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Foreword
I am very pleased to provide the Foreword for this timely work on distributed fusion. 
I have been involved in fusion research for the last 15 years, focused on transform-
ing data to support more effective decision making. During that time, I have relied 
heavily on the advice of the editors of this book and many of the chapter authors 
to help set the directions for Army-focused basic and applied information fusion 
initiatives.

I first met the editors about 12 years ago at an Army-sponsored fusion workshop 
where it was clear that the issues of increased sensors and data sources, along with 
the introduction of web-based information architectures, had finally overwhelmed 
the analysis community. Most of the discussions were focused on the problems, but 
Dave Hall and Jim Llinas began addressing the solutions. They identified relevant 
terms and definitions, outlined algorithms for specific fusion tasks, addressed many 
of the evolving architectural issues, pinpointed key technical barriers, and proposed 
directions for future research. They clearly were long-time experts in the field; but, 
more importantly, they were visionary in their recognition of rapidly evolving trends 
in information management and the impact those trends would have on the field of 
data fusion. It is, therefore, not at all surprising that this, their latest book (along with 
colleagues), would be focused on distributed fusion.

While there are numerous texts and handbooks on data fusion in general (many 
written or edited by the editors and authors of this book), there are two major trends 
that motivate the need for this work. First, the very concept of defense operations 
has dramatically changed. Modern military missions include, for example, coalition-
based counterinsurgency, counternarcotics, counterterrorism, and peacekeeping 
operations. In a sense, the questions have become more complex. The focus is less 
on detecting the physical aspects of an oncoming tank battalion, and more on detect-
ing networks of operatives or anomalous events, and integrating them with sociocul-
tural concepts. The impact is that historical fusion algorithms, with their reliance on 
large-system, sensor data–driven, centralized techniques, must now accommodate 
human observers, open source information, and distributed decision-making con-
ducted at lower and lower echelons.

A second key trend is that rapid changes in information technology have enabled 
mobile information architectures, changing our concept of where and how fusion 
algorithms will be employed. As of February 2012, there are 5.9 billion mobile 
subscribers worldwide, 1.2 billion mobile web users, and 10.9 billion application 
downloads in place. While implementation of service-oriented architecture (SOA) 
and cloud concepts continues to be problematic in the mobile ad hoc network envi-
ronments of the military, this mobile access trend clearly sets the vision for the 
future in the Department of Defense.
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The impact of these trends on fusion requirements includes the need for the 
following:

•	 Near-real-time computational speed: The traditional concept of having an 
individual warfighter disconnected throughout a mission, occasionally con-
tacting analysts for updates, is no longer acceptable. Untethered soldiers 
will require ready access to data sources. This means that fusion algorithms 
must run at near-real-time speeds and be tailored to the user’s situation if 
they are to be effective in supporting tactical operations. In other words, we 
must begin replacing the notion of large-scale fusion algorithms with small-
scale user-adaptive fusion applications.

•	 Accommodation of more varied data sources: Users will have the ability not 
only to access data, but to collect and post imagery, voice clips, text mes-
sages, etc., as well. Along with this capability comes increased data volume 
and complexity. Fusion algorithms must handle structured, semistructured, 
and unstructured data sources alike to support situation awareness. Further, 
they must rely on data discovery techniques rather than predetermined 
deductively framed data access; otherwise, they may overlook important 
new data sources that could prove critical to the decision process.

•	 Incorporation of trust and confidence concepts: As data sources and users 
become more widely varied, fusion algorithms must be able to take into 
account the uncertainties associated with the use of soft data sources, the 
application of data to problems outside the original scope of the collection 
effort, and the potential introduction of accidentally or purposefully mis-
leading sources.

So how do we take fusion algorithms, apply them to more complex problems, using 
more complex data sources, and still meet near-real-time computing constraints? 
Distributed processing holds out a potential solution, and that solution fits nicely 
with the concept of cloud computing, where algorithms are automatically distributed 
across all available resources. However, in reality we know that our current fusion 
algorithms do not readily lend themselves to parallel techniques. And so it is particu-
larly appropriate that this book begins to tackle the difficult problems of designing 
and implementing distributed, decentralized information fusion.

Written in a manner that particularly highlights topics of direct relevance to a 
Department of Defense reader, this text outlines such critical issues as architectural 
design and the associated impact of network-centric and SOA concepts; fundamen-
tals of estimation, classification, tracking, and threat analysis and their extensions 
to decentralized implementation; human-centric techniques for visualization and 
evaluation; and fundamentals of fusion systems engineering.

As is typical for these editors, the chapters provide a well-organized, thorough 
review of the field from both a theoretical and applied research perspective. The 
book will most certainly serve as a useful tool for fusion researchers and practitioners 
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alike as we continue to grapple with the critical issue of ensuring our data collection 
efforts have a clear and positive impact on mission outcome.

Barbara D. Broome, PhD
Chief, Information Sciences Division

U.S. Army Research Laboratory
Adelphi Laboratory Center

Adelphi, Maryland
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1 Perspectives on 
Distributed Data Fusion

David L. Hall

1.1  INTRODUCTION

Multisensor data fusion has an extensive history and has become a relatively mature 
discipline. Extensive investments in data fusion, primarily for military applications, 
have resulted in a number of developments: (1) the widely referenced Joint Directors 
of Laboratories (JDL) data fusion process model (Kessler et al. 1991, Steinberg et al. 
1998, Hall and McMullen 2004); (2) numerous mathematical techniques for data fusion 
ranging from signal and image processing to state estimation, pattern recognition, 
and automated reasoning (Bar-Shalom 1990, 1992, Hall and McMullen 2004, Mahler 
2007, Das 2008, Liggins et al. 2008); (3) systems engineering guidelines (Bowman 
and Steinberg 2008); (4) methods for performance assessment (Llinas 2008); and (5) 
numerous applications (see, for example, the Annual Proceedings of the International 
Conference on Information Fusion). Recent developments in communications net-
works, smart mobile devices (containing multiple sensors and advanced computing 
capability), and participatory sensing, however, lead to the need to address distributed 
data fusion. Changes in information technology (IT) introduces an environment in 
which traditional sensing/computing networks (e.g., for military command and con-
trol (C2) or intelligence, surveillance, and reconnaissance [ISR]) for well-defined situ-
ation awareness are augmented (and sometimes surpassed) by uncontrolled, ad hoc 
information collection. The emerging concept of participatory sensing is a case in 
point (Burke et al. 2006). For applications ranging from environmental monitoring 
to crisis management, to political events, information from ad hoc observers provide 
a huge source of information (albeit uncalibrated). Examples abound: (1) monitoring 
of the spread of disease by monitoring Google search terms, (2) estimation of earth-
quake events using Twitter feeds and specialized websites (U.S. Geological Survey 
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(http://earthquake.usgs.gov) n.d.), (3) monitoring political events (http://ushahidi.com 
n.d.), (4) citizen crime watch (Lexington-Fayette Urban County Division of Police, 
see http://crimewatch.lfucg.com n.d.), (5) solicitation of citizens to report newsworthy 
events (Pitner 2012), and (6) use of citizens for collection of scientific data (Hand 
2010). While ad hoc observers and open source information provide a huge potential 
resource of data and information, the use of such data are subject to many challenges 
such as establishing pedigree of the data, characterization of the observer(s), trustwor-
thiness of the data, rumor effects, and many others (Hall and Jordan 2010).

Traditional information fusion systems involving user-owned and controlled sen-
sor networks, an established system and information architecture for sensor tasking, 
data collection, fusion, dissemination, and decision making are being enhanced or 
replaced by dynamic, ad hoc information collection, dissemination, and fusion con-
cepts. These changes provide both opportunities and challenges. Huge new sources 
of data are now available via global human observers and sensors feeds available via 
the web. These data can be accessed and distributed globally. Increasingly capable 
mobile computing and communications devices provide opportunities for advanced 
processing algorithms to be implemented at the observing source. The rapid creation 
of new mobile applications (APPs) may provide new algorithms, cognitive aids, and 
information access methods “for free.” Finally, advances in human–computer inter-
action (HCI) provide opportunities for new engagement of humans in the fusion pro-
cess, as observers, participants in the cognition process, and collaborating decision 
makers. However, with such advances come challenges in design, implementation, 
and evaluation of distributed fusion systems.

This book addresses four key emerging concepts of distributed data fusion. 
Chapters 1 through 3 introduce concepts in network centric information fusion 
including the design of distributed processes. Chapters 4 through 8 address how 
to perform state estimation (viz., estimation of the position, velocity, and attributes 
of observed entities) in a distributed environment. Chapters 9 through 12 focus 
on target/entity identification and on higher level inferences related to situation 
assessment/awareness and threat assessment. Finally, Chapters 13 through 18 discuss 
the implementation environment for distributed data fusion including emerging 
concepts of service-oriented architectures, test and evaluation of distributed fusion 
systems, and aspects of human engineering for human-centered fusion systems. The 
remainder of this chapter provides a brief history of data fusion, an introduction to 
the JDL data fusion process model, a review of related fusion models, a discussion of 
emerging trends that affect distributed data fusion, and finally a discussion of some 
perspectives on distributed fusion.

1.2  BRIEF HISTORY OF DATA FUSION

The discipline of information fusion has a long history, beginning in the 1700s 
with the posthumous publication of Bayes’ theorem (1763) on probability and 
Gauss’ development of the method of least squares in 1795 to estimate the orbit 
of the newly discovered asteroid Ceres using redundant observations (redundant in 
the mathematical sense meaning more observations than was strictly necessary for 
a minimum data, initial orbit determination). Subsequently, extensive research has 
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been applied to develop methods for processing data from multiple observers or sen-
sors to estimate the state (viz., position, velocity, attributes, and identity) of entities. 
Mathematical methods in data fusion (summarized in Kessler et al. [1991], Hall and 
McMullen [2004], and many other books) span the range from signal and image pro-
cessing methods to estimation methods, pattern recognition techniques, automated 
reasoning methods, and many others. Such methods have been developed during the 
entire time period from 1795 to the present.

A brief list of events in the history of information fusion is provided in the following:

•	 Publication of Bayes’ theorem on probability (1763)
•	 Gauss’ original development of mathematics for state estimation using 

redundant data (1795)
•	 Development of statistical pattern recognition methods (e.g., cluster 

analysis, neural networks, etc.) (early 1900s–1940s)
•	 Development of radar as a major active sensor for target tracking and iden-

tification (1940s)
•	 Development of the Kalman filter (1960) for sequential estimation
•	 Implementation of U.S. Space Track system (1961)
•	 Development of military focused all-source analysis and fusion systems 

(1970s–present)
•	 First demonstration of the Advanced Research Project Agency computer 

network (ARPANET)—the precursor to the Internet (1968)
•	 First cellular telephone network (1978)
•	 National Science Foundation Computer Science Network (CSNET) (1981)
•	 Formation of JDL data fusion subpanel (mid-1980s)
•	 Creation of JDL process model (1990)
•	 Tri-Service Data Fusion Symposium (1987)
•	 Formation of the annual National Symposium on Sensor Fusion (NSSDF) 

(1988)
•	 Second generation mobile cell phone systems (early 1990s)
•	 Commercialization of the Internet (1995)
•	 Creation of the International Society of Information Fusion (ISIF) (1999)
•	 Annual ISIF Fusion Conferences (since 1998)
•	 Emergence of nonmilitary applications (1990s to present), including condi-

tion monitoring of complex systems, environmental monitoring, crisis man-
agement, medical applications, etc.

•	 Emergence of participatory sensing to augment physical sensors (1990s)

While basic fusion algorithms have been well known for decades, the routine appli-
cation of data fusion methods for real-time problems awaited the emergence of 
advanced sensing systems and computing technologies that allowed semi-automated 
processing. Automated fusion of data fusion requires a combination of processing 
algorithms, computers capable of executing the fusion algorithms, deployed sensor 
systems, communication networks to link the sensors and computing capabilities, 
and systems engineering methods for effective system design, development, deploy-
ment, and test and evaluation. Similarly, the emergence of distributed data fusion 
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systems involving hard (physical sensor) data and human (soft) observations requires 
a combination of new fusion algorithms, computing capabilities, communications 
systems, global use of smart phones and computing devices, and the emergence of a 
net-centric generation who routinely makes observations, tweets, reports, and shares 
such information via the web.

1.3  JDL DATA FUSION PROCESS MODEL*

In the early 1990s, a number of U.S. DoD large-scale funded efforts were under-
way to implement data fusion systems. An example was the U.S. Army’s All Source 
Analysis System (ASAS) (Federation of American Scientists [www.fas.org/]). The 
field of data fusion was emerging as a separate discipline, with limited common 
understanding of terminology, algorithms, architectures or engineering processes. 
JDL was an administrative group created to assist in coordinating research across the 
U.S. Department of Defense laboratories. The JDL established a subgroup to focus 
on issues related to multisensor data fusion. The formal name was the Joint Directors 
of Laboratories, Technical Panel for Command, Control and Communications (C3) 
data fusion subpanel. This subgroup created the JDL data fusion process model (see 
Figure 1.1). The model was originally published in a briefing (Kessler et al. 1991) to 
the Office of Naval Intelligence and later presented in papers, used as an organiz-
ing concept for books (Hall and McMullen 2004, Liggins et al. 2008), national and 

*	The Joint Directors of Laboratories data fusion process model has been described in multiple refer-
ences including (1) the original technical report (Kessler et al. 1991) and (2) various textbooks (Waltz 
and Llinas 1990, Hall and McMullen 2004, Hall and Jordan 2010), review articles (Hall and Llinas 
1997), and revisions of the model (Steinberg et al. 1998, Hall et al. 2000, Blasch and Plano 2002). The 
JDL model has been referenced extensively in books, papers, government solicitations, and tutorials. 
This section of this chapter is thus not new, but rather a brief summary that paraphrases (and in some 
cases duplicates) the author’s previous writings on this subject.

Information fusion domain

Level 0:
Source

pre-
processing

Level 4:
Process

refinement

Level 1:
Object

refinement

Level 2:
Situation

refinement

Database management
system

Support
database

Fusion
database

Level 3:
�reat

refinement

Level 5:
Cognitive

refinement

Sources
-Sensors
-Humans
-Open

source

FIGURE 1.1  Top level of JDL data fusion process model. (Adapted from Hall, D.L. and 
McMullen, S.A.H., Mathematical Techniques in Multisensor Data Fusion, Artech House, 
Norwood, MA, 2004.)
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international conferences, government requests for proposals, and in a few cases 
government and industrial research organizations. The original briefing (Kessler 
et al. 1991) presented a hierarchical, three-layer model. The top part of the model is 
shown in Figure 1.1. For each of the fusion “levels,” a second layer identified specific 
subprocesses and functions, while a third layer identified subfunctions and candidate 
algorithms to perform those functions. These sublayers are described in Hall and 
McMullen (2004).

Since its inception, the model has undergone several additions and revisions. The 
initial model included only the first four levels of fusion processing: object refine-
ment (level 1), situation refinement (level 2), threat refinement (level 3), and pro-
cess refinement (level 4). Steinberg et al. (1998) extended the model by adding a 
precursor level of fusion and sought to make the model more broadly applicable 
beyond military applications. Level 0 fusion involves sensor-based data processing 
and estimation. Level 0 processing recognized the increasing role of smart sensors 
and processing at the sensor level. Hall et al. (2000) and, independently, Blasch and 
Plano (2002) extended the model to include human–computer interaction involv-
ing cooperative cognition between a human user and a data fusion system. Other 
extensions to the data fusion model have been discussed by Llinas, who presents the 
case for further consideration of current data fusion issues including distributed data 
fusion systems and ontology-based systems.

The six high-level processes defined in the JDL model are summarized as follows:

	 1.	Level 0 fusion (data or source preprocessing) involves processing data 
from sensors (e.g., signals, images, hyper-spectral images, vector quantities, 
or scalar data) to prepare the data for subsequent fusion. Examples of data 
preprocessing include image processing, signal processing, “conditioning” 
of the data, coordinate transformations (to relate the data from the origin 
or platform that the sensor is located on to a centralized set of coordinates), 
filtering, alignment of the data in time or space, and other transformations.

	 2.	Level 1 fusion (object refinement) combines data from multiple sensors or 
sources to obtain the most reliable estimate of the object’s location, charac-
teristics, and identity. The term object is usually meant to indicate physical 
objects such as a vehicle or human. However, we could also fuse data to 
determine the location and identity of activities, events, or other geographi-
cally constrained entities of interest. The issues of object/entity location 
(estimation) are often discussed separately from the problem of object/
entity identification. In real fusion systems, however, these subprocesses 
are usually integrated.

	 3.	Level 2 fusion (situation refinement) uses the results of level 1 process-
ing to develop a contextual interpretation of their meaning. This involves 
understanding how entities are related to their environment, the relation-
ship among different entities and how they are interrelated. For example, 
the motion of vehicles in an environment may depend upon factors such 
as roads, road conditions, terrain, weather, and the presence of other vehi-
cles. The actions of a human in a crowd might be interpreted much dif-
ferently, than the same human motion and actions in the absence of other 
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surrounding people. The techniques used for level 2 fusion may involve 
artificial intelligence, automated reasoning, complex pattern recognition, 
rule-based reasoning, and many other methods.

	 4.	Level 3 fusion (threat refinement/impact assessment) involves projecting 
the current situation into the future to determine the potential impact or 
consequences of threats associated with the current situation. Level 3 pro-
cessing seeks to draw inferences about possible threats, courses of action 
in response to those perceived threats and how the situation changes based 
on our changing perceptions. Techniques for level 3 fusion are similar to 
those used in level 2 processing but also include simulation, prediction, and 
modeling.

	 5.	Level 4 fusion (process refinement/resource management) seeks to improve 
the fusion process (more accurate, timelier, and more specific). This might 
be accomplished by redirecting the sensors or information sources, chang-
ing the control parameters on the other fusion algorithms or selecting 
which algorithm or technique is most appropriate to the current situation 
and available data. The level 4 process involves functions such as sensor 
modeling, modeling of network communications, computation of measures 
of performance, and optimization of resource utilization.

	 6.	Level 5 processing (human–computer interaction/cognitive refinement) 
seeks to optimize how the data fusion system interacts with human users. 
The level 5 process seeks to understand the needs of the human user and 
respond to those needs by appropriately focusing the fusion system atten-
tion on things that are important to the user. Types of functions may include 
use of advanced displays, search engines, advisory tools, cognitive aids, 
collaboration tools, and other techniques. This may involve use of tradi-
tional HCI functions such as geographical displays, displays of data and 
overlays, processing input commands, and the use of nonvisual interfaces 
such as sound or haptic (touch) interfaces.

The originators of the JDL model fully recognized that the JDL levels were an 
artificial partitioning of the data fusion functions and that the levels overlap. In real 
systems, fusion is not performed in a sequential (level 0, level 1, …) manner. Instead, 
the processes are interleaved. For example, in level 1 processing, information about 
a target’s kinematics can provide insight into the target identification and potential 
threat (level 3). However, this artificial partition of data fusion functions has proven 
useful for discussion purposes.

1.4  PROCESS MODELS FOR DATA FUSION

There are a number of models that address cognitive and information processes that 
are related to data fusion. A survey and assessment of these process models was con-
ducted by Hall et al. (2006). A summary of the models (and additional models) is pre-
sented in Table 1.1, along with references which describe the models in more detail. 
Hall et al. (2006) divided the models into two broad categories, data fusion models 
and decision making models. To a certain extent, this is an arbitrary partitioning but 
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TABLE 1.1
Summary of Data Fusion Models/Frameworks

Model Description References

JDL data fusion process 
model

A functional model for describing the data 
fusion process

Kessler et al. (1991)
Liggins et al. (2008)
Hall and McMullen (2004)
Steinberg et al. (1998)
Hall et al. (2000)
Blasch and Plano (2002)

Functional levels of 
fusion

An abstraction of input–output functions of 
the data fusion process—focus on types of 
data processed and associated techniques 
appropriate to the data types

Dasarthy (1994)

Transformation of 
requirements to 
information 
processing (TRIP) 
model

Application of the waterfall development 
process to data fusion—emphasis on 
linking inferences to required information 
and data collection

Kessler and Fabien (2001)

Omnibus model Adaptation of Boyd’s OODA loop for data 
fusion

Bedworth and O’Brien 
(2000)

Endsley’s model of 
situational awareness

A cognitive model for situational awareness Endsley (2003),
Endsley et al. (2000)

Three-layer hierarchical 
model

Three-layer modular approach to data 
fusion, integrating data at different 
levels: (1) data level (e.g., signal 
processing), (2) evidence level (statistical 
models and decision making), and (3) 
dynamics level

Thomopoulos (1989)

Behavioral knowledge 
formalism

Sequence of basic stages of fusion; 
extraction of a feature vector from data, 
alignment and association, development of 
pattern recognition and semantic labels, 
and linking feature vectors to events

Pau (1988)

Waterfall model Hierarchical architecture showing flow of 
data and inferences from data level to 
decision-making level

Harris et al. (1998)

General data fusion 
model (DFA) using 
UML

General data fusion architecture model 
based on the unified modeling language 
(UML), using a taxonomy based on 
definitions of data and variables or tasks

Carvalho et al. (2003)

Unified data fusion 
(λJDL) model

Model that seeks to unify situation 
awareness functions, common operating 
picture, and data fusion

Lambert (1999, 2001)

Recognition primed 
decision (RPD) 
making

A naturalistic theory of decision making 
focused on recognition of perceptual cues 
and action

Klein (1999),
Klein and Zsambok (1997)
Kaempf et al. (1996)

(continued)
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reflects how these models are referenced in the literature. In addition, models such 
as the observe–orient–decide–act (OODA) loop have several extensions and varia-
tions. Each of these models has advantages and disadvantages related to describing 
the fusion and decision making process. They are summarized here to indicate the 
potential variations in how to describe or characterize the process of fusing infor-
mation to understand an evolving situation and ultimately result in a decision or 
action. A good discussion of higher level models for data fusion (viz., at the situation 
awareness and threat assessment levels) is provided by Bosse et al. (2007). It should 
be noted that the list of models in Table 1.1 is not exhaustive. There are a number of 
additional models related to specific application domains such as robotics and medi-
cine. It should also be noted that these process models do not explicitly consider the 
distributed aspect of fusion.

