80

M
Material, 104

Meaning, 84

Meta Object Facility (MOF), 28, 29

Metric, 250

Model, 46, 48

guidelines, 149

semantic, 52, 55

symbolic, 52, 54

way of, 144

358 Index

Model-Driven Architecture (MDA), 28

Model–view–controller architecture, 293

Motivation, 80

N
Nesting, 107

Network

communication, 101

distribution, 104

Node, 99

Nolan Norton Framework, 31

O
Object, 77

business, 89

data, 97

diagrams, 35

Object Constraint Language (OCL), 35

Operating model, 8

Orthogonality, 142

Outcome, 83

P
Parsimony, 142

Path, 101

Performance analysis. See Analysis,
performance

Perspective, 62

Physical viewpoint, 209

Plateau, 106

Platform-as-a-Service (PaaS), 39

Platform-Independent Model (PIM), 29

Platform-Specific Model (PSM), 29

Portfolio management, 246

Principle, 83

Process

algebra, 238

application, 98

business, 91

technology, 102

Product, 95

Profile, 35, 111

Propriety, 142

Q
Quality

external, 142

internal, 142

Quantitative analysis. See Analysis,
quantitative

Queries, Views and Transformations (QVT), 29

R
Readability of models, 162

Reference Model for Open Distributed

Processing (RM-ODP),

30, 175

Relations, 107

derived, 109

indirect, 109

Repository, 279

Representation, 90

Representational State Transfer, 39

Requirement, 82

Resource, 85

REST. See Representational State
Transfer

Risk, 242

RM-ODP. See Reference Model for

Open Distributed Processing

(RM-ODP)

Role

business, 89

S
SaaS. See Software-as-a-Service (SaaS)
Sarbanes-Oxley Act, 9

Scope, 63

Security, 242

Semantics, 51

architectural, 53

formal, 53

Semantics of Business Vocabulary

and Rules (SBVR), 134

Sequence diagrams, 35

Service, 45, 75, 78

application, 97

business, 90

orientation, 37, 75

technology, 101

Signature, 54, 231, 236

Simulation, 216

Software-as-a-Service (SaaS), 39

Specialisation

of concepts, 111

Stakeholder, 2, 46, 81, 173

State diagrams, 35

Stereotype, 35, 111

Strategy element, 84

Strategy map, 13

Structuring, 156

System development community, 61

Systems Modeling Language

(SysML), 138

System software, 101

Index 359

T
Tax and Customs Administration, 322

The Open Group Architectural Framework

(TOGAF), 25, 139

Architecture Development Method, 26, 140

views, 139, 213

Triggering relation, 109

U
Unified Modeling Language (UML), 28, 34,

135

Usability of models, 162

Use case diagrams, 35

UWV, 322

V
Value, 83, 126

chain, 126

map, 126

stage, 126

stream, 126

View model, 49, 172, 174

Viewpoint, 49, 172, 174

frameworks, 174

RM-ODP, 175

Visualisation

interactive, 290

W
Work package, 105

Z
Zachman framework, 24

360 Index

	Foreword to the Fourth Edition
	Foreword to the Third Edition
	Foreword to the Second Edition
	Foreword to the First Edition
	Preface
	Audience
	Overview of the Book
	Acknowledgements

	Contents
	List of Contributors
	Chapter 1: Introduction to Enterprise Architecture
	1.1 Architecture
	1.2 Enterprise Architecture
	1.3 The Architecture Process
	1.4 Drivers for Enterprise Architecture
	1.4.1 Internal Drivers
	1.4.2 External Drivers

	1.5 Summary

	Chapter 2: State of the Art
	2.1 Enterprise Architecture and Other Governance Instruments
	2.1.1 Strategic Management
	2.1.2 Business Model Development
	2.1.3 Business Architecture
	2.1.4 Quality Management
	2.1.5 IT Governance
	2.1.6 IT Service Delivery and Support
	2.1.7 IT Implementation

	2.2 Architecture Methods and Frameworks
	2.2.1 The IEEE 1471-2000/ISO/IEC 42010 Standard
	2.2.2 The Zachman Framework
	2.2.3 The Open Group Architecture Framework
	2.2.4 OMG´s Model-Driven Architecture
	2.2.5 Other Frameworks

	2.3 Description Languages
	2.3.1 IDEF
	2.3.2 BPMN
	2.3.3 UML
	2.3.4 Architecture Description Languages
	2.3.5 Suitability for Enterprise Architecture

	2.4 Service-Oriented Architecture
	2.4.1 Service-Oriented Technologies
	2.4.2 Relevance and Benefits for Enterprise Architecture