In the domain of military applications and intelligence, the two most utilized mod-
els are arguably the JDL data fusion process model summarized in the previous sec-
tion and Mica Endsley’s model of situation awareness (Endsley 2000, Endsley et al. 
2003). Because of its extensive use in the situation awareness and cognitive psychol-
ogy community, it is worth illustrating Endsley’s model in Figure 1.2. Endsley’s model 
seeks to line aspects of a cognitive task (illustrated in the top part of the figure) to char-
acteristics on an individual performing the cognition (shown in the bottom part of the 
figure). Note that the levels in Endsley’s model do not correspond to the levels in the 
JDL model, but rather are meant to model the cognitive processes for situation aware-
ness. Endsley and her colleagues have utilized this model for a variety of DoD appli-
cations, performing extensive interviews with operational analysts and knowledge 
elicitation to identify appropriate techniques for the Endsley levels of fusion. Salerno 
(2002) and his colleagues (Salerno et al. 2004) have compared the JDL model and 
Endsley’s model and have developed a high-level information functional architecture.

1.5 � CHANGING LANDSCAPE: KEY TRENDS 
AFFECTING DATA FUSION

The context of distributed data fusion involves (1) rapid changes in IT, (2) individual 
and societal changes impacted and enabled by IT, and (3) the impact of IT as both 

TABLE 1.1 (continued)
Summary of Data Fusion Models/Frameworks

Model Description References

Observe, orient, decide, 
act (OODA) loop

A process model of military decision 
making based on observing effective 
commanders; extended by several authors 
for general situation assessment and 
decision making

Boyd (1987), Brehmer 
(2005), Bryant (2006),

Rousseau and Breton (2004)
Grant (2005)

Salerno’s model A framework that links data sources 
(categorized by perishability) to 
perception, comprehension, and projection

Salerno (2002),
Salerno et al. (2004)
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a cause and solution for global problems. A summary of sample trends is provided 
in Tables 1.2 through 1.4. The tables list trends related to three main constructs: (1) 
IT, (2) information, and (3) people. Briefly we see the following trends and associ-
ated impacts.

•	 Information Technology—Very rapid changes are occurring in IT, ranging 
from ubiquitous, persistent surveillance of the entire earth via advanced 
sensors and human observers, increasingly capable mobile computing 
devices (via smart phones, embedded “invisible” computers in everyday 
devices, net-books, notebook computers, etc.), ubiquitous network connec-
tivity with increasing access speeds, and improvements in HCI via multi 
(human) sensory inputs. This leads to near-universal connectivity among 
people, a tsunami of data on the web, and access to virtually unlimited 
computing capability. These have impacts on all aspects of human life and 
enterprise and certainly affect the concepts and implementation of data 
fusion systems. A summary of key areas including data collection, mobile 
computing, and network speed and connectivity is provided in Table 1.2.

•	 Information—The huge increase in available data (including signal, image, 
video, and text) via sensors and human input leads to major challenges in 

System capability
Interface design
Stress and workload
Complexity, automation

Action

Feedback

Information processing
mechanisms

Abilities
Experience
Training

AutomaticityLong team
memory stones

Decision

Goals and
objectives
Perceptions
(expectations)

Task/system factors

Individual factors

State of the
environment

I. Perception
of elements in

current
situation

III.
Projection
of future
states

II.
Comprehension
of current
situation

Situation awareness

FIGURE 1.2  Endsley’s situation awareness model. (Adapted from Endsley, M.R. et al., 
Designing for Situation Awareness: An Approach to User-Centered Design, Taylor & Francis 
Group, Inc., New York, 2003.)
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TABLE 1.2
Examples of Technology Trends Impacting Data Fusion

Area Trends and Issues

Data 
collection

•	 Ubiquitous, persistent surveillance: The capability exists now for worldwide 
ubiquitous, persistent surveillance. Resources such as national collection systems, 
long duration unmanned aerial vehicles (UAVs); leave-behind and resident 
ground-based sensors provide the opportunity for multispectral, multimode 
surveillance on a 24 × 7 basis. This allows focused and persistent surveillance about 
nearly any area of interest. The challenge is how to address the huge avalanche of 
data to sort through the data to find information of use/interest to generate 
meaningful knowledge. Such surveillance impacts areas such as environmental 
monitoring, understanding the distribution and evolution of disease, and crime and 
terrorism.

•	 New sensors and sensing modalities: Physical sensors continue to be improved with 
new modalities of observation, increased sophistication in embedded signal and 
image processing, increased modes and agility in operation and control, and 
continuing improvements in sensor-level processing such as semantic meta-data 
generation, pattern recognition, dynamic sensor performance characterization, target 
tracking, and adaptive processing.

•	 Open source information: Websites are available for all sorts of collected 
information. For example, sites based on reporting and mapping tools (ushahidi.
com) provide information on emergency events, political uprisings, etc. Google 
Street View provides maps and photographs of numerous places around the world 
with ground level 360° photographs. The photograph sharing site Flickr (flickr.com) 
contains over 5 billion photographs taken by 10 million active subscribers. 
Commercial data providers such as DigitalGlobe (digitalglobe.com) provide access 
to satellite imagery including standard visual images, stereo images, and eight-band 
spectral images. Data regarding weather information, environmental data, detailed 
maps, video surveillance cameras, traffic monitoring, and many other types of 
information are all readily available.

Mobile 
computing

Mobile computing capabilities are rapidly increasing both in functionality, memory, 
speed, and network interconnectivity. New smart phones have typical specifications 
that include 4–16 GB memory (expandable to 32 GB), processing speeds in the range 
from 1 to 1.2 GHz, fourth generation communications speed, and touch screens with 
480 × 800 pixels to 960 × 640 pixels. Over 1 million open source applications have 
been developed. The result is incredible hand-carried computing/sensing/
communications devices that have proliferated throughout the world.

Network 
speed and 
connectivity

Internet connectivity is nearing worldwide ubiquity. Original connection via 
telephone landlines at 60 kilobits per second has changed to connections via 
television cable coax or fiber optics at typical speeds of 4–6 megabits per second, 
with additional mobile connection via mobile broadband over terrestrial mobile 
phone networks, WiFi hotspots in urban areas, and satellite Internet connections. 
While the United States lags behind other countries, some countries provide 
connections with speeds of 100 Mbs into homes. Increasingly, mobile devices are 
sharing and accessing video data via mobile Internet to the extent that video data 
dominates the data content of the mobile Internet. An excellent site that summarizes 
the history of the Internet is provided by (zakon.org).
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TABLE 1.2 (continued)
Examples of Technology Trends Impacting Data Fusion

Area Trends and Issues

Cloud 
computing

Cloud computing involves the delivery of computing resources as a product (sharing 
resources and information over a network), analogous to the concept of the electric 
grid. The ubiquity of Internet capability allows computing resources (large data 
storage, sophisticated computer models, large-scale computing capacity, etc.) to be at 
anyone’s fingertips for a fee. Ultimately such concepts could eliminate local IT staff 
and computers while providing access to unprecedented capability. An example is 
Wolfram Alpha (wolframalpha.com) which provides free access to large data sets and 
sophisticated physical and mathematical models.

Human 
computer 
interfaces

Human computing interfaces: Advances in HCI involve increased fidelity in human 
access to data as well as multi-(human) sensory methods of interaction. Examples 
include full-immersion, three-dimensional interfaces and sonification (Ballora 2010) to 
allow visual and aural pattern recognition, haptic interfaces to provide a sense of touch. 
The potential exists to create new multisensory, full immersion interfaces that fully 
engage the sophisticated ability of humans to recognize patterns and detect anomalies.

TABLE 1.3
Examples of Information Trends Impacting Data Fusion

Area Trends and Issues

Data archiving 
and distribution

The exploding digital universe: According to a 2010 Gartner report, the top three 
challenges for large enterprises are data growth, followed by system performance 
and scalability (Harding 2010). In 2007, the digital universe was 2.25 × 1021 bits 
(281 exobytes); by 2011, it was estimated to grow by a factor of 10. Fast growing 
data sources include digital TV, surveillance cameras, sensor applications, and 
social networks. Major issues include how to store, archive, distribute, access, and 
represent such data (Chute et al. 2008).

Meta-data 
generation

Meta-data generation: Given the enormous amounts of data (signals, images, video) 
being collected and stored via the Internet of Things and human data collection, a 
challenge involves how to represent the data for subsequent retrieval and use. 
Significant advances are being made in automated linguistic indexing of pictures 
(viz., machine-generated semantic labels) with anticipated extensions to signal 
data and to video data. This would provide the ability to access signal, image, and 
video data via emerging advanced search engines (e.g., next generation 
CITESEER type engines [citeseer.ist.psu.edu]).

Hard and soft 
fusion

Hard and soft information fusion: An emerging area in data fusion research is the 
fusion of hard (traditional physical sensor) data and soft (human observation) data. 
This topic was first discussed at a Beaver Hollow workshop held in February 2009, 
hosted by the Center for Multisource Information Fusion (CMIF) (see infofusion.
buffalo.edu). The workshop explored issues in the fusion of hard and soft data, 
characterization of human source data, architecture issues, and even fundamental 
definitions of the terms hard and soft fusion. Since that workshop, special sessions 
on hard and soft fusion have been held at the International Society of Information 
Fusion (ISIF) FUSION 2010 conference and the FUSION 2011 conference.



12 Distributed Data Fusion for Network-Centric Operations

storage, access, archiving, distribution, meta-data generation, and issues 
such as data pedigree. The ultimate limitation of human attention units (the 
limited number of people to access data and their limited ability to pay 
attention to data) will lead to both opportunities and challenges in human–
data interaction. Table 1.3 summarizes key areas including data archiving 
and distribution, meta-data generation, and hard and soft fusion.

•	 People—Finally, changes in IT and availability of information lead to 
changes in human behavior and expectations. The net-generation (people 
younger than 30 years) has always had access to the Internet, cell phones, 
computers, and related technologies. These “digital natives” exhibit dif-
ferent ways of addressing problems, viewpoints on collecting and sharing 
personal information, ways of establishing distributed social networks, etc. 
This in turn has implications for education, collaboration, business, and 
information security. Table 1.4 summarizes the potential impacts of a new 
generation of digital natives and the emergence of participatory sensing.

1.6  IMPLICATIONS FOR DISTRIBUTED DATA FUSION

As indicated in the previous section, a number of changes in technology, information, 
and people are impacting and will continue to impact the design and implementation 

TABLE 1.4
Examples of People Trends Impacting Data Fusion

Area Trends and Issues

Digital 
natives

Net-generation: The current “net-generation” of people under the age of 30 have 
grown up with the Internet, cell phones, social networks, global connectivity, 
instantly available online resources, and significantly different social outlooks and 
cognitive approaches than previous generations (see Tapscott 2009). These “digital 
natives” have different expectations for everything from social interactions to 
business to problem solving that are having significant impact on all aspects of 
society. Shirkey (2010) describes some implications of the new era of collaboration 
which results in projects such as the world’s encyclopedia (Wikipedia), shareware 
software, PatientsLikeMe, Ushahidi, and other dynamic collaborative efforts.

Participatory 
sensing

Soft and participatory sensing: Several developments and trends have provided the 
opportunity for the creation of a new, worldwide, data collection resource. These 
include (1) the huge increase in smart phones throughout the world (estimated in 
2010 to be greater than 4.6 billion cell phones), (2) the increase in processing 
capability and sensor “add-ons” to smart phones (including high fidelity cameras, 
video capability, environmental sensors, etc.), and (3) the emergence of the digital 
native generation (Palfrey and Gasser 2008) who routinely collect information and 
share personal information via Twitter, Facebook, and other social sites. This has led 
to the concept of participatory sensing, in which individuals and groups of people 
actively participate in the collection of information for purposes ranging from crime 
prevention to scientific studies.
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of information fusion systems. Certainly, the proliferation of cell phones (leading to an 
avalanche of human observations), ubiquitous, high-speed networks, increased mobile 
computing power, cloud computing, new attitudes of users (based on a digital native 
outlook), and other factors are impacting data fusion systems. We are seeing the poten-
tial for “everyday” fusion systems supporting improved monitoring and operation of 
automobiles, medical diagnosis, monitoring of the environment, and even smart appli-
ances. It is thus necessary to reconsider traditional data fusion technologies, design, 
and implementation methods to extend to these new applications and environment. 
While the changes in technology, information, and people provide increased oppor-
tunities, they also enable challenges to traditional thinking about fusion systems. As 
sensors and sources of information proliferate and new mobile applications become 
readily available, new challenges will involve (1) calibration and characterization of 
information sources, (2) establishment of methods to automatically determine the 
trustworthiness and pedigree of information, (3) the need to automatically generate 
semantic meta-data to represent signal, image, and video data, (4) how to establish 
the reliability of open-source software and algorithms, (5) meeting the expectations 
of increasingly sophisticated users, (6) creation of hierarchies of data and informa-
tion fusion systems, (7) understanding how to utilize sensor-generated meta-data (e.g., 
in situ pattern recognition), and (8) robust architectures that span data to knowledge 
fusion, and many more.

It is hoped that this book will provide some additional insights to begin to address 
some of these issues.
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2.1  INTRODUCTION

This chapter exposes some of the design concerns associated with distributed data 
fusion (DDF) systems and describes how they could be overcome. These concerns 
arise from the inherent openness of DDF systems. Open exchange and fusion of 
information creates the potential for system degradation as a result of recycling 
old information, failing to coordinate multiple information sources under the 
ownership of one or more stakeholders, and failing to recognize untrustworthy 
information sources. The overarching design concern is how to remove or reduce 
these problems without compromising the flexibility and scalability benefits of 
DDF systems.

2.1.1  Content

Section 2.2 introduces the DDF system concept on which this chapter is based. This 
is a multi-agent system (MAS) in which each agent is a data fusion and decision-
making node situated within some larger information fusion network. Section 2.3 
introduces four critical design concerns that must be resolved if a multi-agent DDF 
system is to succeed in practice. Section 2.4 describes the resolution of informa-
tion recycling concerns with a technique known as bounded covariance inflation 
(BCI). Section 2.5 reinforces the needs for coordinated actions within a DDF system 
and describes how this can be achieved with the max-sum algorithm. Section 2.6 
describes how the concern of potential selfish actions in a multistakeholder DDF 
system can be managed by means of computational mechanism design. Finally, 
Section 2.7 raises the issue of trust and reputation in DDF systems. It describes how 
a probabilistic model of trust combined with the technique from Section 2.4 can 
be used to resolve this concern. Each section is highlighted with an example from 
the familiar domain of target tracking and sensor fusion. Section 2.8 concludes the 
chapter with some perspectives on the new design challenges that will be raised by 
future DDF systems that achieve effect by tightly interleaving human and software 
agent endeavors.

2.2  DDF SYSTEM CONCEPT

The DDF system concept explored in this chapter is illustrated in Figure 2.1. It is 
composed of autonomous, reactive, and proactive components, referred to as agents. 
These agents filter and fuse data to derive situational information. They interact by 
exchanging messages over communication links to achieve individual and collec-
tive goals. Within this MAS there may be multiple organizational relationships and 
stakeholders.

Our main focus will be decentralized sensor networks. Each sensor agent is 
tasked with detecting and tracking multiple targets. Within a region of observation 
(ROO) an agent is able to estimate the position of targets by making noisy or impre-
cise measures of their range and bearing. However, in order to better resolve the 
uncertainty in these position estimates, the agents must acquire target observations 
from neighboring agents and then fuse these observations with their own.
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2.3  DDF DESIGN CONCERNS

The DDF design concerns noted in Section 2.1 are explained in more detail in the 
following:

•	 Information recycling. As DDF networks are dynamic and ad hoc, the infor-
mation could arrive at any agent from multiple routes. Unless the informa-
tion is attached with a record of its provenance to eliminate redundancy, 
there is a risk of recycling common information through the agents’ fusion 
processes. This can give rise to inconsistent situation awareness throughout 
the system and subsequently to spurious decisions.

•	 Sensor coordination. If each agent in a DDF network determines its next 
action (e.g., where to look or what to communicate) without considering the 
actions of the other agents, their collective actions could be highly subopti-
mal. Unless the network is fully connected with zero propagation delay, the 
agents will need to explicitly coordinate their actions by communicating 
with each other until a set of agreed actions is reached.

•	 Selfish stakeholders. In a heterogeneous DDF system the agents may repre-
sent distinct stakeholders with different aims and objectives. If they are left 
to make their own selfish decisions, without any intervention from a system 
designer, then the overarching DDF system goals are likely to be compro-
mised as the agents will compete for resources.

•	 Trust and reputation. One or more agents in a DDF system may not be 
trustworthy due to faults, bias, or malice. If these agents are unrecognized, 
the open nature of DDF systems would permit their false data to propagate 
to other agents and rapidly pollute the whole system. Thus, agents have to 
earn their reputations as trustworthy sources as well as estimating the trust-
worthiness of their information suppliers.

Stakeholder

Agent

Interaction

Organizational
relationship

Environment
Sphere of 
influence

FIGURE 2.1  DDF system concept.
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2.4  INFORMATION RECYCLING

Information recycling in a DDF network results in cross-correlation between the 
estimates of state variables generated by each agent. Ignoring this cross-correlation 
results in over-confident state estimates, but trying to keep track of cross-correlation 
requires extra book keeping operations that consume memory and bandwidth. In 
practice, bounds on the cross-correlation may at least be calculable and conservative 
estimates may be an acceptable trade-off for preserving the flexibility and scalabil-
ity benefits of DDF systems. This section introduces the general theory of bounded 
covariance inflation (BCI) as a viable solution to the information recycling design 
challenge (Reece and Roberts 2005).

2.4.1  Bounded Covariance Inflation

If û is an estimate of the state u then Puu
*  is a conservative matrix for the covariance 

of û − u if

	 P E uu u u uuu
T* [ ]≥ = −�� �where ˆ

The symbol ≥ denotes positive semi-definite. When u is composed by stacking two 
vectors, x and y say, with corresponding covariance matrices Pxx and Pyy, respec-
tively, BCI is the procedure by which Puu

*  can be determined from Pxx and Pyy when 
the cross-covariance, Pxy, between x and y is unknown but bounded
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matrices Rxx and Ryy such that P R Rxx xx
T

xx
− =1  and P R Ryy yy

T
yy

− =1 . When Dxy = 0 then S is 
the correlation coefficient. In general, we choose Dxy so that S is as small as possible 
(see Figure 2.2).

Given this setup, it is possible to find a proven conservative covariance matrix 
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The positive value K is called the inflation factor and is chosen to minimize the over-
all uncertainty encoded by the covariance matrix. In the remainder of this section we 
will be concerned with symmetric correlation bounds (i.e., Dxy = 0). BCI with Dxy = 0 
effectively replaces two correlated random vectors with two uncorrelated random 
vectors whose covariance is guaranteed to be conservative with respect to the origi-
nal vectors.

When x, y, and u are state vectors and u is related to x and y by a linear transform 
F, thus

	
u F

x

y
=











then a conservative estimate Puu
*  of the covariance Puu for ũ can be obtained from a 

conservative covariance matrix P* over x̃ and ỹ:

	
If thenˆ

ˆ

ˆ
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
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Puu
*  is conservative since P FP F FPF Puu

T T
uu

* *= ≥ = . Both prediction and estima-
tion fusion operations within the Kalman filter are linear operations for appropriate 
choices of F. We will now derive the Kalman filter update equation for an inflated 
covariance matrix.
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FIGURE 2.2  Family of covariance ellipses (dotted lines) for which Pxx = 2, Pyy = 1, and 
0.2 < Pxy < 0.8. The “centered” ellipse is shown as a thick dashed line. Also shown is a con-
servative ellipse (solid line) for the family for which Dxy = 0.5 × (0.2 + 0.8), S = 0.3, and K = 1.



22 Distributed Data Fusion for Network-Centric Operations

Assume x̂ and ŷ are correlated state estimates over the same state space, Pxx and 
Pyy are the corresponding covariance matrices and û is an estimate obtained by fus-
ing x̂ and ŷ. The inflated covariance for x̃ and ỹ is diagonal and the estimates can 
be considered to be uncorrelated under the inflated covariance matrix. Therefore a 
conservative estimate Puu for û can be calculated by fusing the random vectors using 
the Kalman filter and the inflated covariance matrix:
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Note that when S = 0 we recover the information form of the Kalman filter for uncor-
related variables (Durrant-Whyte et al. 2001) and when S = 1 and K = ω/(1 − ω) (with 
ω ∞ [0, 1]) we recover covariance intersection (Julier and Uhlmann 2001). The next 
step is to determine upper and lower bounds on cross-correlations.

2.4.2  Coupling Scalars

Two correlated estimates x̂ and ŷ for state vector x and y, respectively, can be decom-
posed into orthogonal random vectors α̂, βx, and βy by Gram–Schmidt orthogonal-
ization (Doob 1990)
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where Cxα and Cyα are the cross-covariance between x and α and between y and α, 
respectively. Since βx and βy are orthogonal then

	
P C P Cxy x y= −

α α α
1 	 (2.7)

Thus, the cross-covariance between two random vectors is the information shared 
between the two vectors projected onto the vector spaces.

To obtain an expression for the minimum cross-correlation bound S in Equation 
2.2, first rewrite Equation 2.7
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and use the Cauchy–Schwarz inequality
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Comparing the aforementioned inequality with Equation 2.2, we observe that the 
right-hand side is a known bound for the cross-correlation S. The scalar

	
Ω = −maxeig [ ]R C P C Rxx

T
x x xxα α α

1

is called the coupling scalar for x and is independent of y. The coupling scalars can 
be calculated locally. Thus, when an agent C receives two messages, one from each 
of agents A and B, comprising the information vector, matrix, and coupling scalar, a 
bound on the correlation between the estimates in these messages is

	 S = ×Ω ΩAC BC

The key point of note is that the cross-correlation between two random vectors can 
be bounded by the product of just two scalars. This is crucial for limited bandwidth 
communication applications when bookkeeping messages such as the coupling 
scalar must be kept to a minimum. The coupling scalar can be interpreted as the 
fraction of the covariance matrix, which is the correlated part C Pxα α α−1 ˆ  of x̂. From 
Equation 2.6 we see that it would be possible to communicate the correlated part and 
the uncorrelated part βx of the estimate x̂ separately. The receiving agent would then 
be able to fuse x̂ into its own estimate more efficiently than the method described 
earlier, as only the correlated part of x̂ would have to be inflated prior to fusion. 
However, this alternative approach would involve nearly twice the communication 
load compared to the coupling scalar approach, which is undesirable in applications 
where there is limited bandwidth.

2.4.3 D ecentralized Tracking Example

In this example three stationary agents track a dynamic process xt and each agent 
maintains an estimate of the state of the target using a Kalman filter. All agents 
have the same behavior model of the target xt = xt−1 + νt with νt ∼ N(0, 0.1) and they 
are each able to make a measurement of the target at each time step. The ith agent’s 
observation model is zit = xt + μit with μit ∼ N(0, σi) where σ2 = {3, 1, 0.1} for the three 
agents, respectively. Both ν and μ are uncorrelated in time and independent of each 
other and μit and μjt are uncorrelated for all i ≠ j.

The agents communicate intermittently, cycling between agent 1 making contact 
with agent 3, then agent 3 with agent 2, and then agent 2 with agent 1. A contact takes 
place each five time intervals. This will correlate the agents’ estimates in two ways: 
through information recycling and because of the fact the agents are modeling the 
same stochastic process.

Figure 2.3 plots the fused track covariance at each agent for various methods: BCI 
using both upper and lower cross-correlation bounds, BCI using upper bound only, 
covariance inflation, and the best and worst possible cases, namely the centralized 
Kalman filter and local Kalman filters without any communication. BCI is clearly a 
conservative but consistent performer throughout.
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2.5 � SENSOR COORDINATION

Sensor coordination presents a fundamental design challenge for DDF systems as 
often physically distributed devices must act together, under computational and 
communication constraints, to meet system-wide goals. Consider a wide-area sur-
veillance application in which the sensors are deployed in an ad hoc manner, for 
example, dropped from a military aircraft or ground vehicle. In this case, the local 
environment of each sensor, and hence the exact configuration of the network, can-
not be determined prior to deployment. The sensors themselves must be equipped 
with capability to self-organize and coordinate sometime after deployment once 
the local environment in which they (and their neighbors) find themselves has been 
determined.

A common feature of these self-organization problems is that the sensors must 
typically choose between a small number of possible states (e.g., which neigh-
boring sensor to transmit data to, or which sense/sleep schedule to adopt), and 
the effectiveness of the sensor network as a whole depends not only on the indi-
vidual choices of state made by each sensor, but on the joint choices of interacting 
sensors. Thus, to maximize the overall effectiveness of the sensor network, the 
sensors within the network must typically make coordinated, rather than inde-
pendent, decisions. Furthermore, this coordinated decision must be performed 
despite the specific constraints of each individual device (such as limited power, 
communication, and computational resources), and the fact that each device can 
typically only communicate with the few other devices in its local neighborhood 
(due to the use of low-power wireless transceivers, the small form factor of the 
device and antenna, and the hostile environments in which they are deployed). 
DDF systems are required to perform coordination without a central coordinator 
and ensure that the deployed solution scales well as the number of devices within 
the network increases. The max-sum algorithm is an efficient method by which 
decentralized sensor coordination can be achieved (Rogers et al. 2011, Waldock 
and Nicholson 2011).
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2.5.1 M ax-Sum Algorithm

Consider M sensors and the state of each sensor may be described by a discrete vari-
able xm. Each sensor interacts locally with a number of other sensors such that the 
utility of an individual sensor Um(xm) is dependent on its own state and the states of 
these other sensors (defined by the set xm). The approach at this stage is generic with 
no specific assumptions regarding the structure of the individual utility functions.

In this setting, we wish to find the state of each sensor, x*, such that the sum of the 
individual sensors’ utilities is maximized:

	

x x
x

* argmax ( )=
=

∑Ui i

i

M

1

	 (2.8)

Furthermore, in order to enforce a truly decentralized solution, we assume that each 
sensor only has knowledge of, and can directly communicate with, the few neighbor-
ing agents on whose state its own utility depends. In this way, the complexity of the cal-
culation that the sensor performs depends only on the number of neighbors that it has 
(and not the total size of the network), and thus we can achieve solutions that scale well.

The optimization problem defined by Equation 2.8 is represented as a bipartite 
factor graph. Specifically, each sensor is decomposed into a variable node that rep-
resents its state, and a function node that represents its utility. The function node 
of each sensor is connected to its own variable node (since its utility depends on its 
own state) and also to the variable nodes of other sensors whose states impact its 
utility. For example, we show in Figure 2.4 an example in which three sensors, {S1, 
S2, S3}, interact with their immediate neighbors through the overlap of their sensor 
areas. Figure 2.4c shows the resulting bipartite factor graph in which the sensors are 
decomposed into function nodes, {U1, U2, U3}, and variables nodes, {x1, x2, x3}. The 
overall function represented by this factor graph is given by

	 U U x x U x x x U x x= + +1 1 2 2 1 2 3 3 2 3( , ) ( , , ) ( , )

The max-sum algorithm operates directly on the factor graph representation 
described earlier. When this graph is cycle-free, the algorithm is guaranteed to con-
verge to the global optimal solution such that it finds the combination of states that 

S2

S2

S2

S1
S1

S1

S3

(a) (b) (c)

S3

U1

U2

U3

S3

x3

x2

x1

FIGURE 2.4  Sensor network showing (a) the position of three sensors whose fields of 
view overlap, (b) the sensor interaction graph, and (c) the resulting factor graph with sensors 
decomposed into function and variable nodes.
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maximizes the sum of the sensors’ utilities. When applied to cyclic graphs (as is the 
case here), there is no guarantee of convergence but extensive empirical evidence 
demonstrates that such family of algorithms generate good approximate solutions. 
The max-sum algorithm solves this problem in a decentralized manner by specifying 
messages that should be passed from variable to function nodes and from function 
nodes to variable nodes. These messages are defined as

•	 From variable to function

	

q x r xi j i ij k i i

k ji

→ →

∈
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where
i is a vector of function indices, indicating which function nodes are con-

nected to variable node i
αij is a normalizing constant to prevent the messages from increasing 

endlessly in cyclic graphs

•	 From function to variable
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where j is a vector of variable indices, indicating which variable nodes are 
connected to function node j and xj\i ≡ {xk:k ∞ j\i}.

The messages flowing into and out of the variable nodes within the factor graph 
are functions of a single variable that represent the total utility of the network for 
each possible value of that variable. At any time during the propagation of these 
messages, agent i is able to determine which state it should adopt such that the sum 
over all the agents’ utilities is maximized. This is done by locally calculating the 
function, zi(xi), from the messages flowing into agent i’s variable node:

	

z x r xi i j i i

j i

( ) ( )= →

∈
∑

M

	 (2.11)

and hence finding argmax ( ).x i ii z x
The messages described earlier may be randomly initialized, and then updated 

whenever a sensor receives an updated message from a neighboring sensor; there 
is no need for a strict ordering or synchronization of the messages. In addition, the 
calculation of the marginal function shown in Equation 2.11 can be performed at any 
time (using the most recent messages received), and thus sensors have a continuously 
updated estimate of their optimum state. When the underlying factor graph contains 
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cycles there is no guarantee that the max-sum algorithm will converge; nor that if it 
does converge it will find the optimal solution. However, extensive empirical evalu-
ation on a number of benchmark coordination problems indicates that it does in fact 
produce better quality solutions than other state of the art approximate algorithms 
but at significantly lower computation and communication cost.

Finally, we note that if messages are continuously propagated, and the states of 
the agents are continuously updated, then the algorithm may be applied to dynamic 
problems where the interactions between agents, or the utilities resulting from these 
interactions, may change at any time. For example, within tracking problems where 
the decentralized coordination algorithm is being used to focus different sensors 
onto different targets, then the utilities of each sensor are continually changing due 
to the changing position of targets, and the actions of other sensors. Thus, by con-
tinually propagating messages each agent is able to maintain a continuously updated 
estimate of the state that it should adopt in order to maximize social welfare in this 
dynamic problem.

2.5.2 T arget Tracking Example

In this section the max-sum algorithm is applied to the target tracking example illus-
trated in Figure 2.5. The system involves three stationary sensors, each of limited 
observation range shown by the gray areas bounded by the dashed lines. The sensors 
are initialized with a weak prior over the target positions as well as the targets (fac-
tors) they are responsible for maintaining in the factor graph. System performance is 
measured by the total information in the target tracks.

Three sensor management strategies were implemented: local, centralized, and 
decentralized. The local strategy selects the sensor (pointing) control parameter that 
maximizes the total information given by local observations only. The centralized 

Sensor 3

Sensor 2 Sensor 1

Target A

Target C Target B

FIGURE 2.5  Example target tracking scenario with three sensors (of limited observation 
range indicated by the gray shaded areas) and three targets.
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strategy selects control parameters for each sensor based on a brute-force search 
through all combinations to find the one that yields maximum information. The 
decentralized strategy solves each of the factors using a brute-force approach and 
then uses the max-sum algorithm to derive the optimal sensor control parameters 
that maximize the utility function.

Figure 2.6 displays the performance profile for each strategy. As both targets 
pass through the center of the environment, each sensor must handover a target to 
another sensor. The two handover points occur roughly at time steps 18 and 34. At 
these times the performance of the local strategy degrades since it cannot resolve the 
conflict that prevents the sensors selecting the same target.

The performance of the max-sum algorithm depends on the time allowed to 
exchange the variable and factor messages. Figure 2.7 compares performance with 
the centralized strategy as the period to exchange messages (negotiation time) is 
adjusted from 50 to 1000 ms (the experiment was conducted 20 times for each nego-
tiation time). As the negotiation time is increased the performance of the decentral-
ized strategy converges on the centralized performance.

2.6 � SELFISH STAKEHOLDERS

In the previous section it was implicit that the local objectives of the sensor agents 
were aligned with the global objective. This situation is best modeled as a coop-
erative MAS problem in which the agents are designed to work toward the global 
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objective of the system. This can be achieved, as we have seen, through the max-sum 
algorithm. In this section we consider the situation in which different stakeholders 
may be responsible for each sensor (or group of sensors). For example, in a disaster 
relief application, different governmental and nongovernmental organizations must 
share information gathered by their sensors to help coordinate an effective response. 
The sensors are now operating in a competitive rather than a cooperative environ-
ment. As such, they will attempt to optimize their own gain at a cost to the overall 
performance of the system. Given this, the challenge is to design a system such that 
desirable system-wide properties emerge from the interaction between its constituent 
(selfish) agents (Dash et al. 2005, Rogers et al. 2006).

Computational mechanism design offers a principled framework with which to 
design systems that exhibit desirable global properties, despite the selfish actions and 
goals of the constituent parts. It is an extension of the economic field of mechanism 
design and addresses the additional challenges imposed by a computational setting (i.e., 
agents that are computationally limited, communication that is not cost or error free, 
and settings that are open and dynamic). At its core, is the notion that agents hold 
or require valued items, and are seeking to maximize their own utility through the 
exchange of these items. In the real world, these items may be goods or services, and 
thus they will have real monetary value. In the sensor network scenario, information 
offers a principled currency or valuation metric. It can be applied in any context where 
sensors make and exchange imprecise observations and thus must deal with uncertainty.
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2.6.1 P roblem Description

We consider a scenario where a number of sensors are tasked with detecting targets. 
The sensors each have a partial and inaccurate view of the world and need to com-
municate with each other in order to increase this accuracy. The “view of the world” 
in this case is a view of the target passing in the region that the sensors are monitor-
ing. The communication network that the sensors use is constrained by a limited 
bandwidth. Thus, there is a need to globally decide on how to optimally allocate this 
bandwidth in order to best satisfy the sensors’ overall goal of forming an accurate 
view of the world.

In more detail, each sensor has two regions that they consider. There is a ROO 
in which they can observe targets and a region of interest (ROI) they wish to moni-
tor. Figure 2.8 depicts a typical instance of a scenario where the ROI of sensor 1 
is shown and there is a target within this ROI. We can observe that agent 1 can 
already know about this event in its ROI since this overlaps (as it usually does) 
with its ROO. However, due to noise inherent in the measurement process, agent 
1 will have some uncertainty in its observation (e.g., the position, type or speed of 
the target may be described by a probability distribution rather than an absolute 
value). Agent 1 can however decrease this uncertainty by gaining data about the 
target from other agents, namely agents 3 and 5 (which also have the target in their 
ROO). However, if agent 1 can only receive data from one of these two agents due to 
bandwidth limitations, it will then have to decide as to which agent to gain the data 
from. This decision making process is further complicated if the other agents also 
have to make similar decisions. Thus, different flows of data (i.e., descriptions of 
which sensors will transmit data and along which path this data will flow) will yield 
different results in terms of the total reduction of the uncertainty (or the equivalent 
increase of information). Given this, the high level representation of our problem is 
then to allocate the flow of data within the bandwidth constraints imposed by the 
communication network so as to optimize the overall gain in information each sen-
sor has about its ROI.

ROO2

3
4

5

6

1

ROI

Sensor i
Target

FIGURE 2.8  A multisensor network target tracking scenario.
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We tackle this problem by first modeling it as a MAS. Each sensor is then viewed as 
an agent i, within a set of agents , which has data and a function xi that characterizes 
the accuracy of this data. The data have a size and thus a bandwidth requirement of 
bwi. We consider the simplest communication protocol that exhibits a bandwidth con-
straint, and thus we assume a broadcast protocol whereby any sensor can simultane-
ously transmit to all other sensors. The total bandwidth available for the transmission 
of the data is such that only a subset of the sensors can actually transmit their data.

In order to characterize this problem, we first need to make a few assumptions 
about the scenario:

•	 The time taken in calculating the allocation of data and in communicat-
ing between agents is small compared to the time taken for another tar-
get to appear. This allows us time frames where the mechanism can be 
implemented.

•	 The agents have perfect and common knowledge about the sensor-network 
topology and their neighbors. This removes the problem of neighbor 
discovery in communication systems. These assumptions thus permit us 
to concentrate solely on the issue of allocating the flow of data under 
the bandwidth constraints. We now need a way for each agent to value 
the data received from different agents based around the measure of data 
accuracy, xi.

2.6.2 V aluation Function

We develop a suitable valuation function based on the information form of the 
Kalman filter. Now, in the standard Kalman filter, observations are of the form 
z(t) = H(t)y(t) + n(t), where y(t) is the state of the system at time t, H(t) is the linear 
observation model and n(t) is a zero mean random variable drawn from a normal 
distribution with variance R. The covariance update component, P−1(t|t), of the infor-
mation form of the Kalman filter for N observations is

	

P t t P t t H j R j H jT

j

N
− − −

=

= − +∑1 1 1

1

1( | ) ( | ) ( ) ( ) ( ) 	 (2.12)

The summation in the above expression represents the decrease in covariance and 
thus the gain in information at time t when all the N observations are fused. In the 
case of our problem, the value of receiving data from another agent can thus be rep-
resented by the gain in information resulting from this observation.

In order to achieve an efficient allocation, this gain in information must be calcu-
lated from the measure of the data prior to fusion. Thus, we can represent the mea-
sure of accuracy of data xj, as its covariance, which is calculated from the covariance 
of its observation R( j):

	
x H j R j H jj

T= −( ) ( ) ( )1 	 (2.13)
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Thus, the gain in information of agent i, when all relevant data are transmitted to it 
and fused, can be expressed as a sum of this measure of accuracy provided by each 
of the other agents:

	

v x xi i j

j i

( )x = +
∈−
∑ 	 (2.14)

where −i = \i

Equations 2.13 and 2.14 thus cast our valuation function. However, we need to mod-
ify this so as to incorporate the characteristics of our scenario. This is because all 
observations may not fall in an agent’s ROI and furthermore an agent may not be 
able to receive all the data as a result of the bandwidth constraints of the commu-
nication network. Defining αij as the probability that the data observed by agent j is 
relevant to agent i, and a vector f as describing the flow of data in the network, then 
the expected valuation is
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By slight abuse of notation, we shall hereafter refer to the expected valuation v‾i(.) 
as v(.).

From the valuation function, we can observe that the valuation of an agent i 
depends on xj, which are signals measured by other agents. There are two conditions 
that are necessary in order to achieve an efficient allocation when considering selfish 
agents (Jehiel and Moldovanu 2001). Firstly
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The first condition is automatically satisfied in our case since new data cannot 
decrease information. In the case of the second condition, it implies that we need 
to restrict an agent’s ROI to its ROO. Otherwise, there may be an event outside its 
ROO that falls in its ROI such that data from another agent has a greater effect on 
its utility than its own data. This condition is necessary because otherwise selfish 
agents may profitably lie about their observed data and derive from it positive utility. 
Furthermore, the overlap between the agents, ROOs must be such that this condition 

is satisfied (i.e., αij
j i

<
∈−∑ 1). This means that the ROO of any agent cannot be 

entirely overlapped by the ROO of other agents (i.e., no agent is redundant).
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2.6.3 M echanism

The aim is to ensure that the global bandwidth resource is used efficiently, that is, 
ensure that given the limited bandwidth, the information gain of the entire network is 
maximized. Thus, a mechanism is imposed whereby sensors are called upon to pri-
vately reveal the information content of observations to an auctioneer. This auctioneer 
then allocates the limited bandwidth of the communication network to those sensors 
whose observations will yield the highest system-wide information gain. However, 
since each sensor is individually attempting to maximize its information regarding 
its own ROI, with a simple mechanism there is an opportunity for a sensor to behave 
strategically (e.g., by understating the information content of its own observations, in 
an attempt to ensure that bandwidth is allocated to other sensors whose observations 
it can make use of or by overstating it, in order to deny bandwidth to other sensors).

Such strategic behavior is generally undesirable since it reduces the overall effi-
ciency of the network and is computationally expensive for the individual sensors. 
Thus, we focus onto a subclass of mechanisms that are said to be strategy-proof or 
incentive compatible (Dash et al. 2003). That is, within the mechanism, the sensors 
have a dominant strategy (one which they should adopt regardless of the behavior 
of other sensors) to truthfully reveal their private information regarding the value of 
observations to the auctioneer. The mechanism proceeds as follows:

•	 Each agent i transmits to a central auctioneer its valuation function vi( f, x) 
for all the possible allocations of the information flow f ∊ , where  is the 
set of all feasible flows.

•	 Each agent i also transmits its observed signal x̂i.

•	 The center then computes the optimal allocation f0
*  which is calculated as
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•	 The center also calculates the payment ri made by each agent i. To do this, 
the center first finds the m next best allocations as the signal xi is decreased 
until the presence of i makes no difference to the allocations. That is, find 
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where the allocation fm
* is the optimal allocation when i does not exist, that is
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The earlier scheme rests upon making an agent derive a utility equal to the marginal 
contribution that its presence makes to the whole system of agents. Thus the addi-
tional part of this mechanism is to take into account the effect that an agent’s signal 
xi has on the overall utility of the system. This mechanism is general in that it can 
also be applied to the case of independent valuations. In our scenario, such valua-
tions arise when the ROOs of the sensors do not overlap, and the agents are simply 
collecting, rather than combining, observations.

2.6.4 E xample

The mechanism was applied to a simulated sensor fusion problem which allowed the 
allocation of bandwidth and results of the auction process to be tracked. Figure 2.9 
shows the system running.

At the specific instance in time shown in Figure 2.9, the bandwidth is severely lim-
ited. Thus, although a target falls into the ROI of both sensors 2 and 3, there is insuf-
ficient bandwidth for these sensors to exchange observations (allocated bandwidth 
is indicated by the thick lines between sensors). The value of information that each 
sensor receives from other sensors and the payments that they receive in exchange 
for transmitting their own observations are shown in the bar-graph at the bottom 
right of the display (note that sensors 1 and 4 both have negative payments since they 
are currently receiving more information than they are transmitting; indeed, sensor 4 
is transmitting no information at all). When sensors truthfully reveal the information 
content of their observations, they maximize their individual information gain and 
maintain their budget of currency (shown on the right of the display). However, a sen-
sor that does not adopt this strategy (due to faulty, strategic, or malicious behavior), 
will not achieve these aims and its budget will gradually be depleted. Such sensors 
can be recognized and removed from the network, thus incentivizing the truthful 
reporting that is necessary to ensure that the constrained bandwidth of the sensor 
network is allocated to achieve the system-wide goal of maximizing the information 
gain of the entire sensor network.

2.7  TRUST AND REPUTATION

The role of computational models of trust, within MAS in particular and open dis-
tributed systems in general, is generating a great deal of research interest. In such 
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systems, agents must typically choose between interaction partners, and in this con-
text trust can be viewed to provide a means for agents to represent and estimate 
the reliability with which these interaction partners will fulfill their commitments. 
Effective trust models should allow agents to (a) estimate the trustworthiness of a 
supplier as they acquire direct experience, (b) express their uncertainty regarding 
this estimate, (c) exchange their estimates as reputation reports, and (d) filter and 
fuse these reputation reports with their own direct experience to yield more accurate 
estimates (Reece et al. 2007a,b).

This section develops a probabilistic model of computational trust that allows 
agents to exchange and combine reputation reports over heterogeneous, correlated 
multidimensional contracts. Specifically, it considers the case of an agent attempting 
to procure a bundle of services (e.g., audio, video, and data services) that are subject 
to correlated quality of service failures (e.g., due to use of shared resources or infra-
structure), and where the direct experience of other agents within the system consists 
of contracts over different combinations of these services.

2.7.1 E xpected Utility of a Contract

Consider an agent attempting to procure a bundle of services from a single supplier. 
In order to make a rational decision, or to negotiate a price for this bundle, the agent 
must estimate the expected utility of a contract with this supplier. Thus, we denote 

FIGURE 2.9  Example sensor network system showing the auction allocation in process and 
the resulting communication allocation.
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the outcome of a contract as a vector, X, that indicates whether or not each service 
within the bundle was successfully delivered (e.g., X = {oa = 1, ob = 0, oc = 0, …} indi-
cates that service a was successfully delivered, while services b and c were not). If 
u(oa = 1) is the marginal utility that the agent derives if service a is successfully deliv-
ered, then the expected utility of the agent will depend on the probability that this 
happens, p(oa = 1). However, neither the probabilities nor the correlations between 
them are known to the agent and thus it must use observations of previous contract 
outcomes to determine a distribution over their possible values. It can then determine 
an expectation of the expected utility of the contract:

	
E E U p X U XT   = ˆ( ) ( ) 	 (2.15)

and a variance, describing its uncertainty:
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Thus, the agent’s estimate of the expected utility is dependent on a trust estimate 
composed of two expressions: a vector estimate of the probability that each service 
is successfully delivered
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and a covariance matrix that describes the uncertainty and correlations in these 
estimates:
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where
the diagonal terms, Va, Vb, and Vc, represent the uncertainties in p(oa = 1), p(ob = 1), 

and p(oc = 1)
the off-diagonal terms Cab, Cac, and Cbc represent the correlations between these 

probabilities

A formalism using the Dirichlet distribution allows an agent to calculate both 
p̂(X) and P(X) from its direct experience of previous contract outcomes (Reece et al. 
2007b). Within this formalism an agent that has observed N contract outcomes in 
total simply records, for each pair of services (e.g., a and b), the number of times 

that both were successfully delivered, nab
11 , the number of times both were deliv-

ered unsuccessfully, nab
00 , and both combinations in which one was delivered suc-

cessfully, and the other unsuccessfully delivered, nab
01  and nab

10 . These counts over 
contract outcomes can be communicated as reputation reports, and these reputation 
reports can be combined by simply aggregating the counts. However, this formalism 
is limited to the case that contract observations are homogeneous (i.e., all agents 
observe contracts over the same dimension). Thus, we next consider two formalisms 
that address the more general case where contract observations are heterogeneous: a 
simple benchmark formalism using independent beta distributions (with covariance 
inflation) and a full formalism that uses the Kalman filter.