	Chapter 3: Foundations
	3.1 Getting to Grips with Architectural Complexity
	3.1.1 Compositionality
	3.1.2 Integration of Architectural Domains

	3.2 Describing Enterprise Architectures
	3.2.1 Observing the Universe
	3.2.2 Concerns
	3.2.3 Observing Domains
	3.2.4 Views and Viewpoints
	3.2.5 Ways of Working
	3.2.6 Enterprise Architecture Models

	3.3 Pictures, Models, and Semantics
	3.3.1 Symbolic and Semantic Models
	3.3.2 Symbolic Models
	3.3.3 Semantic Models
	3.3.4 Semantics in ArchiMate Versus UML

	3.4 Summary

	Chapter 4: Communication of Enterprise Architectures
	4.1 Introduction
	4.2 System Development as a Knowledge Transformation Process
	4.2.1 System Development Community
	4.2.2 System Development Knowledge
	4.2.3 Explicitness of Knowledge
	4.2.4 Transformations of Knowledge

	4.3 Conversation Strategies
	4.4 Architectural Conversations
	4.4.1 Knowledge Goals
	4.4.2 Conversation Techniques

	4.5 Summary

	Chapter 5: A Language for Enterprise Modelling
	5.1 Describing Coherence
	5.2 Service Orientation and Layering
	5.3 Three Dimensions of Modelling
	5.4 Full Framework
	5.5 Composite Concepts
	5.6 Motivation Concepts
	5.6.1 Stakeholder, Driver and Assessment
	5.6.2 Goal, Requirement, Constraint and Principle
	5.6.3 Value and Meaning

	5.7 Strategy Concepts
	5.7.1 Defining Capabilities

	5.8 Business Layer Concepts
	5.8.1 Business Structure Concepts
	5.8.2 Business Behaviour Concepts
	5.8.3 Higher-Level Business Concepts

	5.9 Application Layer Concepts
	5.9.1 Application Structure Concepts
	5.9.2 Application Behaviour Concepts
	5.9.3 Business-Application Alignment

	5.10 Technology Layer Concepts
	5.10.1 Technology Structure Concepts
	5.10.2 Technology Behaviour Concepts
	5.10.3 Application-Technology Alignment

	5.11 Physical Concepts
	5.12 Implementation and Migration Concepts
	5.12.1 Implementation-Related Concepts
	5.12.2 Migration Planning Concepts

	5.13 Relations
	5.14 Language Customisation Mechanisms
	5.14.1 Adding Attributes to ArchiMate Concepts and Relations
	5.14.2 Specialisation of Concepts

	5.15 Modelling Example
	5.16 Capabilities, Business Functions and Organisation Structure
	5.17 Post-Merger IT Rationalisation
	5.17.1 New Digital Customer Intimacy Strategy

	5.18 Transformation Roadmap
	5.19 Summary

	Chapter 6: Combining ArchiMate with Other Standards and Approaches
	6.1 Introduction
	6.2 Business Motivation Model
	6.3 Balanced Scorecard
	6.4 Business Model Canvas
	6.5 Value Map
	6.6 Customer Journey Map
	6.7 Service Blueprint
	6.8 BPMN
	6.9 Business Logic
	6.10 UML
	6.11 SysML
	6.12 Entity-Relationship Model
	6.13 TOGAF
	6.14 Summary

	Chapter 7: Guidelines for Modelling
	7.1 Introduction
	7.2 The Modelling Process
	7.2.1 Modelling as a Transformation Process
	7.2.2 Basic Modelling Activities
	7.2.3 Types of Modelling Actions

	7.3 Guidelines for Modelling
	7.3.1 Before You Start
	7.3.2 What to Capture in a Model?
	7.3.3 Modelling and Abstraction
	7.3.4 Structuring Models and Visualisations
	7.3.5 Constructive Use of Modelling Breakdowns

	7.4 Readability and Usability of Models
	7.4.1 Reducing the Visual Complexity of Models
	7.4.2 Representation Conventions

	7.5 Summary

	Chapter 8: Viewpoints and Visualisation
	8.1 Architecture Viewpoints
	8.1.1 Origin of Viewpoints
	8.1.2 Architecture Viewpoints
	8.1.3 Viewpoint Frameworks

	8.2 Models, Views, and Visualisations
	8.2.1 Example: Process Illustrations
	8.2.2 Example: Landscape Maps

	8.3 Visualisation and Interaction
	8.3.1 Actions in Views

	8.4 Creating, Selecting, and Using Viewpoints
	8.4.1 Classification of Viewpoints
	8.4.2 Guidelines for Using Viewpoints
	8.4.3 Scoping
	8.4.4 Creation of Views
	8.4.5 Validation
	8.4.6 Obtaining Commitment
	8.4.7 Informing Stakeholders