2.7.2 �H eterogeneous Contracts: Inflated 
Independent Beta Distributions

We can provide a reasonable benchmark formalism for dealing with heterogeneous 
contracts through a simple extension of a single dimensional trust model. That is, we 
do not explicitly represent the correlations between the services within the bundle, 
but rather, we use independent beta distributions to represent each individual service. 
Thus, if an agent has direct experience of N previous contract outcomes, in which 
service a was successfully delivered na times, then the trust estimate, p̂(X), can sim-
ply be calculated using the standard result from the beta distribution that
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Similarly we can calculate the diagonal terms of the covariance matrix, P(X), by 
again using the standard result from the beta distribution that
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Finally, rather than explicitly calculating the off-diagonal elements of the covariance 
matrix, we can employ the covariance inflation method from Section 2.4 to derive a 
conservative covariance matrix by simply setting the off-diagonal elements to zero, 
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and multiplying the diagonal variance terms by the number of dimensions in the 
state vector, X. Thus in the case of two services we have
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We now develop a more sophisticated approach using the Kalman filter to fuse het-
erogeneous estimates containing correlation information.

2.7.3 H eterogeneous Contracts: A Kalman Filter Trust Model

The Kalman filter trust model operates by fusing an agent’s prior trust estimate (cal-
culated from an agent’s own direct experience of previous contract outcomes) with 
reputation reports that are received from other agents in order to give a posterior trust 
estimate. As described earlier, these trust estimates are represented by a vector, p̂(X), 
and a covariance matrix, P(X), and the standard form of the Kalman filter provides 
two equations to update these:
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where K is the Kalman gain

	
K P P R= + −

prior prior( ) 1

and o is an observation with covariance R, that together represent the reputation 
reports received from other agents.

Now, when we have heterogeneous contracts, one or more dimensions of either 
the prior estimate or the reputation reports may be missing. Within the Kalman filter 
framework we can simply represent these missing contract observations by setting 
the corresponding diagonal elements of the covariance matrix to infinity. By doing 
this we are effectively saying that the estimate for this contract part has no certainty.

In fact, performing these matrix operations involving infinity can be problematic. 
We can avoid this by using the information form of the Kalman filter whereby an 
estimate is represented by its precision, Y, which is the inverse of the correlation 
matrix (i.e., Y = P(X)−1), and its information estimate, ŷ, which is the product of the 
precision and the state estimate (i.e., ŷ = P(X)−1p̂(X)).

In this case, the missing information can be represented by inserting zeros into 
the precision matrix, and as before, the Kalman filter allows us to combine reputation 
reports with prior beliefs to yield a posterior information estimate and precision matrix:

	

ˆ ˆ ˆy y y

Y Y Y

posterior prior

posterior prior

= +

= +

0

0



39Distributed Data Fusion

where Y0 = R−1 and ŷ0 = R−1o. The information form of the Kalman filter is particu-
larly useful within MAS since reputation reports from multiple agents are simply 
added (in any order) to an agent’s prior estimate. However, the two forms are exactly 
equivalent, and we can easily switch between the two.

Thus, having presented the Kalman filter in the context of a computational trust 
model, we describe how an agent’s prior estimate is calculated from its own direct 
experience, and how other agents can communicate reputation reports calculated 
from their own direct experience.

The prior belief of the agent is represented by a trust estimate, p̂(X), and a covari-
ance matrix, P(X). These can be calculated from an agent’s direct experience using 
the Dirichlet formalism noted earlier. More specifically p̂(X) and the diagonal ele-
ments of P(X) are calculated from the counts of contract outcomes (as per Equations 
2.17 and 2.18), while the full details of the Dirichlet distribution are required to 
calculate the off-diagonal terms of P(X) (Reece et al. 2007a). The prior explicitly 
represents the correlations over the subset of services for which the agent has directly 
observed previous contract outcomes. When the agent has no direct experience of 
some services, it may simply insert infinity into the relevant diagonal element of 
P(X) to reflect this lack of information (or alternatively insert zero into Y if the infor-
mation form of the Kalman filter is being used).

The Kalman filter fuses a prior estimate with an observation, o, whose covariance 
is R. In our computational trust model, o and R together represent a reputation report 
and are calculated from the direct experience of the originating agent. This calcula-
tion is different from that which generates p̂(X) and P(X), since the covariance R 
describes the variability of o about the true probabilities, p(X), while the covariance 
P(X) describes the variability of p(X) about the estimate p̂(X). This is a subtle but 
important difference. Calculating o is straightforward since it is a vector estimate of 
the probability that each service is successfully delivered (i.e., o = {oa, ob, oc, …}). It 
is calculated from an agent’s previous contract outcomes, and thus if the agent has 
observed N contracts in total, and service a was successfully delivered in na of these, 
then oa = na/N. Note that due to the reasons described earlier, this expression is dif-
ferent from that shown in Equation 2.17.

Calculating R is more complex. Since we are using the Kalman filter with a 
Dirichlet distribution (rather than the more common Gaussian distribution), the cova-
riance, R, is itself dependent upon the probabilities that each service is successfully 
delivered, p(X). These probabilities are not known; indeed, these are what we are 
attempting to estimate. However, the beauty of the Kalman filter lies in its flexibility 
and we need not worry about finding R exactly. Provided that we can find a conserva-
tive matrix, R*, to use in place of R, we can guarantee that our estimates will remain 
consistent. We can build such a conservative covariance matrix for R from an agent’s 
direct experience and the method of covariance inflation described in Section 2.4.

2.7.4 E mpirical Evaluation

To evaluate the effectiveness of the trust formalisms just described, we present simu-
lation results in which ten agents, each with their own direct experience of a supplier 
that provides two services, participate within a reputation system. We assume that one 
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of these agents is attempting to evaluate the trustworthiness of the supplier in order 
to calculate the expected utility of interacting with it. As such, the agent must fuse 
its own direct experience with reputation reports received from the other nine agents.

In each simulation run, contract outcomes are drawn from an arbitrary joint 
distribution that induces correlations between the services. The contract outcomes 
are randomly allocated such that some agents observe both services, while others 
observe just one service. We apply the trust formalisms to calculate posterior trust 
estimates and then calculate two metrics. The first is a scalar measure of the infor-
mation content of the trust estimate; a standard way of measuring the uncertainty 
encoded within the covariance matrix (Bar-Shalom et al. 2001). More specifically, 
we calculate the determinant of the inverse of the covariance matrix

	 I P X= −det( ( ) )1

and note that the greater the information content, the more precise p̂(X) will be. The 
second metric measures the normalized error of the estimate:

	
E p X p X P X p X p X

T= −  −−ˆ( ) ( ) ( ) [ ˆ( ) ( )]1

We perform 1000 repeated simulation runs and calculate the expectation of these two 
metrics (and the standard error in these expectations). We note that the expectation of the 
normalized error is commonly termed the normalized standard error and it describes 
the consistency of the estimate. A consistent estimate has a normalized standard error 
less than the cardinality of the trust estimate; two in this case. A normalized standard 
error much less than this value indicates that the covariance matrix is too conservative.

In Figure 2.10 we present these results (with the standard error in the expected 
values shown as error bars) as the number of contract observations ranges from 10 
to 400. We note that the information content of the trust estimates generated by the 
Kalman filter formalism far exceeds that of those generated using inflated indepen-
dent beta distributions (typically by a factor of 3). By explicitly representing the 
correlations between the services, our formalism generates more precise trust esti-
mates. This increased precision is not realized at the cost of producing inconsistent 
estimates; the normalized standard error of both formalisms is less than two, and 
thus they both generate consistent estimates. Finally, we note that as the number of 
contracts increases, the Kalman filter encodes more precise correlation information, 
and the difference between the formalisms also increases.

Table 2.1 illustrates the effect that the precision of the trust estimate has on an 
agent’s estimate of the expected utility of a contract (calculated using the relation-
ships shown in Equations 2.15 and 2.16 in an example setting where u(oa = 1) = 2 and 
u(ob = 1) = 6). While both formalisms generate estimates of expected utility close to 
the true distribution, the more precise covariance matrix of the Kalman filter results 
in a better estimate of the standard deviation of the expected utility (while that of the 
inflated independent beta distribution is approximately double the true value).

In summary, we have developed a trust formalism based on the Kalman filter 
that represents trust as a vector estimate of the probability that each service will 
be successfully delivered, and a covariance matrix that describes the uncertainty 



41Distributed Data Fusion

Number of contract observations
0

0.8

N
or

m
al

iz
ed

 st
an

da
rd

 er
ro

r (
N

SE
)

1

1.2

1.4

1.6

Inflated independent beta
Kalman filter

1.8

100 200 300 400

Number of contract observations
0

0

0.5

1

1.5

×1011
2

Ex
pe

ct
ed

 in
fo

rm
at

io
n 

co
nt

en
t (

E[
I])

Inflated independent beta
Kalman filter

100 200 300 400

FIGURE 2.10  Comparison of the expected information content, E[I], and normalized 
standard error (NSE) for trust formalisms using the Kalman filter and independent beta 
distributions.

TABLE 2.1
Estimated Expected Utility and Its 
Standard Deviation Calculated from an 
Agent’s Posterior Trust Estimate

Method
E E U E U   ±  ( )Var

True distribution 5.80 ± 0.27

Inflated independent beta 5.86 ± 0.53

Kalman filter 5.82 ± 0.34
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and correlations between these probabilities. We have described how the agents’ 
direct experiences of contract outcomes can be represented and combined within 
this formalism, and we have empirically demonstrated that the formalism provides 
significantly better trustworthiness estimates than the alternative of using sepa-
rate single-dimensional trust models for each separate service (where information 
regarding the correlation between each estimate is lost).

2.8  FUTURE DESIGN CONCERNS AND OPPORTUNITIES

As cheap sensing and computation increasingly pervades the world around us, it 
will profoundly change the ways in which we work with computers. Rather than 
issuing instructions to passive machines, we will increasingly work in partnership 
with highly interconnected computational components (agents) that are able to act 
autonomously and intelligently. Humans and software agents will continually and 
flexibly establish a range of collaborative relationships with one another, forming 
human-agent collectives (HACs) to meet their individual and collective goals.

This vision of people and computational agents operating at a global scale raises 
a very significant design concern that must be faced as we shift to becoming increas-
ingly dependent on systems that interweave human and computational endeavor. As 
systems based on HACs grow in scale, complexity, and temporal extent, we will 
increasingly require a principled science that allows us to reason about the computa-
tional and human aspects of these systems if we are to avoid developments that are 
unsafe, unreliable, and lack the appropriate safeguards to ensure societal acceptance.

2.8.1 HA C Design Concerns

The global scale and decentralized nature of HACs mean that control and informa-
tion will be widely dispersed between a large number of potentially self-interested, 
actors with different aims, objectives, and availabilities. These features of HAC raise 
the following design challenges:

•	 Understand how to provide flexible autonomy that will allow agents to 
sometimes take actions in a completely autonomous way without reference 
to their human owner, while at other times being guided by much closer 
human involvement in key decisions

•	 Discover the means by which groups of agents and humans can exhibit 
agile teaming and come together on an ad hoc basis in order to achieve a 
goal that none of the individuals can achieve in isolation and then disband 
once the cooperative action has been successful

•	 Elaborate the principles of incentive engineering in which actors’ rewards 
are designed in such a way that the actions that the participants are encour-
aged to take, when amalgamated, generate socially desirable outcomes

•	 Design and develop an accountable information infrastructure that can pro-
vide a step change in situational awareness by blending sensor and crowd 
generated content in a robust and reliable way, and developing mechanisms 
that allow its veracity and accuracy to be confirmed and audited
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How to solve these challenges and establish the new science needed to understand, 
build, and apply HACs in the real world is still very much a subject in its infancy. 
It is sure to draw on the DDF methods described in this book, but they will need to 
be enriched with insights, understanding, and methodology resulting from a broader 
multidisciplinary approach involving artificial intelligence, agent-based computing, 
machine learning, decentralized information systems, participatory systems, and 
ubiquitous computing.

2.8.2 HA C Opportunities

If these challenges can be solved they will help us meet some of the key societal 
challenges of sustainability, inclusion, and safety that are crucial to our future. To 
conclude, let us consider three application domains that are expected to be signifi-
cant beneficiaries:

Disaster response: Effective disaster response requires rescue services to make 
critical decisions in the face of an uncertain and rapidly changing situation. We aim 
to develop systems that allow first responders and software agents to work effec-
tively together in such situations to collect the best possible information from the 
environment (though diverse sources such as CCTV feeds, UAVs, and crowd gener-
ated content), in order to most effectively manage and coordinate the various rescue 
resources available. Key technologies to achieve these aims include (i) decentralized 
coordination algorithms that can effectively allocate resources in the absence of cen-
tralized control, (ii) methodologies to flexibly handle autonomy so that the decisions 
that are autonomously made by software agents can be continuously changed as 
needs arise, and (iii) the ability to track the provenance of information and decisions 
such that previous decisions can be updated as new information comes to light.

Smart grid: Developing a modern electricity grid where information flows in both 
directions between consumers and producers is critical to achieving worldwide car-
bon reduction targets. HACs are an essential part of this vision, for example, the use 
of agents (or “energy avatars”) that are capable of continuously monitoring, predict-
ing, and feeding back information about energy generation and consumption within 
the grid, in order to satisfy individuals’ preferences for cost, carbon, and comfort. 
Some requirements in support of these aims are (i) coalition formation algorithms 
that allow multiple self-interested parties such as renewable generators to come 
together with consumers to create virtual power plants that can more effectively 
manage the intermittent nature of these energy sources, (ii) algorithms to generate 
effective short term predictions of demand and supply to allow the optimization of 
energy use, and (iii) accountable information infrastructure to ensure the informa-
tion provided to users on their smart meters is easily understandable, credible, and 
auditable for billing purposes.

Citizen science: Scientific research projects are increasing turning to citizen 
scientists to help solve problems that defy conventional computational approaches, 
for example, the Zooniverse projects in astronomy (zooniverse.org). These projects 
require approaches that allow such problems to be solved at scale, making full use 
of the skills, preferences, and capabilities of the volunteer participants. To make 
effective use of volunteer participants within these settings there is a need to develop 
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(i) algorithms to model and predict the accuracy and trustworthiness of citizen gen-
erated content, (ii) methodologies and data models that allow us to track and reason 
about the provenance of information collected in this way, and (iii) mechanisms 
that allow us to target which volunteers are asked which questions based on learned 
models of their capabilities.
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3 Network-Centric 
Concepts
Impacts to Distributed 
Fusion System Design

James Llinas

3.1  INTRODUCTION

The history of network-centric concepts in the United States can be said to go back 
at least to the mid-1980s when the U.S. Defense Department was reorganized under 
the Goldwater–Nichols Act of 1986 that imputed the notions of “jointness” onto U.S. 
defense and military operations. Ten years later U.S. Admiral William Owens, in a 
paper for the Institute of National Strategic Studies at the National Defense University, 
wrote on the concept of “The Emerging U.S. System of Systems” (Owens 1995) as 
the foundation of the “Revolution in Military Affairs,” involving the extensive use of 
(and dependency on) information in a layered system framework connecting various 
military operational functions. A sequence of publications evolved that introduced 
the notions of net-centricity and eventually the military notion of network-centric 
warfare (NCW), in which the strong informational dependency persisted. In the 
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networked case, which allows (or should allow) extensive sharing of information, the 
argument was that NCW enabled the following operational advantages:

•	 A robustly networked force improves information sharing.
•	 Information sharing enhances the quality of information and shared situ-

ational awareness.
•	 Shared situational awareness enables collaboration and self-synchronization 

and enhances sustainability and speed of command.
•	 These, in turn, dramatically increase mission effectiveness.

In these arguments, combat power is seen to be dependent on information. Related 
to these ideas, Evans and Wurster (2000) introduced the concepts of information 
richness and seek to explain how the Internet has changed the economics of informa-
tion reach and the ability of information to create value. In this work, they defined 
information richness as an aggregate measure of the quality of information and 
information reach as an aggregate measure of the degree that information is shared. 
Alberts et al. (2001) add the parameter of “quality of interaction” to these factors 
as influencing the ability to create value, in this case combat value. So it can be 
argued, following these developments, that combat power and mission effectiveness 
depend on information quality, information “share-ability,” and the nature of interac-
tion among people using information. In a network environment, every node has an 
opportunity to create information but also to modify it (say, improve its quality), send 
it forward to other nodes (expedite the sharing of that information), and the people at 
that node can interact with the information in a way that exploits it for task purposes. 
Thus, there is the potential for a “chain” of effects that impacts the overall combat 
value in such a system of systems; i.e., a “value chain” is a latent construct in any 
information network.

3.2  VALUE CHAIN CONCEPTS

The term “value chain” is cited in the various open works on NCW or network-
enabled capability (Alberts et al. 2001), but other sources suggest the term was coined 
by Michael Porter in 1985 (Porter 1985). The concept is an abstraction related to 
business processes that operate on a product as part of the product development, and 
the notion that each process should add value to the product. It seems to be a concept 
primarily useful for strategic planning that exposes the cost and value drivers at each 
stage of product development as a basis for analyzing and discerning the best trade-
off choices to make toward optimization of value and minimization of cost.

The term has been extended by the business community to apply to broadly 
based, multi-organizational processes under the phrase “value network,” which 
seems to be particularly applicable to service industries and processes involving 
nontangible components and products. It is generally presumed in the discussions 
about value networks that there is a dedicated and altruistic intent among the col-
laborators to fully cooperate through synchronized interactions toward the single 
purpose of product value optimization. Clearly, inter-agent communication is crucial 
to realizing the benefits of a value network (as argued in Alberts et al. [2001], where 
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the “quality of interaction” parameter is introduced, as previously noted), and the 
overall system can be and usually is complex and exhibiting a variety of inter-agent 
dependencies, not unlike the complexities in a social network.

The value chain in the NCW case is descriptive of the interdependencies 
among, and value contributions of, the links from network-centric organizations 
and improved (value-adding) information processes—and information products—
to more effective mission outcomes. As will be discussed later, there are two core 
assertions that underlie this concept: (1) that the collaborative framework that the net 
infrastructure provides will improve the quality of organic (individual-node) infor-
mation, and (2) that the same net infrastructure will provide for improved share-
ability of information, in turn leading to more creative, agile, and timely situation 
assessments and decision making. As noted earlier for the business case, here too 
there is an assumption of an altruistic imperative and that the network nodes are 
cooperatively working toward a common goal. This is not unreasonable as an ideal 
goal but its realization is likely to depend on the specifics of given mission applica-
tions and the usual effects of the “fog of war,” and mission risks and urgencies in the 
defense or military context. Even among friendly forces, it is not always the case that 
the entire force is pulling in the same direction due to localized and random factors.

Also, no small part of the realization of the potential of NCW and the promise 
of the value chain process will be the willingness of the military to commit to the 
underlying open, cooperative, and proactive degree of information-sharing that these 
concepts depend on. As pointed out by Alberts and Hayes (2003), it was not too long 
ago that the phrase “Knowledge is Power” was employed to convey the notion that 
possession and control of information (i.e., making it scarce and not sharing it) was 
a means to achieve power and control. This paradigm thus argues for the control and 
caching of information, rather than sharing it and generally making it available. In 
part, these contrasting views relate to the economics of information availability in 
the general sense as well as the cost of sharing it. With the emergence of the web and 
the dramatic reductions in the availability-costs of extensive amounts of informa-
tion and in the marked reductions of all types of networking costs comes the push 
for a new paradigm that factors sharing into the value-adding processes rather than 
purposefully resisting it. Of course, this will require a degree of revolution in the 
way “information-age forces” are structured and in the way they interoperate and 
in particular how they share information. Military organizations will need to go 
well beyond the current centralized planning-decentralized execution paradigm to 
the structures discussed in Alberts and Hayes (2003) to realize much more organi-
zational agility and to empower those at the edge of organizations to decide about 
information sharing and action-taking.

3.3  VALUE CHAIN PROCESS

Determination of whether the asserted benefits of the tenets of NCW and in particu-
lar those of the value chain can be realized begins with understanding the degree to 
which a force is in fact networked or connected. As is well known, connectivity at 
the information level is the result of a multilayered process; it begins with the physi-
cal connection layer (wires, fiber, transmitters/receivers) but goes well beyond that 
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layer and in the military environment of course involves multilayer security issues 
and accessibility controls to information. We note the important requirement that to 
exploit and fuse shared information one must have to have been sent it from some-
where in the network, which in turn depends on what we call “information-sharing 
strategies (ISS),” those protocols or policies that define who sends what to whom, 
how often, and in what format. And as has been mentioned earlier, effective and effi-
cient collaboration also presumes the unified focus and altruistic intentions of those 
nodes in a network that can contribute to the improved problem solution actually 
doing so, even under combat duress and confusion.

The NCW literature has various diagrammatic representations of the value chain; 
here we use a simple construct in Figure 3.1 depicting the process and its important 
components and functions, showing how value is built up in the course of “good” 
network operations. The figure shows that the first requirement to enable NCW is 
connectivity via some type of network infrastructure. Shared observational data, 
data fusion, and information management, done well, lead to significantly improved 
situational awareness, which when properly shared and integrated into a (possibly-
new paradigm of) command and control (C2) and decision-making environment 
have the potential to yield measurable improvements in mission effectiveness. 
Closely related to the concept of the value chain is the “conceptual framework” of 
NCW, depicted here again using the diagram from the Network Centric Operations 
Conceptual Framework report prepared by Evidence Based Research, Inc. (2003) 
as Figure 3.2.