	8.5 Basic Design Viewpoints
	8.5.1 Introductory Viewpoint
	8.5.2 Organisation Viewpoint
	8.5.3 Actor Cooperation Viewpoint
	8.5.4 Business Function Viewpoint
	8.5.5 Product Viewpoint
	8.5.6 Service Realisation Viewpoint
	8.5.7 Business Process Cooperation Viewpoint
	8.5.8 Business Process Viewpoint
	8.5.9 Information Structure Viewpoint
	8.5.10 Application Cooperation Viewpoint
	8.5.11 Application Usage Viewpoint
	8.5.12 Application Behaviour Viewpoint
	8.5.13 Application Structure Viewpoint
	8.5.14 Technology Viewpoint
	8.5.15 Technology Usage Viewpoint
	8.5.16 Implementation and Deployment Viewpoint
	8.5.17 Physical Viewpoint

	8.6 Motivation Viewpoints
	8.7 Strategy Viewpoints
	8.7.1 Capability Map Viewpoint

	8.8 Implementation and Migration Viewpoints
	8.9 Combined Viewpoints
	8.10 ArchiMate and TOGAF Viewpoints
	8.11 Summary

	Chapter 9: Architecture Analysis
	9.1 Analysis Techniques
	9.2 Quantitative Analysis
	9.2.1 Performance Views
	9.2.2 Performance Analysis Techniques for Architectures
	9.2.3 Quantitative Modelling
	9.2.4 Quantitative Analysis Technique

	9.3 Functional Analysis
	9.3.1 Static Analysis
	9.3.2 Dynamic Analysis

	9.4 Risk Analysis
	9.5 Portfolio Analysis
	9.6 Capability Analysis
	9.7 Summary

	Chapter 10: Architecture Alignment
	10.1 Introduction
	10.2 The GRAAL Alignment Framework
	10.2.1 System Aspects
	10.2.2 The Aggregation Hierarchy
	10.2.3 The System Process
	10.2.4 Refinement Levels
	10.2.5 Comparison with Other Frameworks

	10.3 Alignment Phenomena
	10.3.1 Service Provisioning Layers
	10.3.2 Infrastructure Architecture
	10.3.3 Business System Architecture
	10.3.4 Strategic Misalignment
	10.3.5 Conway´s Law
	10.3.6 The FMO Alignment Pattern

	10.4 The Architecture Process
	10.4.1 Methods
	10.4.2 IT Governance

	10.5 Summary

	Chapter 11: Tool Support
	11.1 Reasons for Enterprise Architecture Tooling
	11.2 The Architecture Tool Landscape
	11.3 Tool Infrastructure
	11.4 Workbench for Enterprise Architecture
	11.4.1 Model Integration
	11.4.2 Viewpoint Definition
	11.4.3 Transparency and Extensibility
	11.4.4 Software Architecture
	11.4.5 Exchange Formats
	11.4.6 Workbench at Work

	11.5 View Designer Tool
	11.5.1 Viewpoint Rules for Creating Views and Visualisations
	11.5.2 Defining Actions in Models and Views
	11.5.3 Interactive Visualisation
	11.5.4 Example: The Landscape Map Tool
	11.5.5 Comparison with Model-View-Controller Architecture

	11.6 Impact-of-Change Analysis Tool
	11.7 Quantitative Analysis Tool
	11.8 Commercial Tool Support for ArchiMate
	11.9 Summary

	Chapter 12: Case Studies
	12.1 Process and Application Visualisation at ABP
	12.1.1 ABP Meta-model
	12.1.2 Case Essentials
	12.1.3 Concepts
	12.1.4 Viewpoints
	12.1.5 Design of the Visualiser
	12.1.6 Case Study Results

	12.2 Application Visualisation at ABN AMRO
	12.2.1 CITA Meta-model
	12.2.2 Case Essentials
	12.2.3 Concepts
	12.2.4 Visualisation
	12.2.5 Tool Design and Results

	12.3 Design and Analysis at the Dutch Tax and Customs Administration
	12.3.1 Case Essentials
	12.3.2 Views
	12.3.3 Performance Analysis
	12.3.4 Case Study Results

	12.4 Summary

	Chapter 13: Beyond Enterprise Architecture
	13.1 The World Before Enterprise Architecture
	13.2 The Advent of Enterprise Architecture
	13.3 The Business Ecosystem

	Appendix: Graphical Notation
	References
	Trademarks
	Index