Most of Figure 3.2 is, first of all, all about information and its flow in the network 
but it is (toward the bottom) also about the use of the information in decision-making 
and action-taking. Important themes in this framework revolve around a few special 
words and the implied functions: quality—sharing—degree—synchronization. Also 
a new term appears: “sense-making.” Notice also that many of these terms and the 
associated functions happen to “a degree,” and ideally should be measurable through 
the development of relevant metrics; more is said on this in Chapter 17. Finally, not 
shown here but important to note in any case is that certain functions are in certain 
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FIGURE 3.1  Network-centric value chain concept diagram.
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domains, across the physical, informational, cognitive, and social categories; some 
involve more than one domain. Everything begins here with improvements in the 
quality of information at some node; nothing of quality can happen across nodes if 
the individual nodes have nothing to offer.

3.4  VALUE OF INFORMATION IN DECISION-MAKING

One way to measure the quality of information at a node is by its contribution to 
both the local and team or network-level decision-making and action-taking that 
results from employing that information. Usually, the outcomes of actions taken in 
the context of estimated situational states may be assigned values or utilities, which 
represent the relative desirability of outcomes. This type of approach is typical for 
cases where rational decision-making and choice-making is appropriate. However 
there are many modern-day problems, e.g., asymmetric problems, that do not lend 
themselves to the rational choice, rational decision-making paradigm. If we denote 
a possible situation state as s, as an instance of S, and utility of action a, given s as 
U(a,s), we can describe the expected utility as

	

E{U(s)} P(s)U(a,s)
s S

=
⊂
∑ 	 (3.1)

EffectorsValue
added services

Degree of networking Net readiness of nodes 

Degree of info shareability 
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inter-
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Degree of action synchronization 

Degree of effectiveness 

Quality of individual info 

Quality of individual sense-making 
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Individual understanding

Individual decisions 
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Quality of organic info Quality of networking 

Force  Information sources

FIGURE 3.2  NCW conceptual framework. (From Evidence Based Research, Inc., Network 
Centric Operations Conceptual Framework Version 1.0. 2003, Report prepared for Office of 
Force Transformation, November 2003.)
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where P(s) is the probability of any situation s. The situation, s, however is typi-
cally unobservable in a direct sense and can be treated here as being estimated by 
a fusion process on the basis of observable evidence e (of all possible observational 
data or other evidence, E). That is, the fusion process, assuming that it has a multi-
hypothesis capability, produces the distribution of estimated situations P (s|e). If the 
maximum utility is that associated with taking the optimal action, then we have the 
maximum of the expectation as follows:

	

Max E U(S e) a A P(s e)U(a,s)
s S

{ | } max |  = ⊂
⊂
∑ 	 (3.2)

If we want to gauge the value of any observable evidence or information e, assuming 
that what is being shared in the network is observational data or measurements, then 
we can marginalize over the possible values of e as

	

Max[E U(S E) ] P e Max[E{U(S|e)}] 
e E

{ | } ( )=
⊂
∑ 	 (3.3)

The value of any observable informational element can then be computed as the 
difference in maximum utility when the information is included in the above vice 
excluding it. A similar calculation could be done if what are shared are situational 
estimates by using slight variations of these equations, using the marginal value of 
any situational estimate s. The viability and ability to implement calculations of 
this type will vary from case to case, but some type of quality measures are needed 
to drive the value-chain process; as footnoted previously, the Network Centric 
Operations Conceptual Framework report (Evidence Based Research, Inc. 2003) has 
a rather thorough characterization of a holistic approach to measuring the various 
“ilities” associated with the value chain process.

3.5  ROLE OF FUSION (1)

It is important here to make a “fusion” remark in light of the implications of Figure 
3.2. Any fusion node can only fuse two things: that information which is available 
to it organically—i.e., information over which it has control, such as locally man-
aged sensor devices—and that information which comes to it somehow from the 
network. Notice the emphasis on “somehow”; it is only through the aforementioned 
ISS that some type of information flows to a node from the network. Such flows 
can be the result of a multiplicity of interwoven ISSs such as broadcasts from some 
nodes, responses to service requests from other nodes, and flows from nodes that the 
receiving node subscribes to, or yet other flow patterns driven by specified protocols. 
But it is emphasized that the nature of “non-organic” fusion that can happen at a 
node is only the result of the synthesis of any such directed or requested (and respon-
sive) information flows, which in turn are the result of defined protocols and policies. 
A related remark is that fusion can be (should be, if well designed) a contributor to the 
quality of information and quality of sense-making and understanding, both at the 
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individual or nodal level as well as at the shared level. It could be also argued that the 
“Level 4: Process Refinement” function of the fusion process could contribute to the 
nature of the information sharing and other inter-nodal interactions in a positive way, 
depending on the control authority aspects of how the network is managed.

Further, fusion process design is often spoken of as impacted by “push” 
requirements—those requirements driven by the input-side, and “pull” require-
ments, driven by the user-side. The network environment influences both of these 
requirements-sets in possibly many ways. It can be said that the information flow in 
the network can be characterized as both delayed and out-of-observation-time-order, 
and probably Poisson in arrival-rate distribution, all of which could potentially affect 
fusion algorithm and process operations. New user patterns involving self-organizing 
and self-synchronizing organizational dynamics will also likely affect how fused 
information products should optimally be constructed and delivered for use.

3.6  SENSE-MAKING

Following the flow of Figure 3.2, “sense-making” is a process and desired capability 
at both the individual node level and at the network level. It can be individualized 
to a person in which case the process would be largely cognitive with some degree 
of automated support at the individual level. For any netted level of sense-making 
capability whether within a sub-network at a node or across nodes, the sense-making 
process relies largely on patterns of collaboration and information exchange. As 
might be expected, the sense-making term seems to have a number of nominated 
definitions; a few are offered here to give a sampling:

•	 Sense-making as making sense of uncertainties in environments through 
interaction (Weick 1969).

•	 Sense-making encompasses the range of cognitive activities undertaken by 
individuals, teams, organizations, and indeed societies to develop aware-
ness and understanding and to relate this understanding to a feasible action 
space (Alberts 2002).

•	 Sense-making is defined as the process of creating situation awareness in 
situations of uncertainty (Leedom 2001).

•	 Sense-making consists of a set of activities or processes in the cognitive and 
social domains that begins on the edge of the information domain with the 
perception of available information and ends prior to taking action(s) that are 
meant to create effects in any or all of the domains (Alberts and Hayes 2006).

One common theme through the definitions seems to be the notion of dealing with and 
clarifying an estimated world view while dealing with uncertainty, anomalies, and 
contradictions. Sieck et al. (2007) depict individualized sense-making as a six-step 
frame-building process (frames associated to mental representations in this approach), 
involving sub-processes that seek a frame, and elaborate, question, compare, reframe, 
and preserve the frame in an iterative process. Each step involves some type of adjudi-
cation or reconciliation process to deal with classes of complexity or uncertainty and 
ambiguity. In this process then, the drive to reduce uncertainty may not be immediately 
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helpful since part of the sense-making process can be to understand the implications of 
uncertainty and ambiguity. The problem spaces addressed by sense-making processes 
involve an incomplete understanding of reality and are thus ontologically incomplete; 
they are also epistemologically incomplete in that available knowledge models are not 
adequate to describe the observed phenomena. Table 3.1 from Zack (1999) offers a 
characterization of types of ignorance that sense-making must deal with.

As pointed out in the sense-making literature (McCaskey 1982), the sense-
making process is not constrained by the usual models and assumptions of rational 
decision-making, and a generalized maximization of a type of a utility-type function 
on the part of the decision-maker. Modern-day adversaries can be expected to act 
“irrationally” at least by certain standards, and certain arguments suggest that 
friendly decision-makers need to be equally “irrational” in their decision-making 
processes. Uncertainty reduction and optimization methods work well in support of 
the rational choice/rational decision-making model but may warrant reexamination 
as part of a sense-making process involving a collaborative situation assessment 
process that is constructing a subjective view of an unknowable, dynamic world and 
largely dealing with overt deception, equivocal information and the reconciliation of 
alternative views among the networked decision-making team. The use of bounded 
rationality models helps in this regard but such models are not the same as the typical 
descriptions of sense-making. In the sense-making case, it could be said that the 
networked group is constructing an interpretation of some complex reality sufficient 
to achieve a state of commitment to that interpretation and the decisions and actions 
that may result from it. This notion interacts with the concept of self-organizing 
teams in that the sense-making process is a logical precursor to a team setting its 
own goals and objectives for both action-taking and information-seeking. It could 
be said that a team can only be labeled as self-organizing if it dynamically sets its 
own goals and objectives. Commanders then need to limit themselves to presenting 
the team with an ambiguous challenge rather than defining terms of reference, etc.; 
whether traditional militaries can adapt to this process is to be seen. Moreover, most 
fusion processes operate on what could be called explicit information and to varying 
degrees may not exploit tacit knowledge and contextual information.

McCaskey (1982) offers the list shown in Table 3.2 of types of problems and ques-
tions that sense-making type processes are intended to address. It could be said that 
these are problems involving degrees of bewilderment for analysts or decision-makers. 
The term “wicked” has also been used to typify such problems involving contradict-
ing information, discrepancies, etc., and the need for problem-solvers to significantly 
change their mindsets and shed historical preconceptions; see Rittel and Webber (1973).

3.7  NATURE AND PROCESSES OF SENSE-MAKING

Sense-making is sometimes labeled as “constructive reality” and a process that 
is action-centered and retrospective. This is similar to what some in the fusion 
community have called “stimulative intelligence,” which involves taking actions to 
stimulate an adversary to an action that is either observable or that aids in clarifying 
a hypothesis. Such strategies will generally be more successful at the physical level, 
e.g., when trying to cause actions that manipulate physical objects, but both harder 
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TABLE 3.1
Forms of Ignorance

Form of Ignorance Definition Corrective Response

Uncertainty Uncertainty is defined as not having 
sufficient information to describe a 
current state or to forecast future states, 
preferred outcomes, or the actions 
needed to achieve them.  Uncertainty 
can be defined in degrees (e.g., in terms 
of probability); however, the context of 
uncertainty is well-defined and 
meaningful to decision-makers.

Uncertainty can be reduced be 
acquiring additional information 
relevant to the problem context.   
Uncertainty can be tolerated by 
using assumptions to fill in 
missing information, or by 
developing agile responses that 
can accommodate critical areas 
of uncertainty.

Complexity Complexity is defined as being faced 
with a situation made of an inter-related 
set of variables, solutions, and 
stakeholders – each individually 
understood, but together with exceed the 
processing capacity of the individual, 
the team or organization to synthesize.   
Complexity is defined relative to 
available experience and expertise: what 
is complex for one individual might be 
easily understood by another.

Complexity can be 
accommodated by breaking 
problems down into manageable 
pieces (division of labor).  
However, this requires the 
addition of management 
overhead and the means to bring 
together the appropriate experts 
to synthesize the various pieces 
back into an integrated whole.

Ambiguity Ambiguity is defined as the inability to 
make sense out of a situation, regardless 
of available information.   Ambiguity 
arises when faced with novelty or 
situations that do not correspond to past 
experience.   Here, what is lacking is not 
information but the experience and 
expertise to correctly frame and 
interpret the information.

Ambiguity can be resolved by 
acquiring new sources of 
expertise and/or allowing 
iterative cycles of collaboration 
among experts and 
stakeholders to create new 
interpretations of the situation.   
Such collaboration requires 
well-established social 
networks for success.

Equivocality Equivocality is defined as having 
multiple –equally plausible- 
interpretations of the same information.   
Here, interpretations may differ along 
one or more dimensions; descriptive 
criteria, problem boundary, relevance of 
specific underlying factors, multiple 
stakeholders who each have a vested 
interest in characterizing the current 
situation, forecasting its implications, 
and developing response actions.

As with ambiguity, equivocality 
can be resolved through 
iterative cycles of 
interpretation, discussion, and 
negotiation among experts and 
stakeholders.   This process can 
occur either democratically or 
in authoritative fashion, 
depending upon the relative 
influence of each stakeholder 
and the presence/absence of an 
overall decision authority.

Source:	 Zack, M. H., Knowledge Directions, 1, 36, 1999.
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to define and execute and likely less successful at the informational and cognitive 
levels which are both fundamentally more difficult to manipulate and to observe. The 
sense-making processes are emergent and adaptive but are trying to be kept within 
a linear inferencing framework. It is also characterized by the problem-solvers’ 
reluctance to simplify interpretations and a reluctance to dispense with information 
that doesn’t fit nominated hypotheses; these teams are also characterized by having 
a commitment to resilience. With the process involving frequent adaptation, it 
can also be appreciated that most characterizations of sense-making describe the 
need for a knowledge management function that keeps track of the dynamics in 
nominated hypotheses and associated knowledge models to prevent thrashing and a 
failure to converge. Leedom (2004) shows the diagram of Figure 3.3 to convey the 
hybrid combination of linear and emergent processes working together in a mission/
operational-tempo-based temporal context.

TABLE 3.2
Sense-Making Problem Characteristics

Category Characteristics

Nature of the 
problem

The nature of the problem has shifted from the known (e.g., simple problem) to the 
unknown (e.g., wicked problem)

Overall guidance and directions received from functional experts and stakeholders 
does not set forth a clear and consistent set of goals that address the present 
operational situation

Time and other resource constraints necessitate trade-offs among competing goals 
and operational requirements

Nature of the 
information

The ability to effectively collect, interpret, and organize information becomes 
problematic because of the volume of available information or the reliability of 
this information

There exist multiple, conflicting interpretations of the available information as 
different experts or stakeholders each apply their unique perspectives and 
expertise

The operational situation appears to present decision-makers with a seemingly 
inconsistent pattern of features, relationships, or demands

Functional experts and stakeholders employ symbols and metaphors to articulate 
their perspective, but these symbols and metaphors are not consistently 
understood by others

Nature of the 
decision-makers 
and stakeholders

Functional experts and stakeholders differ in terms of the underlying values, 
political goals, or emotional reactions

Various relevant players lack a clear and consistent assignment of roles and 
responsibilities

Decision-makers lack a clear and consistent set of success measures for judging 
operational progress and adjusting future decisions and actions

Key decision-makers, functional experts, and stakeholders change as a function of 
the evolving operational situation

Source:	 Adapted from McCaskey, M.B., The Executive Challenge: Managing Change and Ambiguity, 
Pitman Publishers, Marshfield, MA, 1982.
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Weick (1995) depicts the sense-making process as having four functional compo-
nents as shown in Table 3.3.

Positional arguing involves disparate functional experts coming together in a 
“community of interest” to develop a shared understanding of the problem space and 
to nominate actions that will aid in confirming current hypotheses or in aiding the 
inferencing process. Plausible expectations from the decided actions are formed by 
the key leaders of the team in the form of projected outcomes or events. Behavioral 
commitment, as indicated earlier, is action-based and is in a sense a way to help 
focus the sense-making process on particular components of the problem space for 
which a leader is committed to a course of action (reflects “commander’s intent”). 
Environmental manipulation is about those actions that are taken to help develop the 
“constructed reality” that forms the framework of interpretation of the group.

3.8  ROLE OF FUSION (2)

Understanding sense-making and the role for computer-based information fusion 
processing requires in part an understanding of the various types of information 
and knowledge involved with sense-making. In Leedom (2004), the knowledge 
sources described are codified information and knowledge, tacit knowledge, and 
social knowledge. Clearly, the knowledge coming from the output of an informa-
tion fusion process falls into the codified knowledge domain. Information sources 
that are employed by a fusion process will mostly fall into the codified information 
domain. Among such sources, it can be argued that one particular important infor-
mation source in this paradigm is that of contextual information. It has been said that 
“Sense-making is about contextual reality. It is built out of vague questions, muddy 
answers, and negotiated agreements that attempt to reduce confusion” (van Laere 
et al. 2007). Context is also a slippery word and has varying interpretations; it can be 
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FIGURE 3.3  Sense-making dynamics. (From Leedom, D.K., The analytic representation of 
sensemaking and knowledge management within a military C2 organization, Air Force Research 
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TABLE 3.3
Sense-Making Process Characterization

Sense-Making 
Process What This Process Entails

Why This Is an Essential Component 
of Sense-Making

Positional arguing 
(belief-based)

Various functional experts and/or 
stakeholders within the team or 
organization present their perspectives 
or positions in an attempt to shape the 
constructed problem framework

As part of this collaborative process, 
each individual attempts to change or 
expand the knowledge state of others 
until there exists a commonly shared 
understanding of how each of the 
relevant problem elements and 
potential solution paths fit together in 
a cohesive whole

Sometimes referred to as debative 
cooperation

Whenever teams or organizations face 
wicked problems, the major 
challenge is constructing an 
appropriate problem framework 
within which to shape the resulting 
decisions

Wicked problems—including their 
relevant threats and opportunities—
will often be viewed differently by 
each expert or stakeholders, 
dependent upon their roles and tacit 
knowledge

Plausible 
expectation 
(belief-based)

Key leaders express their expectation of 
certain outcomes, events, or future 
states in order to focus the attention 
and thinking of their supporting team 
or organizational members

The efficiency of sense-making within 
a team or organization depends upon 
its leaders focusing the attention and 
thinking of its members

Expectations link belief to action in as 
much as constructed futures implicitly 
require certain actions or 
accomplishments that must be planned 
and executed by the team or 
organization

Part of the responsibilities of a leader 
are to construct a vision for the team 
or organization out of many possible 
futures

Expectations reflect constructed futures 
that evolve over time to conform with 
unfolding events and states

Linking thoughts, teams, and 
accomplishment is a powerful 
motivational mechanism for shaping 
the decision behaviors of others

Behavioral 
commitment 
(action-based)

Key leaders demonstrate explicit, 
public, irrevocable commitment to 
specific plans and actions in order to 
further shape and focus the attention 
and thinking of their supporting team 
and organizational members

Individuals, teams, and organizations 
try hardest to build meaning and 
understanding around those actions 
to which they are committed to

Commitment is expressed in the form 
of approved plans and orders issued to 
subordinate elements

Prior to leaders expressing 
commitment, all types of perceptions, 
experiences, and positions within the 
team or organization are loosely 
coupled to an evolving situation
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difficult to distinguish it from “situation” and tricky to discuss the interplay of situa-
tion and context. Contextual information, necessary to the determination of a context, 
can be seen to have two roles: (1) an “a priori” role where it is proactively designed 
into some fusion-based estimation algorithm—in this case the algorithm designed is 
able to prespecify what contextual information is relevant to the estimation process, 
and integrate it into the algorithm design (using terrain information in ground target 
tracking is one example), and (2) an “a posteriori” role, where contextual information 
is drawn upon to clarify or constrain an estimate that has been separately developed, 
i.e., contextual information is used after the fact of an externally asserted inference 
for the purpose of improved interpretation. In the latter case a type of “relevance fil-
ter” has to be designed to select, retrieve, and employ the pertinent contextual infor-
mation for clarification purposes. The employment of contextual information, which 
can be relatively static but also dynamic (weather, e.g.), in the sense-making process 
adds a layer of complexity and also opens the process to various biasing effects.

What seems to be needed to support the sense-making process is a type of non-
monotonic logic; one appealing model is the abductive process, which pursues plau-
sibility rather than accuracy (Lundberg 2000). Another way to view this is that we 
apply abduction when there is a lack of dependable causal models as typically driven 
by the traditionally deductive data fusion frameworks, i.e., when only “symptoms” 
are available and plausible causes have to be developed. However, there is likely no 
single inferencing process that can be argued as the foundation of sense-making; an 
inferencing toolkit is probably a better model.

TABLE 3.3 (continued)
Sense-Making Process Characterization

Sense-Making 
Process What This Process Entails

Why This Is an Essential Component 
of Sense-Making

Commitment serves to provide a team 
or organization with purpose, order, 
and value

Commitment transforms unorganized 
perceptions, experience, and 
positions into a more orderly and 
purposeful team

Environmental 
manipulation 
(action-based)

Teams and organizations selectively act 
within their operational environment 
to conform that environment to their 
constructed reality

Manipulation reflects the role of the 
team or organization in actively 
shaping the future

Sense-making is more than merely the 
passive interpretation of the 
operational environment as given; it 
involves the active constitution of a 
workable reality within which a team 
or organization operate

Manipulation can take the form of 
pre-emptive actions taken to shape the 
problem space even before that 
problem space is completely 
understood

Sense-making links beliefs and action 
together within an understandable 
framework; hence, the construction 
of a reality can involve both 
hypothesis building and action taking

Source:	 Weick, K.E., Sensemaking in Organizations, Sage Publications, Thousand Oaks, CA, 1995.
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There are various important messages for the information fusion community in 
reviewing the characterizations of sense-making:

•	 One is that sense-making and rational decision-making will in many cases 
need to coexist—they are each appropriate to different problem classes, 
and will very likely require different data fusion processes to support them.

•	 Another is that the fusion community needs to make a determination of 
whether it is possible for fusion processing as it is known today to fit into or 
be extended in some way to support the sense-making process.

•	 But the fusion community also needs to reflect on and develop a new model 
for fusion as supportive of sense-making per se, and what the new func-
tional model of that process should be and what the technological chal-
lenges are toward implementing that model.

3.9 � SELF-ORGANIZATION AND SELF-
SYNCHRONIZATION IN THE VALUE CHAIN

The problem framework that gives rise to the need for a sense-making process can be 
said to form one of the drivers that fosters the need for self-organization of an operating 
unit: a sense of tension or difference, misunderstanding, or under-determination where 
meaning is in dispute. This tension necessarily or at least naturally leads to a need for 
communication and the new type of social dynamic that sense-making is. Hammond 
and Sanders (2002) argue that the dialogic creation of meaning (one could say sense-
making) is a self-organizing process. They suggest that it is the tension between disor-
der created by randomness and order imposed by shared meaning that drives the need 
to communicate. However, while communicative activity aids in creating meaning and 
order in the face of equivocal information, the communication processes create disor-
der at the same time. What happens is that as the group begins converging on a problem 
solution, new directions begin to emerge in a kind of convergent-emergent tension. This 
engenders a bit of a twist on the sense-making process characterized as only convergent 
to a consensus; it is likely that in the confusing, equivocal environments that sense-
making is designed for that divergent factors will enter into the process. Wheatley 
(1992) describes this as a productive localized “chaos” that enables the opportunity 
for participants to let go of previous assumptions and seek “out of the box” solutions.

As regards self-synchronization, the mostly widely quoted definition of 
self-synchronization related to NCW comes from Cebrowski (Cebrowski and 
Garstka 1998): “Self-synchronization is the ability of a well-informed force to 
organize and synchronize warfare activities from the bottom-up. The organizing 
principles are unity of effort, clearly articulated commander’s intent, and carefully 
crafted rules of engagement. Self-synchronization is enabled by a high level of 
[knowledge of] one’s own forces, enemy forces, and all appropriate elements of the 
operating environment. It overcomes the loss of combat power inherent in top-down 
command directed synchronization characteristics of more conventional doctrine 
and converts combat from a step function to a high-speed continuum.” A simpler 
definition of self-synchronization (Costanza 2003) is “the ability of a well-informed 
force to organize and coordinate complex warfare from the bottom up.”
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It is usually considered that the “self” in “self-synchronization” implies the 
ability of an agent to arrange the timing aspects of its own activities without the 
influence or control of other agents, implying a sense of independence. In terms of 
analysis and decision-making style, to be independent an agent needs to be proactive 
in his actions otherwise he may be captive to the reactions driven by the adversary. 
Other factors necessary for enabling self-synchronization include maintaining an 
awareness of commander’s intent at all times, i.e., operating within that mind-set, 
and being able to dynamically prioritize activities. It is of course not usual that an 
agent acts strictly alone, so the notion of “self” in realistic cases relates to a kind of 
collective self-synchronization, and each agent in such collectives must be thinking 
synergistically, having a willingness to share resources and power. It also implies 
that such agents are synergistic communicators—empathetic listeners that under-
stand the basic needs of a collaborator that enable achieving actions which are truly 
helpful to both agents, rather than compromises coming from negotiation-type com-
munications. In the end, the self-synchronizing collective molds itself to the tasks 
and operations at hand; the molding forces are a kind of shaping context of people, 
problems, and resources. These factors are not unlike the “seven habits of highly suc-
cessful people” that Covey (1990) sets as imperatives, e.g., being proactive, operating 
with an end in mind (e.g., commander’s intent), having priorities, thinking synergisti-
cally, and seeking first to understand.

3.10 � COMPLEXITY IN SENSE-MAKING AND 
COMMAND AND CONTROL

Self-organization and self-synchronization are easy to talk about but very difficult 
to execute in the best way. Part of the rationale regarding the need for such agile 
behavior comes from the “Law of Requisite Variety” of Moffat (2003), where it 
follows from cybernetic arguments that to properly control a complex system (the 
dynamic asymmetric battlefield), the variety of the controller function (the number 
of accessible states which it can occupy) must match the variety of the combat 
system itself. In other words, the control system itself, here the C2 (human-based) 
organization, has to be complex. This Law of Requisite Variety implies that the 
control system must exhibit great agility in dealing with the dynamics and com-
plexity of combat involving hybrid teams. But that agility must be controlled to 
some degree else it can result in chaotic behavior. According to Moffat (2003), 
“the representation of the C2 process must reflect two different mechanisms. The 
first is the lower level interaction of simple rules or algorithms, which generate 
the required system variety. The second is the need to damp these by a top-down 
C2 process focused on campaign objectives.” In a broad sense, the relationships 
between complex concepts and the behavior of an “information age force” are char-
acterized as shown in Table 3.4.

Thus, it is not surprising to see considerable literature discussing the NCW 
sense-making and C2 processes as modeled by a complex adaptive system (CAS). 
If a CAS model is appropriate, then there is a need to understand CASs well enough 
to predict their macro-level behavior, a result of nonlinear micro-level behaviors. 
A related goal is to design and construct a CAS-based C2 process having a desired, 
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or perhaps bounded, emergent behavior with a theoretical understanding that the 
emergent behavior will be most fit for a particular C2 or mission objective. The 
CAS/C2 literature speaks of the C2 process as ideally operating “on the edge of 
chaos”; i.e., within the favorable, predictable macro-behavioral bounds of the inher-
ent CAS C2 process, but not tipping into chaotic behavior.

Since information fusion processes are information-providing processes into such 
decision-making and C2 operations, it is then important for fusion process designers 
to understand that they are supplying information into this nonlinear decision-sup-
port environment. One way to study such interdependencies is via the multi-agent 
systems construct, and probably the most research in CAS for C2 has been along 
these lines. Some of the notable examples of using intelligent agents to study emer-
gent behavior in warfare are the Irreducible Semi-Autonomous Adaptive Combat 
(ISAAC) works, and the Enhanced ISAAC Neural Simulation Toolkit (EINSTein), 
from the U.S. Marine Corps Combat Development Command (MCCDC) as part of 
their Project Albert research (Ilachinski, 1999). There are yet other efforts that have 
employed the agent paradigm for such research (Hummel et al., 2005, Yang et al., 
2005, Lauren 2000). These test beds have been used for a wide variety of research 
studies that have aided in developing insights into the behaviors and performance 
of CASs. Other methods have been applied to explore the CAS-data fusion inter-
dependency, but overall, the research and thus design knowledge is limited; this is 
considered a robust area for needed research.

Regarding other methods, Urken (2011) has studied “error-resilient data fusion” 
(ERDF) processes, in which the contributors to the formation of a composite situa-
tional estimate employ voting procedures. In the ERDF approach, the properties of the 
systems used to represent and aggregate votes produce a high probability of producing 
what Urken calls “error resilient collective outcomes” (ERCOs). When such a voting 
process produces a reliable ERCO, neither outstanding votes or data, nor unelapsed 
time, will change the collective inference, yielding a robust result or situational inter-
pretation. So ERCO results provide a basis for ignoring uncollected critical data and 

TABLE 3.4
Relations between Complexity Factors and Force Factors

Complexity Concept Information Age Force

Nonlinear interaction Combat forces composed of a large number of nonlinearly interacting parts

Decentralized control There is no master “oracle” dictating the actions of each and every combatant

Self-organization Local action, which often appears chaotic, induces long-range order

Nonequilibrium order Military conflicts, by their nature, proceed far from equilibrium. Correlation of 
local effects is key

Adaptation Combat forces must continually adapt and coevolve in a changing environment

Collectivist dynamics There is continual feedback between the behavior of combatants and the 
command structure

Source:	 Moffat, J., Complexity Theory and Network Centric Warfare, CCRP Press, Washington, 
DC, 2003.



63Network-Centric Concepts

enabling agents to take immediate action to adapt to changes in their environment. 
Alternate approaches to dealing with CAS aspects for both fusion and network design 
have been put forward in a limited body of work, such as the biologically inspired 
strategies described in Urken (2011) and Ferro and Pioggia (2009). However, by and 
large, the information fusion community has not developed an organized research 
strategy to explore the nature of fusion functions and processes in the context of CAS.

3.11  SUMMARY

It is anticipated that not only the military but extensive business and civil systems 
will be operating in a network-centric context from the point of view of the under-
lying informational infrastructure. There are clearly advantages to employing net-
worked systems but there is little doubt that there are also system design trade-off 
issues regarding the formation of the physical network and perhaps the even more 
important issue of how the network is used. In the value chain characterization, 
one can to some degree build in ways to improve information quality and sharing 
through mandated processes and protocols, but the intermodal interactions and 
human inputs and controls also play into the overall effectiveness equation. If the 
sense-making and CAS paradigms indeed apply toward modeling such interactions, 
the information fusion community will need to better study and understand how 
to design fusion processes to operate in these highly adaptive and nonlinear user 
environments. The implications of these new models of “sense-making,” consensus-
formation, convergent–emergent interpretation dynamics, productive local chaos, 
etc., on the requirements for data fusion process design and development are likely 
to be rather revolutionary.
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4 Distributed Detection 
in Wireless Sensor 
Networks

Pramod K. Varshney, Engin Masazade, 
Priyadip Ray, and Ruixin Niu

4.1  INTRODUCTION

There are many practical situations in which one is faced with a decision-making 
problem. Based on observations regarding a certain phenomenon, a particular course 
of action needs to be employed from a set of possible options. Decision-making 
structures are found in many real-world situations that include financial institutions, 
air-traffic control, oil exploration, medical diagnosis, military command and con-
trol, electric power networks, weather prediction, and industrial organizations. In 
conventional decision-making scenarios, a sensor transmits its raw observation to 
a processor where optimal detection is carried out based on conventional statistical 
techniques. The branch of statistics dealing with these types of problems is known 
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as statistical decision theory or hypothesis testing. In the context of radar and com-
munication theory, it is known as detection theory [1–4]. More recently, the trend 
is to employ multiple sensors to observe a phenomenon. For decision making, raw 
observations from all the sensors can be transmitted to a central processor where 
an optimum decision rule can be designed based on conventional detection theory. 
However, centralized processing based on raw observations from multiple sensors 
is neither efficient nor necessary. It may consume excessive energy and bandwidth 
in communications and may impose a heavy computation burden at the central 
processor.

In distributed detection [1,5,6], multiple detectors (sensors) work collaboratively 
to distinguish between two or more hypotheses. In a binary distributed detection 
problem, the objective might be the determination of the absence or presence of a sig-
nal of interest, or in a multiple hypothesis testing problem, the objective might be the 
classification of multiple signals or targets. Local sensors can carry out preliminary 
processing of data and only communicate with each other and/or the central process-
ing unit called the fusion center with the most informative information relevant to 
the global objective. As we describe later in the chapter, the global objective might 
be the minimization of detection error probability or maximization of probability 
of detection given a fixed false alarm rate constraint. Deployment of multiple sen-
sors for signal detection improves system survivability, results in improved detection 
performance or in a shorter decision time to attain a prespecified performance level. 
From the signal processing perspective, two inherently different problems need to be 
considered for the distributed detection system: the design of the decision rule at the 
fusion center (often referred to as the fusion rule), which strives for an optimal sys-
tem performance using compressed input from distributed sensors, and the design of 
local sensor signal processing algorithms. These two problems are intertwined with 
each other and they need to be jointly solved to optimize a prescribed performance 
criterion.

Recently, wireless sensor networks (WSNs) have gained much attention and inter-
est and have become a very active research area. Due to their flexibility, enhanced 
surveillance coverage, robustness, mobility, and cost effectiveness, WSNs have 
found wide applications in areas such as military surveillance, and environmental 
monitoring. Usually, a WSN consists of a large number of low-cost and low-power 
sensors, which are deployed in the environment to collect observations from an event 
of interest. Each sensor preprocesses and extracts information from the raw observa-
tions and has the ability to communicate with other sensor nodes or the fusion center 
via wireless channels. The fusion center processes all the sensor data and arrives at a 
global inference. The detection ability of a WSN is crucial for various applications. 
As an example, in a surveillance scenario, the presence or absence of a target is usu-
ally determined before its attributes, such as its position or velocity, are estimated. 
For WSNs, the classical distributed detection framework needs to be reconsidered by 
taking into account the important features and limitations of sensors and the wire-
less channels between the sensors and the fusion center. Since a WSN has stringent 
resource availability in terms of power and/or bandwidth, the design of appropriate 
distributed detection algorithm should satisfy the resource constraints of the WSN. 
Furthermore, error-free transmission of sensor measurements to the fusion center 
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over wireless channels may require high transmission power and/or powerful error 
correction codes which might be prohibitive for sensors with limited power and pro-
cessing capabilities. Therefore, channel impairments should be taken into account 
in the design of distributed detection systems. A recent survey [7] summarizes the 
results on distributed detection, estimation, and tracking in WSNs with a special 
emphasis on solutions that take into account the communication network connecting 
the sensors and the resource constraints at the sensors.

The remainder of the chapter is organized as follows. In Section 4.2, under the 
conditional independence assumption, we first introduce the conventional design 
of decision rules at the local sensors and at the fusion center to optimize detection 
performance, under the Bayesian and Neyman–Pearson (NP) criteria. In many 
practical scenarios, it may be difficult to obtain the optimal decision rules which 
require information about the performance of individual sensors. Hence, decision 
rules that do not require this information are desirable. Later in this section, we 
discuss false discovery rate (FDR)-based decision fusion which does not require 
the knowledge of the local sensor parameters while employing nonidentical deci-
sion thresholds at each sensor. In Section 4.3, we investigate the decision fusion 
problem, where the channels between the sensors and the fusion center are subject 
to fading and noise. We review channel aware decision fusion algorithms with dif-
ferent degrees of channel state information. Finally, in Section 4.4, a summary of 
the chapter is presented and some open challenging issues for distributed detection 
are addressed.

4.2 � DISTRIBUTED DETECTION OVER IDEAL 
COMMUNICATION CHANNELS

When there are two possible sets of action, the problem is a binary hypothesis testing 
problem. We label the two possible choices as H0 and H1. Hypothesis H0 usually rep-
resents the absence of an object or event and Hypothesis H1 corresponds to its pres-
ence. If there are M hypotheses with M > 2, it is a multiple hypothesis testing problem 
or M-ary detection problem. In this chapter, we focus on the binary hypothesis test-
ing problem. More detailed treatment for the multiple hypothesis testing problem can 
be found in the literature [8–13].

In the hypothesis testing problem, the source or event of interest is not directly 
observable. Corresponding to each hypothesis, an observation (a set of observations), 
which is a random variable (vector) in the observation space is generated according 
to some probabilistic law. Let us assume that there are K sensors in the WSN and the 
observation at each of the K sensors, zk, corresponds to either of the two hypotheses
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where p0(θ) and p1(θ) are the pdfs under H0 and H1, respectively. More specifically, if 
the problem is to detect the absence or presence of the signal of interest, the received 
observation at each sensor has the form
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where
θ represents the parameter vector that characterizes the hypothesis H1

nk represents the noise

By examining the observation, we try to infer which hypothesis is the correct one 
based on a certain decision rule. Usually, a decision rule partitions the observation 
space into decision regions corresponding to the different hypotheses. The hypoth-
esis corresponding to the decision region where the observation falls is declared true. 
Whenever a decision does not match the true hypothesis, an error occurs. To obtain 
the fewest errors (or least cost), the decision rule plays an important role and should 
be designed according to the optimization criterion in use.

Parallel configuration, as shown in Figure 4.1, is the most common topological 
structure that has been studied quite extensively in the literature. In parallel topol-
ogy, the sensors do not communicate with each other and there is no feedback 
from the fusion center to any sensor. Sensors either transmit their measurements 
zk’s directly to the fusion center or send a quantized version of their local measure-
ments defined by the mapping rule uk = γk(zk)k ∊ {1, 2, …, K}. Based on the received 
information u = [u1, …, uK], the fusion center arrives at the global decision u0 = γ0(u) 
that favors either H1 (decides u0 = 1) or H0 (decides u0 = 0). The goal is to obtain the 
optimal set of decision rules Γ = (γ0, γ1, …, γK) according to the objective function 
under consideration which can be formulated according to Bayesian formulation or 
NP formulation. For general network structures, the optimal solution to the distrib-
uted detection problem, i.e., the optimal decision rules (γ1, …, γK), is NP-complete 
[14–16]. Nonetheless, under the conditional independence assumption the optimum 
solution becomes tractable.

H0 /H1
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1

Pd,1/Pf,1 Pd,2/Pf,2 Pd,k/Pf,k

UkU2U1

U0

Sensor
2

Fusion center

Sensor
K

FIGURE 4.1  Parallel configuration.
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The conditional independence assumption implies that the joint density of the 
observations obeys
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Consider a scenario in which the observations at the sensors are conditionally inde-
pendent as well as identically distributed. The symmetry in the problem suggests 
that the decision rules at the sensors should be identical. But counterexamples have 
been found in which nonidentical decision rules are optimal [16–19]. In the follow-
ing sections, the decision rules at local sensors and the fusion center are designed 
according to Bayesian and NP formulations for the parallel configuration.

4.2.1  Bayesian Formulation

Let the vector of sensor decisions be denoted as u = [u1, …, uK] so that the conditional 
densities under the two hypotheses are p(u|H0) and p(u|H1) respectively. The obser-
vations are generated from these conditional densities which are assumed known. 
The a priori probabilities of the two hypotheses denoted by P(H0) and P(H1) are 
assumed to be known. In the binary hypothesis testing problem, four possible actions 
can occur. Let Ci,j, i ∊ {0, 1}, j ∊ {0, 1} represent the cost of declaring Hi true when Hj 
is present. The Bayes risk function is given by
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where U i is the decision region corresponding to hypothesis Hi which is declared true 
for any observation falling in the region U i. Let U  be the entire observation space so 
that U  = U0 ∪ U1 and U0 ∩ U1 = Ø.

If C0,0 = C1,1 = 0 and C0,1 = C1,0 = 1, we have the minimum probability of error crite-
rion, i.e., R = Pe = P(u0 = 1|H0)P0 + P(u0 = 0|H1)P1. The probability of error is given by

	 P P H P P H Pe F D= + −( ) ( )( )0 1 1 	 (4.5)

where
PF = P(u0 = 1|H0) denotes the probability of false alarm
PD = P(u0 = 1|H1) denotes the probability of detection

Given the vector of local sensor decisions, u, the probability of error is expressed as

	 P P H P u H P H P u He = = + − =( ) ( | ) ( )( ( | ))0 0 0 1 0 11 1 1 	 (4.6)
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which can be written as

	 P P H P u P H P H P H P He = + = −( ) ( | )[ ( ) ( | ) ( ) ( | )]1 0 0 0 1 11 u u u

Pe is minimized if
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The earlier property leads to the following likelihood ratio test (LRT) at the fusion 
center [1]:
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The quantity on the left-hand side is known as the likelihood ratio and the quantity 
on the right-hand side is the threshold. Let
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and CF = P0(C10 − C00), CD = (1 − P0)(C01 − C11). Then, the LRT at each sensor has the 
form
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Conditional independence assumption and establishing the optimality of LRT at 
local sensors does not completely solve the problem. Note that the LRT thresholds at 
the sensors are coupled with each other which affect the system performance in an 
interdependent manner. Almost invariably used for finding the local sensor thresh-
olds is the so called person-by-person optimization (PBPO) approach, where each 
sensor’s threshold is optimized assuming fixed decision rules at all other sensors and 
the fusion center [20]. Unfortunately, the PBPO algorithm does not necessarily lead 
to a global optimal solution and may only lead to a local minimum of the solution 
space. Multiple initializations may be needed to obtain global optimum.

4.2.2 N eyman–Pearson Formulation

The NP formulation of the distributed detection problem can be stated as fol-
lows: Let α be a prescribed bound on the global probability of false alarm such 
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that PF = P(u0 = 1|H0) ≤ α. Then the problem is to find (optimum) local and global 
decision rules that maximize the probability of detection PD = P(u0 = 1|H1) given 
PF = P(u0 = 1|H0) ≤ α.

Under the conditional independence assumption, the mapping rules at the sen-
sors as well as the decision rule at the fusion center are threshold rules based on the 
appropriate likelihood ratios [21,22]:

	

p z

p z

t u

t uk

k

k k

k k k
( | )
( | )

,

,
H
H

then

then with probability1

0

1

1

> =
= =
<

ε

tt uk k, then =







 0

	 (4.10)

for k = 1, …, K, and
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If the likelihood ratio in (4.10) is a continuous random variable with no point 
mass, then the randomization is unnecessary and εk can be assumed to be zero 
without losing optimality. The threshold λ0 in (4.11) as well as the local thresholds 
tk in (4.10) need to be determined so as to maximize PD for a given PF = α. This can 
still be quite difficult even though the local decision rules and the global fusion 
rule are LRTs [1]. Since (4.11) is known to be a monotone fusion rule, one can 
solve for the set of optimal local thresholds {tk, i = 1, …, K} for a given monotone 
fusion rule and compute the corresponding PD. One can then successively 
consider other possible monotone fusion rules and obtain the corresponding 
detection probabilities. The final optimal solution is the one monotone fusion 
rule and the corresponding local decision rules that provide the largest PD. An 
iterative gradient method was proposed in [23] to find the thresholds satisfying 
the preassigned false alarm probability. Finding the optimal solution in this 
fashion is possible only for very small values of N. The complexity increases with 
N, because (1) the number of monotone rules grows exponentially with N, and 
(2) finding the optimal {tk, i = 1, …, K} for a given fusion rule is an optimization 
problem involving an N − 1 dimensional search (it is one dimension less than N 
because of the constraint PF = α).

4.2.3 D esign of Fusion Rules

Given the local detectors, the problem is to determine the fusion rule to combine 
local decisions optimally. Let us first consider the case where local detectors make 
only hard decisions, i.e., uk can take only two values 0 or 1 corresponding to the two 
hypotheses H0 and H1. Then, the fusion rule is essentially a logical function with 
K binary inputs and one binary output. There are 22K

 possible fusion rules in general 
and an exhaustive search strategy is not feasible for large K.
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Let Pf,k and Pd,k denote the probabilities of false alarm and detection of sensor 
k, respectively, i.e., Pf,k = P(uk = 1|H0) and Pd,k = P(uk = 1|H1). According to (4.8) and 
(4.11), the optimum fusion rule is given by the LRT:
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Here, λ is determined by the optimization criterion in use. The left-hand side of 
(4.12) can be written as
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Taking the logarithm of both sides of (4.12), we have the Chair–Varshney fusion 
rule [24]
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This rule can also be expressed as
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Thus, the optimum fusion rule can be implemented by forming a weighted sum of 
the incoming local decisions and comparing it with a threshold. The weights and 
the threshold are determined by the local probabilities of detection and false alarm. 
If the local decisions have the same statistics, i.e., Pf,k = Pf,l and Pd,k = Pd,l for k ≠ l, 
the Chair–Varshney fusion rule reduces to a T-out-of-K form or a counting rule, i.e., 
the global decision u0 = 1 if T or more sensor decisions are one. This structure of the 
fusion rule reduces the computational complexity considerably.

So far, we have assumed that the parameters characterizing a hypothesis, θ, are 
fixed and known leading to the conditional independence assumption. In many situ-
ations, these parameters can take unknown values or a range of values. Such hypoth-
eses are called composite hypotheses and the corresponding detection problem is 
known as composite hypothesis testing. If θ is characterized as a random vector with 
known probability densities under the two hypotheses, the LRT can be extended to 
composite hypothesis testing in a straightforward manner:
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If θ is nonrandom, i.e., fixed but unknown constant, one would like to be able to 
obtain uniformly most powerful (UMP) results for an optimum scheme based on an 
NP test. If a UMP test does not exist, we can use the maximum likelihood estimates 
of its value under the two hypotheses as the true values in an LRT, resulting in the 
so-called generalized likelihood ratio test (GLRT):
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Note that the optimum NP or Bayesian detectors involve an LRT as in (4.12). 
Although the NP and Bayesian detectors are optimum in the sense of maximiz-
ing PD for a fixed PF, and minimizing the Bayes risk, the associated LRTs require 
the complete knowledge of the pdfs p(u|H1) and p(u|H0) which may not always 
be available in a practical application. Also, there are many detection problems 
where the exact form of the LRT is too complicated to implement. Therefore, sim-
pler and more robust suboptimal detectors are used in numerous applications [25]. 
For some suboptimal detectors, the detection performance can be improved by 
adding an independent noise to the observations under certain conditions which 
is known as stochastic resonance (SR) noise [26]. The work in [27] first discusses 
the improvability of the detection performance by adding SR noise given a sub-
optimal fixed detector. If the performance can be improved, then the best noise 
type is determined in order to maximize PD without increasing PF. The work in 
[28] discusses variable detectors.

In this chapter, we have focused on fixed-sample-size detection problems for the 
parallel architecture. Solutions for arbitrary topologies such as serial [1,29–31] and 
tree have been derived and are discussed in [32–34]. In fixed-sample-size detec-
tion, the fusion center arrives at a decision after receiving the entire set of sensor 
observations or decisions. Sequential detectors may choose to stop at any time and 
make a final decision or continue to take additional observations [35–39]. Moreover, 
in consensus-based detection [40–42], which requires no fusion center, sensors first 
collect sufficient observations over a period of time. Then, subsequently they run the 
consensus algorithm to fuse their local log likelihood ratios.

4.2.4 A symptotic Regime

In this section, we describe some results when the number of sensors becomes very 
large, i.e., we discuss some asymptotic results. It has been shown that identical 
decision rules are optimal in the asymptotic regime where the number of sensors 
increases to infinity [16,43]. In other words, the identical decision rule assumption 
often results in little or no loss of optimality. Therefore, identical local decision 
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rules are frequently assumed in many situations, which reduces the computational 
complexity considerably.

For any reasonable collection of decision rules Γ, the probability of error at 
the fusion center goes to zero exponentially as the number of sensors K grows 
unbounded. It is then adequate to compare decision rules based on their exponential 
rate of convergence to zero:
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It was shown that for the binary hypothesis testing problem, use of identical local 
decision rules for all the sensor nodes is asymptotically optimal in terms of the error 
exponent [43]. In [44], the exact asymptotics of the minimum error probabilities 
achieved by the optimal parallel fusion network and the system obtained by impos-
ing the identical decision rule constraint was investigated. It was shown analytically 
that the restriction of identical decision rules leads to little or no loss of performance. 
Asymptotic regimes applied to distributed detection are convenient because they 
capture the dominating behaviors of large systems. This leads to valuable insights 
into the problem structure and its solution.

In the asymptotic regime, it has been shown in [45] that if there exists a binary 
quantization function γb whose Chernoff information exceeds half of the informa-
tion contained in an unquantized observation, then transmitting binary decisions 
from sensors to the fusion center becomes optimal. The requirement is fulfilled 
by many practical applications [46] such as the problem of detecting determinis-
tic signals in Gaussian noise and the problem of detecting fluctuating signals in 
Gaussian noise using a square-law detector. In these scenarios, the gain offered by 
having more sensor nodes outperforms the benefits of getting detailed information 
from each sensor.

4.2.5  Counting Rule

Most of the results discussed so far on distributed detection are based on the assump-
tion that the local sensors’ detection performances, namely, either the local sensors’ 
signal to noise ratio (SNR) or their probability of detection and false alarm rate, are 
known to the fusion center. For a WSN consisting of passive sensors, it might be very 
difficult to estimate local sensors’ performances via experiments because sensors’ 
distances from the signal of interest might be unknown to the fusion center and to 
the local sensors. Even if the local sensors can somehow estimate their detection per-
formances in real time, it can be still very expensive to transmit them to the fusion 
center, especially for a WSN with very limited system resources. Hence, the knowl-
edge of the local sensors’ performances cannot be taken for granted and a fusion rule 
that does not require local sensors’ performances is highly preferable. Without the 
knowledge of local sensors’ detection performances and their positions, an approach 
at the fusion center is to treat every sensor equally. An intuitive solution is to use the 
total number of “1”s as a statistic since the information about which sensor reports 
a “1” is of little use to the fusion center. In [47–49], a counting-based fusion rule is 



75Distributed Detection in Wireless Sensor Networks

proposed, which uses the total number of detections (“1”s) transmitted from local 
sensors as the statistic,
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where T is the threshold at the fusion center, which can be decided by a prespeci-
fied probability of false alarm PF. This fusion rule is called the counting rule. It is 
an attractive solution, since it is quite simple to implement, and achieves very good 
detection performance in a WSN with randomly and densely deployed low-cost sen-
sor nodes.

The performance of a distributed detection system that is the probability of false 
alarm and the probability of detection at the fusion center needs to be calculated 
from
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which requires the probability density function of the test statistic Λ(u). For the 
counting rule as in (4.19), under hypothesis H0, the total number of detections 

Λ =
=∑ uk

k

K

1
 follows a binomial distribution. For a given threshold T, the false alarm 

rate can be calculated as follows:
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where Pf,1 = … = Pf,K = Pf. For the sensing model in (4.2) where θ is fixed and known, 
the detection probability can be obtained from
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where all the sensors use identical decision thresholds. In many practical scenarios, 
while computing PD, decisions are not independent of each other under hypothesis 
H1, since the decisions are all dependent on the target and sensors coordinates which 
can also be random variables. For such cases, several approximations for computing 
the distribution of Λ(u) under H1 can be found in [47–49].

The calculation of PD and PF may become difficult since it requires the prob-
ability density function of the decision rule Λ(u). Deflection coefficient is a useful 
performance measure when the statistical properties of the received measurements 
are limited to moments up to a given order as
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which requires the first two moments of the decision test statistic Λ.
Our previous survey [50] also summarizes the decision fusion results based on 

identical decision rules at each sensor. Next, we summarize FDR-based decision 
fusion which uses nonidentical decision thresholds at each sensor.

4.2.6 F alse Discovery Rate–Based Sensor Decision Rules

Let us consider a detection scenario where the sensors which are located within 
the target’s finite radius of influence receive identical target signal and the rest of 
the sensors do not receive any target signal. This “disk” target signal model may 
be applied to scenarios such as oil or chemical leaks [51] or to approximate more 
general electromagnetic or acoustic target models. Though this is a very simple 
model, it clearly captures the scenario where the sensors in the network receive 
nonidentical target signals (all sensors receive identical target signal has been the 
primary assumption in the distributed detection literature). As mentioned earlier, 
design of the optimum local and global decision rules for such problems is very 
difficult. Earlier related work [47,49] assumes that all the sensors use an identi-
cal local threshold for an LRT to obtain a local decision. Since the probability 
of detection of each sensor is unknown due to unknown target and sensor loca-
tion, the optimal Chair–Varshney fusion rule cannot be used for this problem. An 
intuitive choice is to constrain the fusion center decision statistic to be linear in 
the total number of local detections, i.e., employ the “count” as the statistic, and 
perform a threshold test to obtain the global decision. This approach may also be 
viewed as performing multiple hypotheses tests (each sensor performing a binary 
hypothesis test locally)* and the fusion center using the results of these tests (i.e., 
the outcome of the local hypotheses tests) to come up with a global decision. 
Therefore, the detection problem essentially reduces to obtaining the optimal set 
of the two design parameters, the local and global decision thresholds. Hence, 
from here on we will use the terms “decision rules” and “decision thresholds” 
interchangeably in this article. Note that optimization of distributed detection 
systems where the local sensor SNRs may be unknown has been investigated in 
[52–54]. However, the optimization techniques in [52–54] require the knowledge 
or an estimate of the local sensor SNRs. Note that, the estimation of the local 
sensor SNRs is very difficult as it is a function of the sensor and target loca-
tion which is generally unknown. In [55], the authors propose a detection scheme 
based on the control of FDR, which employs nonidentical local sensor decision 
rules without increasing the total number of design parameters. Also, the FDR-
based detection strategy proposed in [55] does not require an estimate of the local 
sensor SNRs. The FDR-based scheme is discussed in some detail in this section. 

*	Note that in this section, multiple hypotheses tests indicate multiple binary hypothesis tests and a 
formal definition is provided in the next section. In the previous sections, we use multiple hypotheses 
testing to indicate M-ary tests.
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Since FDR was first proposed in the context of multiple hypotheses problems (also 
known as multiple comparison problems [MCPs]) in statistics, we next provide a 
brief review of MCPs.

4.2.6.1  Review of Multiple Comparison Problems in Statistics
Multiple comparisons refer to multiple simultaneous hypothesis tests. When a fam-
ily of tests is conducted, it is often meaningful to define an error measure for the 
family instead for the individual tests. One of the most common measures is the 
family-wise error rate (FWER) [56], defined as the probability of committing any 
type I error or false alarm. If the error rate for each test is α then the FWER αF for 
k tests is given by

	 α αF
kP V= ≥ = − −( ) ( )1 1 1 	 (4.24)

where V is defined in Table 4.1. As can be seen from Equation 4.24 for a single 
comparison, αF = α. When the number of comparisons increases, α remains constant 
but αF increases. This is a fundamental problem of MCPs and classical multiple 
comparison procedures aim to control this error measure. A method to control 
FWER, known as the Bonferroni procedure, controls the FWER in the strong sense, 
i.e., under all conditions. The method is based on the Bonferroni inequality, which 
says that the probability of the union of a number of events is less than or equal to 
the sum of their individual probabilities:
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Hence, if each individual test is performed at the probability of false alarm α* = αF/k, 
the FWER for the family of tests is maintained at αF. But this procedure is very 
conservative and results in significantly reduced probability of detection (reduced 
power). A radically different and more liberal approach proposed by Benjamini and 
Hochberg [57] controls FDR, defined as the fraction of false rejections among those 
hypotheses rejected. Table 4.1 defines some terms leading to the definition of FWER 
and FDR for a binary hypothesis testing problem involving two hypotheses H0 and H1.

FDR is defined as the expected ratio of the number of false alarms (declared H1 
when H0 is true) to the total number of detections (consisting of both true and false 

TABLE 4.1
Notations to Define FDR

Declared H0 Declared H1 Total

H0 True U V K0

H1 True T S K − K0

Total K − R R N
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detections). The fraction of false alarms to the total number of detections can be 
viewed through the random variable defined as
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FDR (Qe) is defined to be the expectation of Q,

	 Q E Qe = ( ) 	 (4.27)

Along with this metric, Benjamini and Hochberg [57] also proposed the following 
algorithm to control FDR for multiple comparisons.

4.2.6.2  Algorithm to Control FDR
Suppose p1, p2, …, pK are the p-values for K tests and p(1), p(2), …, p(k) denote the 
ordered p-values. The p-value for an observation sk is defined as
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where f0(s) is the probability density function of the observation under H0.
The algorithm by Benjamini and Hochberg [57] which keeps the FDR below a 

value γ, is provided as follows:

	 1.	Calculate the p-values of all the observations and arrange them in ascend-
ing order.

	 2.	Let d be the largest k for which p(k) ≤ kγ/K.
	 3.	Declare all observations corresponding to p(k), k = 1, …, d, as H1.

Under the assumption of independence of test statistics corresponding to the true 
null hypotheses (H0), this procedure controls the FDR at γ. It has also been proved 
later in [58], that this same procedure also controls the FDR when the test statistics 
have positive regression dependency on each of the test statistics corresponding to 
the true null hypothesis. Note that the FDR-based decision-making system looks 
for the largest index k = d such that p(d) ≤ dγ/K. There may be other indices k = l, 
where l < d for which the condition p(l) ≤ lγ/K may be true, but the FDR-based 
decision system looks for the largest value of k for which this is true. The reason 
behind this, as discussed in [57], is to achieve the largest probability of detection 
while constraining the FDR to less than or equal to γ. A detailed proof for the 
control of FDR by this algorithm is provided in [57]. It should also be noted that 
the assumption of independence of the test statistics corresponding to the false 
null hypotheses (H1) is not needed for the proof of the theorem.

As the ordering of p-values is required for the FDR control procedure described in 
[57], the procedure conventionally needs centralized processing. For the distributed 
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detection problem considered earlier, the sensors can only send one bit to the fusion 
center and hence a distributed ordering scheme is necessary. A decentralized FDR 
procedure has been proposed in [55] which requires only one-bit communication 
capability for each sensor and achieves the same performance as the centralized 
Benjamini–Hochberg procedure. The maximum communication cost for the entire 
network is less than or equal to K bits per detection round, where K is the total num-
ber of sensors in the network.

An important property of FDR is now presented in the following proposition [57].

Proposition 1

If all MCP hypotheses are true H0s, i.e., K0 = K, control of FDR is equivalent to 
the control of FWER. However, if some of the MCP hypotheses are true H1s, i.e., 
K0 ≤ K, the FDR is smaller than or equal to FWER.

As seen from Proposition 1, FDR is the expectation of a ratio and hence the con-
trol of FDR is more liberal compared to the control of FWER in general, and as 
the number of true H1s increases, the local detection probability increases. Also, as 
seen from the algorithm provided earlier, the control of FDR results in a data depen-
dent rejection region (decision region) unlike conventional statistical tests where the 
rejection region is fixed a priori. This characteristic of FDR, as illustrated next, is 
the primary motivation behind the control of FDR for distributed detection to design 
local decision thresholds.

4.2.6.3  Design Guidelines for Distributed Detection Systems
Based on the earlier discussion on MCPs, if K sensors employ an identical decision 
threshold equal to τ (or p-value threshold of Q(τ)*), the FWER is controlled at a 
value of NQ(τ) under all conditions. However, an FDR-based threshold selection 
scheme, with FDR parameter γ, will result in control of the FWER to γ when there 
is no target in the ROI, i.e., all MCP hypotheses are true H0s. In the presence of a 
target, i.e., when some MCP hypotheses are true H1s, as seen from Proposition 1, 
the FWER is greater than the FDR. Thus, when there is no target, an FDR-based 
scheme may be designed to control the FWER at any arbitrary level. But the same 
scheme, in the presence of a target, is more liberal (in the sense of permitting more 
local detections) at the cost of higher FWER. Hence, the total number of detections 
(irrespective of whether they are true or false local detections) over the sensor field, 
increases significantly in the presence of a target compared to an identical threshold 
scheme. Thus, the control of FDR provides better separation of the probability mass 
functions (pmfs) of the “count” under the global hypothesis G0 (target absent in ROI) 
and the global hypothesis G1 (target present in ROI) compared to a scheme that 
controls the FWER. Here by “better separation” it is implied that for the FDR-based 

*	The Q function is the complementary distribution function of the standard Gaussian, which is defined 

as Q y z dz
y

( ) exp( ) .= −
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detection scheme, it is likely that the distance (quantifiable in terms of metrics such 
as the deflection coefficient) between the pmfs of the “count” under hypotheses G0 
and G1 will be more compared to an identical threshold approach.

As discussed earlier, the two* design parameters for the distributed detection sys-
tem are the local sensor decision threshold parameter (γ for FDR-based strategy) and 
the global decision threshold parameter, denoted by T. For any observed count Δ ∊ 
Z (Z denotes the set of integers [0, …, K]), the binary hypotheses testing problem at 
the fusion center is given by
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If T(Δ) is the decision statistic, the optimal test under the NP criterion is given by a ran-
domized decision rule which chooses the hypothesis G1 with probability δT(Δ), where
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where
T is the global threshold
κ is the randomization parameter
T(Δ) is the likelihood ratio

However, for the problem considered here, the optimal NP detector is very complex. 
Hence, a simplified detector is adopted in which the test statistics is linear in “count,” 
i.e., T(Δ) = Δ. The threshold T and the randomization constant κ are chosen such that 
the system-wide probability of false alarm is controlled. The system-wide probabil-
ity of false alarm PFA for this simplified detector is given by

	 P P T G P T GFA = > + =( ; ) ( ; )∆ ∆0 0κ 	 (4.31)

The system-wide probability of detection PD for this simplified detector is given by

	 P P T G P T GD = > + =( ; ) ( ; )∆ ∆1 1κ 	 (4.32)

For the FDR-based detector, for any arbitrary FDR parameter γ, the parameters 
T and κ are selected such that the system-level probability of false alarm is con-
strained. The system-level probability of false alarm for a threshold T and random-
ization constant κ is given by [55]
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*	Note that due to discrete global test statistics, a third design parameter is the randomization constant.
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Also, for any arbitrary FDR parameter γ, T and κ, the system-wide probability of 
detection is given by [55]
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where P(Δ = k; G1) is the probability of observing “count” k for a target present in the 
ROI [55]. For large K [55], the system-wide probability of detection may be approxi-
mated by
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where pd  is the average probability of detection for a sensor.
The choice of the optimum FDR parameter γ, where optimality is with respect to 

system-level detection performance, is a difficult problem. Receiver operating char-
acteristic (ROC)-based optimization procedures to obtain the best γ or τ is computa-
tionally prohibitive. A computationally less intensive approach is to obtain γ or τ via 
optimization of the deflection coefficient. Under Gaussian assumptions, it is known 
that maximizing the deflection coefficient maximizes the detection performance [59] 
in terms of the ROC. Though, under non-Gaussian conditions, there is no general 
result showing that larger deflection coefficient achieves better performance in terms 
of ROC curves. It is, however, intuitive that increased deflection coefficient gener-
ally implies greater separation between P(Δ; G0) and P(Δ; G1) and hence is likely to 
lead to better detector design. Hence, the FDR parameter γ is set at a value such that 
the deflection coefficient is maximized. A comparative detection performance for an 
FDR-based scheme and an identical threshold scheme is shown in Figure 4.2. It is 
observed that the FDR-based detection approach shows significant improvement in 
performance over the classically used identical decision threshold approach.

4.2.7  Correlated Decisions

An important result in distributed detection is that for the classical framework, 
LRTs at the local sensors are optimal if observations are conditionally independent 
given each hypothesis [16]. This property drastically reduces the search space for 
an optimal set of local decision rules. Although the resulting problem is not neces-
sarily easy, it is amenable to analysis in many contexts. In general, it is reasonable 
to assume conditional independence across sensor nodes if the uncertainty comes 
mainly from device and ambient noise. However, it does not necessarily hold for 
arbitrary sensor systems. For instance, when sensors lie in close proximity of one 
another, we expect their observations to be strongly correlated. If the observed signal 
is random in nature or the sensors are subject to common external noise, conditional 
independence assumption may also fail. Without the conditional independence 
assumption, the joint density of the observations, given the hypothesis, cannot be 
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written as the product of the marginal densities, as in (4.3). The optimal tests at the 
sensors are no longer of the threshold type based solely on the likelihood ratio of 
the observations at the individual sensors. In general, finding the optimal solution 
to the distributed detection problem becomes intractable [14]. Distributed detection 
with conditionally dependent observations is known to be a challenging problem in 
decentralized inference.

One may restrict attention to the set of likelihood ratio–based tests and employ 
algorithms to determine the best solution from this restricted set. The resulting 
system may yield acceptable performance. This approach has been adopted in [60] 
where detection of known and unknown signals in correlated noise was considered. 
For the case of two sensors observing a shift-in-mean of Gaussian data, Chen and 
Papamarcou [61] develop sufficient conditions for the optimality of each sensor 
implementing a local LRT. Aalo and Viswanathan [62] assume local LRTs at mul-
tiple sensors and study the effect of correlated noise on the performance of a dis-
tributed detection system. The detection of a known signal in additive Gaussian and 
Laplacian noise is considered. System performance deteriorates when the correlation 
increases. In [63], two correlation models are considered. In one, the correlation 
coefficient between any two sensors decreases geometrically as the sensor separa-
tion increases. In the other model, the correlation coefficient between any two sen-
sors is a constant. Asymptotic performance with Gaussian noise when the number of 
sensors goes to infinity is examined. In [64], Blum et al. study distributed detection 
of known signals in correlated non-Gaussian noise, where the noise is restricted to 
be circularly symmetric. Lin and Blum examine two-sensor distributed detection 

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fusion center, PFA

Fu
sio

n 
ce

nt
er

, P
D

  

Decision thresholds based on FDR

Identical decision thresholds

FIGURE 4.2  Detection performance comparison of FDR-based scheme and identical 
threshold scheme.



83Distributed Detection in Wireless Sensor Networks

of known signals in correlated t-distributed noise in [65]. Simulation results show 
that in some specific cases the optimum local decision rules are better than LRTs. 
A distributed M-ary hypothesis testing problem when observations are correlated is 
examined from a numerical perspective in [66]. Willett et al. study the two detector 
case with dependent Gaussian observations, the simplest meaningful problem one 
can consider, in [67]. They discover that the nature of the local decision rules can 
be quite complicated. The recent work presented in [68] proposes a new framework 
for distributed detection under conditionally dependent observations which builds 
a hierarchical conditional independence model. Through the introduction of a hid-
den variable that induces conditional independence among the sensor observations, 
the proposed model unifies distributed detection with dependent or independent 
observations.

Constraining the local sensor decision rules to be suboptimal binary quantiz-
ers for the dependent observations problem, improvement in the global detection 
performance can still be attained by taking into account the correlation of local 
decisions while designing the fusion rule. Towards this end, design of fusion rules 
using correlated decisions has been proposed in [69,70]. In [69], Drakopoulos and 
Lee have developed an optimum fusion rule based on the NP criterion for correlated 
decisions assuming that the correlation coefficients between the sensor decisions 
are known and local sensor thresholds generating the correlated decisions are given. 
Using a special correlation structure, they studied the performance of the detection 
system versus the degree of correlation and showed how the performance advantage 
obtained by using a large number of sensors degrades as the degree of correlation 
between local decisions increases. In [70], the authors employed the Bahadur–
Lazarsfeld series expansion of probability density functions to derive the optimum 
fusion rule for correlated local decisions. By using the Bahadur–Lazarsfeld expan-
sion of probability density functions, the pdf of local correlated binary decisions can 
be represented by the pdf of independent random variables multiplied by a correla-
tion factor. In many practical situations, conditional correlation coefficients beyond 
a certain order can be assumed to be zero. Thus, computation of the optimal fusion 
rule becomes less burdensome. When all the conditional correlation coefficients are 
zero, the optimal fusion rule reduces to the Chair–Varshney rule. Here, the imple-
mentation of the fusion rule was carried out assuming that the joint density of sen-
sor observations is multivariate Gaussian, which takes into consideration the linear 
dependence of sensor observations by using the Pearson-correlation coefficient in 
the covariance matrix. An implicit assumption is that individual sensor observations 
are also Gaussian distributed.

In many applications, the dependence can get manifested in many different 
nonlinear ways. As a result, more general descriptors of correlation than the Pearson 
correlation coefficient, which only characterizes linear dependence, may be required 
[71]. Moreover, the marginal distributions of sensor observations characterizing their 
univariate statistics may also not be identical. Here, emphasis should be laid on the 
fact that multivariate density (or mass) functions do not necessarily exist for arbitrary 
marginal density (or mass) functions. In other words, given arbitrary marginal 
distributions, their joint distribution function cannot be written in a straightforward 
manner.
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An interesting approach for the fusion of correlated decisions, that does not 
necessarily require prior information about the joint statistics of the sensor 
observations or decisions, is described next. Its novelty lies in the usage of 
copula theory [72]. The application of copula theory is widespread in the fields of 
econometrics and finance. However, its use for signal processing applications has 
been quite limited. The authors in [73,74] employ copula theory for signal detection 
problems involving correlated observations as well as for heterogeneous sensors 
observing a common scene. For the fusion of correlated decisions, copula theory 
does not require prior information about the joint statistics of the sensor observations 
or decisions and constructs the joint statistics based on a copula selection procedure. 
Note that the copula function–based fusion will fail to perform better than the Chair–
Varshney rule if the constructed joint distribution using a particular parametric 
copula function does not adequately model the underlying joint distribution of the 
sensor observations. Therefore, training is necessary in order to select the best 
copula function. The topic of copula function selection for the distributed detection 
problem is considered in [75].

4.3 � DISTRIBUTED DETECTION OVER NONIDEAL 
COMMUNICATION CHANNELS

For systems employing high SNR and/or effective channel error correction coding, 
communication may have extremely low error rates and can be assumed lossless, 
meaning that the local decisions can be transmitted to the fusion center without 
errors. On the other hand, the lossless communication assumption should be sub-
ject to careful scrutiny in WSNs. Increasing power and/or employing powerful error 
correction codes may not always be possible because of the stringent resources of 
WSNs. Furthermore, in a hostile environment, the power of transmitted signal should 
be kept to a minimum to attain a low probability of intercept/detection (LPI/LPD). 
Therefore, it may be necessary in many situations to tolerate the loss during data 
transmission to some extent. To overcome this loss, it is highly desirable to integrate 
the communication and decision fusion functions intelligently to achieve an accept-
able system performance without spending extra system resources. This motivates 
the study of fusion of local decisions corrupted during the transmission process due 
to channel fading/noise impairment.

The model for a distributed detection system in the presence of fading channels is 
illustrated in Figure 4.3. Decisions at local sensors, denoted by uk for k = 1, …, K, are 
transmitted over parallel channels that are assumed to undergo independent fading. In 
this section, we consider a discrete-time Rayleigh flat fading channel with a stationary 
and ergodic complex gain of h ek

j kφ  between the kth sensor and the fusion center. Note 
that hk and ϕk denote the fading envelope and the phase of the channel, respectively. 
It is assumed that the channel gain remains constant during the transmission of a 
decision and channels are independent of each other. We further simplify the analysis 
by assuming binary signaling and replace uk ∊ {0, 1} by sk ∊ {−1, 1}, so that the 
effect of the fading channel reduces to a real scalar multiplication for phase coherent 
reception. The phase coherent reception can be either accomplished through limited 
training for stationary channels, or, at a small cost of SNR degradation, by employing 
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differential encoding for fast fading channels which results in the same signal model. 
The received signal model for sensor k is illustrated as

	 �y h e sk k
j

k k
k= +φ ν 	 (4.36)

where νk is a zero-mean complex Gaussian noise with independent real and imagi-
nary parts having identical variance σn

2, i.e., CN( , )0 2 2σn . Note that the notation CN 
represents complex Gaussian distribution. Without loss of generality, we make the 
assumption of Rayleigh fading channels with unit power, i.e., h ek

j kφ ~ ( , )CN 0 1 , there-
fore E hk[ ]2 1= . Using the knowledge of the channel phase at the receiver, the observa-
tion model at the fusion center for the kth sensor can be obtained as

	 y h s nk k k k= + 	 (4.37)

Since νk follows a circularly symmetric complex Gaussian distribution, the noise 
term n Re ek k

j k� { }ν φ−  is real WGN with variance σn
2, i.e., nk n~ ( , )N 0 2σ .

Optimal Likelihood Ratio–Based Fusion Rule: By assuming instantaneous chan-
nel state knowledge regarding the fading channel and the local sensor performance 
indices, i.e., the Pd,k and Pf,k values, the optimal likelihood ratio (LR)-based fusion 
rule has been derived in [76], with the fusion statistic (LR) given by
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FIGURE 4.3  Parallel fusion model in the presence of fading and noisy channels between 
local sensors and the fusion center. uk is the binary decision made by the kth sensor, hk is the 
fading channel gain, nk is a zero-mean Gaussian random variable with variance σ2, and yk is 
the observation received by the fusion center from the kth sensor, where k ∊ {1, …, K}.
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where y = [y1, …, yK]T is a vector containing data received from all the K sensors. 
Note that, this fusion rule requires both local sensor performance indices and instan-
taneous CSI. Given exact channel state information and under conditional indepen-
dence assumption under both hypotheses, the distribution of the optimal LR-based 
fusion statistic is given in [77]. Several suboptimum fusion rules that relax the 
requirements on a priori knowledge have also been proposed in [76].

Chair–Varshney Fusion Rule: In [76], the Chair–Varshney fusion statistic [24] 
has been shown to be a high-SNR approximation to (4.38)
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where Λ1 does not require any knowledge regarding the channel gain but does require 
Pd,k and Pf,k for all k. The probability distribution of the Chair–Varshney statistic, 
which is very helpful for performance analysis, has also been shown in [78]. This 
approach may suffer significant performance loss at low to moderate channel SNR.

Maximum Ratio Combining (MRC) Fusion Rule: It has been shown in [76] that 
for small values of channel SNR, Λ in (4.38) reduces to
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Further, if the local sensors are identical, i.e., Pd,k = PD and Pf,k = PF for all ks, then Λ 
further reduces to a form analogous to an MRC statistic:
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Λ2 in (4.41) does not require the knowledge of Pd and Pf provided Pd − Pf  > 0. 
Knowledge of the channel gain is, however, required.

Equal Gain Combining (EGC) Fusion Rule: Motivated by the fact that Λ2 resem-
bles an MRC statistic for diversity combining, a third alternative in the form of an 
EGC has been proposed, which requires minimum amount of information:
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Interestingly enough, Λ3 outperforms both Λ1 and Λ2 for a wide range of SNR in 
terms of its detection performance [76].

4.3.1 D istributed Detection with Partial Channel State Information

The optimal LR-based fusion rule presented in Equation 4.38 requires instantaneous 
CSI, i.e., hk and ϕk, for all the sensors in the WSN. However, for a WSN with very 
limited resources (energy and bandwidth), it is prohibitive to spend resources on 
estimating the channel gain every time a local sensor sends its decision to the fusion 
center. Thus, it is imperative to avoid channel estimation and conserve resources at 
the possible cost of relatively small performance degradation. This is the reasoning 
behind the exploration of new fusion rules that do not require instantaneous channel 
gains, hk. In many WSN scenarios, the statistics of the fading (random) channel 
and the additive Gaussian noise can be estimated in advance, and used as prior 
information. It is the goal to develop a new LR-based fusion rule with only the prior 
information regarding the channel statistics instead of the instantaneous CSI.

Under hypothesis Hj, we have
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By assuming a Rayleigh fading channel with unit power (i.e., E hk[ ]2 1= ), the pdf 
of hk is
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Then, the log LR based on the knowledge of channel statistics and local detection 
performance indices is expressed as [78]
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where a n n= +( )1 1 2 2σ σ . As shown in Figure 4.4, the optimal LR-based fusion rule 

provides the best detection performance, however it requires instantaneous gain of 
the channel. On the other hand, its performance can be approached closely by the 
LRT fusion rule with partial channel knowledge (LRT-CS). The performance of the 
LRT-CS fusion rule is slightly worse than the optimal LR-based fusion rule with 
instantaneous channel gains and is better than the three suboptimal schemes.

4.3.2 D istributed Detection with No Channel State Information

Acquiring phase information of transmission channels can be costly as it typically 
requires training overhead. This overhead may be substantial for time-selective fad-
ing channels when mobile sensors are involved or the fusion center is constantly mov-
ing. Thus, incoherent-detection-based decision fusion rule has been introduced in Ref. 
[79]. In the incoherent case, the fusion statistics are based on the received envelope, 
or equivalently, the received power from each sensor. Denoting rk = |yk|2, given the 
channel state information hk, the signal power for the kth channel output is given by
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FIGURE 4.4  ROC curves for various fusion statistics for the Rayleigh fading channel with 
average channel SNR = 4 dB. There are k = 8 sensors with Pd,k = 0.6 and Pf,k = 0.05.
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where I0(.) is the zeroth-order modified Bessel function of the first kind. Given p(hk) 
as in Equation 4.44,
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Then the LLR (log-likelihood ratio) can be given as
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For the case of known fading statistics, Ricean and Nakagami fading channels have 
also been considered in [79]. In this section, we have investigated channel aware 
decision fusion algorithms with different degrees of channel state information for 
single-hop networks [76–79]. Extensions to multi-hop WSNs can be found in [80,81], 
while channel-optimized local quantizer design methods are provided in [82–84]. To 
counter sensor or channel failures, robust binary quantizer design has been proposed 
in [85]. Channel aware distributed detection has also been studied in the context of 
cooperative relay networks [86,87].

4.4  CONCLUSIONS

In this section, we summarize and further discuss distributed detection and decision 
fusion for a multi-sensor system. In a conventional distributed detection framework, 
it is assumed that local sensors’ performance indices are known and communication 
channels between the sensors and fusion center are perfect. Under these assump-
tions, the design for optimal decision fusion rule at the fusion center and the optimal 
local decision rules at sensors was discussed under Bayesian and NP criteria. For a 
WSN consisting of passive sensors, it might be very difficult to estimate local sen-
sors’ performance indices and it can be very expensive to transmit them to the fusion 
center. Counting rule is an intuitive solution which uses the total number of “1”s 
as a decision statistic since the information about which sensor reports a “1” is of 
little use to the fusion center. Recent research shows that FDR-based decision fusion 
with nonidentical thresholds can substantially improve the detection performance as 
compared to counting rule with identical thresholds.
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In a WSN setting with severe constraints on energy, bandwidth, and delay, trans-
mitting sensor decisions to the fusion center over error free channels may become 
unrealistic since error free transmission may require high transmission power and/
or powerful error correction codes. Therefore, channel impairments should be taken 
into account in the design of distributed detection systems. Channel aware decision 
fusion algorithms where each has different degrees of channel state information have 
been reviewed.

For distributed detection in WSNs, in [55], it has been assumed that the commu-
nication channels between the sensors and the fusion center are perfect. It will be 
interesting to study the effect of imperfect communication channels on the detection 
performance of the proposed FDR-based framework. Also, the FDR framework has 
been proposed for the detection of a single target in the ROI. Extension of the FDR 
framework to detection of multiple targets in the ROI is an interesting and challeng-
ing research problem. It is also assumed that every sensor has identical noise power. 
Extension of the proposed framework to include the scenario of nonidentical noise 
power at each sensor is an interesting research problem.

Dense deployment of sensors in the WSN introduces redundancy in coverage, so 
selecting a subset of sensors may still provide information with the desired quality. 
Adaptive sensor management policies can be applied in distributed detection which 
select a subset of active sensors or distribute the available resources among the infor-
mative sensors while meeting the application requirements in terms of quality of 
service [36].

In this chapter, we have focused on parallel decision fusion architecture where 
sensors transmit their observations directly to the fusion center. For serial decision 
fusion, the information processing dealing with distributed data in the context of 
accurate signal detection and energy-efficient routing is currently emerging as a 
fruitful research area [88,89].
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5.1  INTRODUCTION

Many applications such as target tracking, robotics, and manufacturing have increas-
ingly used multiple sensor or data sources to provide information. Multiple sensors 
provide better coverage than a single sensor, either over a larger geographical area 
or broader spectrum. By generating more measurements, they can improve detection 
and false alarm performance. Improved accuracy (location, classification) can also 
result from viewing or phenomenological diversity provided by multiple sensors. For 
example, similar sensors that are not co-located can provide more accurate mea-
surements on target location by exploiting different viewing angles, while dissimilar 
sensors such as radar and optical can observe different features for better object 
recognition.

The measurements from multiple sensors can be processed or fused at a central 
site or multiple sites. The centralized fusion architecture requires communicating all 
the measurements to a single site and is theoretically optimal because the informa-
tion in the measurements is not degraded by any intermediate processing. When 
the sensors are geographically distributed, it may make sense to also distribute the 
processing, with each processing site responsible for the measurements from one 
or more sensors. These sites can communicate their results to other fusion sites for 
further processing. The distributed fusion architecture has many advantages such as 
lower bandwidth by communicating processing results rather than measurements, 
availability of processing results for local functions such as sensor management, dis-
tribution of the processing load to multiple sites, and less vulnerability because there 
is no single point of failure. Furthermore, a properly designed distributed fusion sys-
tem can provide modularity and scalability for rapid incorporation of more sensors.

Because of these advantages, there are many examples of distributed fusion sys-
tems including net-centric military systems, robotics teams, and wireless sensor net-
works, where centralized processing is not practical. However, many technical issues 
need to be addressed for distributed fusion systems to achieve high performance. 
The first issue is selecting the appropriate fusion architecture that connects sensors 
with the processors or agents at the fusion sites and how the data are shared with 
other sites in the network. The fusion architecture also specifies the information flow 
between the agents. The second issue is how the data should be processed by each 
agent to provide the best performance. For example, a fusion agent has to recognize 
when common information occurs in any received data to avoid double counting 
when fusing the data.

5.7.2.1	 Augmented State Vector and Approximation..................... 119
5.7.2.2	 Using Cross-Covariance at a Single Time.......................... 119

5.8	 Distributed Estimation for Object Classification........................................... 119
5.8.1	 Distributed Object Classification Architectures................................ 119
5.8.2	 Distributed Classification Algorithms............................................... 120

5.9	 Summary....................................................................................................... 121
5.10	 Bibliographic Notes....................................................................................... 121
References............................................................................................................... 122



97Fundamentals of Distributed Estimation

This chapter presents the fundamental concepts for distributed data fusion. In 
particular, we focus on the estimation problem where the goal of fusion is to compute 
an estimate of the state from measurements collected by multiple sensors. The state 
may be continuous and time varying such as the position and velocity of a vehicle 
in object tracking. It may also be discrete and static such as the class of an object in 
object classification. We focus on estimation to exclude discussions on data associa-
tion issues that are important in object tracking. These issues will be discussed in 
Chapter 6.

The rest of this chapter is structured as follows. Section 5.2 discusses distrib-
uted fusion architectures, their advantages and disadvantages, the use of information 
graph to represent information flow, and selection of an appropriate architecture. 
Section 5.3 presents the Bayesian fusion equation for combining two probability 
functions, or their means and covariances. Section 5.4 shows how the information 
graph can be used to keep track of information flow in a distributed estimation system 
and how it can be used to derive fusion equations for various fusion architectures. 
Section 5.5 discusses some suboptimal but practical approaches that are based on 
approximations of the optimal approach. Section 5.6 presents algorithms for fusing 
estimates characterized by means and covariances. Section 5.7 discusses distributed 
fusion for object tracking when the state is continuous and time-varying. Section 5.8 
discusses distributed fusion for object classification when the state is a discrete and 
static random variable. Section 5.9 provides a summary, and Section 5.10 contains 
some bibliographic notes.

Much has been published on distributed estimation over the last three decades 
with summaries provided in Chong et al. (1990) and Liggins and Chang (2009). Our 
discussion focuses on algorithms that are non-iterative, i.e., we will not address the 
consensus problem (Teneketzis and Varaiya 1988, Olfati-Saber 2005). We also view 
decentralized estimation (Durrant-Whyte et al. 1990) as a special case of distributed 
estimation. Furthermore, we sometimes use fusion and estimation to mean the same 
thing, and consider conditional probability (density) as a form of estimate.

5.2  DISTRIBUTED ESTIMATION ARCHITECTURES

The basic components of a distributed estimation system are sensors, processors 
(estimation or fusion agents), and users. Sensors generate measurements or data on 
the objects of interest. The measurements contain information on the object state 
such as position, velocity, or class. Estimation or fusion agents process sensor data or 
results received from other fusion agents to generate better estimates. Users are the 
consumers of the fusion results. A user can be the controller in a robotic system or 
a commander in a surveillance system. In a distributed fusion or estimation system, 
there are multiple sensors, processors, and users. These components are usually dis-
tributed geographically and connected together by a communication network.

The fusion architecture (Chong 1998) consists of three components. At the sys-
tem level, the communication graph represents network connectivity between the 
components. When sensors collect measurements and processors fuse estimates at 
multiple times, the information graph represents the detailed information flow from 
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the sensors to the processors. Finally, the information content communicated also 
has to be specified.

5.2.1 F usion Architecture Graph

The fusion architecture graph represents the connectivity of the fusion system as 
determined by the communication network. The nodes of the graph represent the 
sensors and processors, and the directed edges are the communication paths between 
the components. There are two main types of system architectures based on the 
number of communication paths from a particular sensor to the processor.

5.2.1.1  Singly Connected Fusion Architectures
In a singly connected fusion architecture, there is a single path between any 
sensor–processor pair. Figure 5.1 shows four examples of singly connected fusion 
architectures—centralized, decoupled, replicated centralized, and hierarchical 
without feedback.

In the centralized architecture, measurements from all sensors are sent to a single 
fusion site or agent to be processed. Theoretically this architecture produces the best 
performance since there is no information loss. However, centralization implies high 
communication load over the network, high processing load at the fusion site, and 
low survivability due to a single point of failure. The decoupled architecture parti-
tions the sensors into multiple sets with a fusion site responsible for each set. This 
architecture is appropriate when there is a natural partitioning of the sensors so that 
the sensors in the same set can help each other but those outside the set provide little 
additional information. This architecture has the lowest computation and commu-
nication requirements. However, the performance can be poor if the sensors cannot 
be partitioned easily. In the replicated centralized architecture, multiple fusion sites 
process data from overlapping sets of sensors. There is no communication among 
the fusion sites. This architecture has high performance and reliability due to the 
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multiple sites processing the same data. However, it also has high communication 
and processing costs.

These three architectures do not allow communication among the fusion sites. 
Thus there is a single information path from a sensor to a fusion site. This allows 
the use of simple fusion algorithms since the double counting or rumor propagation 
problem does not exist. These architectures are useful since they serve as bench-
marks for comparing the performance of other distributed fusion architectures.

In the hierarchical (without feedback) architecture, the fusion sites are arranged 
in a hierarchy with the low-level fusion sites processing sensor data to form local 
estimates. These estimates are sent to a high-level fusion site to be combined. In 
order to realize the benefit of reduced communication, the communication rate from 
the low-level site to the high level should be lower than the sensor observation rate. 
As compared to the centralized architecture, the hierarchical architecture has the 
advantage of lower communication, lower processing cost when the low-level site 
processes data from a smaller set of sensors, and increased reliability. However, 
multiple information paths can occur if the sensors and fusion sites collect measure-
ments and process at multiple times.

5.2.1.2  Multiply Connected Fusion Architectures
In a multiply connected fusion architecture, there are multiple communication paths 
between a pair of sensor and processor. Figure 5.2 shows four examples of multiply 
connected fusion architectures—hierarchical with sensor sharing, hierarchical with 
feedback, peer-to-peer, and broadcast.

In the hierarchical with sensor sharing architecture, the measurements from one 
sensor are processed by multiple fusion sites. This makes sense when that sensor is par-
ticularly powerful. However, high-level fusion is difficult because the common infor-
mation from that sensor cannot be removed easily. In the hierarchical with feedback 
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architecture, the accuracy of the local estimates can be enhanced by feeding back 
high-level estimates (which include information from more sensors) to the low level 
where the data are to be combined. In this feedback architecture, information flows 
in both directions, from low level to high level and also from high level to low level.

In the peer-to-peer architecture, a fusion agent has two-way communication with 
another fusion agent (with only neighbors in a decentralized architecture). In the 
broadcast architecture, a fusion agent broadcasts its results to multiple fusion agents, 
who can also broadcast their own results. These two are examples of fully distributed 
architectures where the communication is dynamic and not specified a priori. For 
example, a fusion site may send its results to another fusion site depending on the 
results or in response to a request for information from another site. Such architec-
tures can adapt dynamically to the current situation. In general, multiply connected 
fusion architectures are more robust against failures, but algorithms are more dif-
ficult to develop because of the multiple information paths.

5.2.2 I nformation Graph

The fusion architecture graph characterizes information paths at a high level. It does 
not describe how each measurement or fusion result flows through the system, and 
particularly it does not portray the effects of time between updates or communica-
tions due to repeated sensor observations and fusion processing. In particular, the 
architectures in Figures 5.1 and 5.2 do not represent the relationship between the esti-
mates and the sensor data at different times, which is needed in order to identify the 
common information to avoid double counting or data incest. The information graph 
(Chong et al. 1982, 1983, 1985, 1986, 1987, Chong and Mori 2004) represents the 
detailed information flow and transactions in a fusion architecture specified by com-
munication paths. It also supports the development of optimal and suboptimal fusion 
algorithms. A similar graph model can be found in McLaughlin et al. (2004, 2005).

The nodes in the information graph represent information events. The observa-
tion node represents the observation event of a sensor at a specific time; the fusion 
node represents a fusion event at a fusion site at a specific time. There are two main 
types of fusion events: fusion of sensor observation with the local fusion result, and 
fusion of the processing results from other sites with the local results.

The directed edges or links represent the communication between information 
nodes. Note that the observation node is a leaf node with no predecessors and its 
successor nodes are always fusion nodes. The predecessor node of a fusion node may 
be an observation node or another fusion node. A fusion node may have other fusion 
nodes as successors or no successor nodes.

The edges in the graph can be used to trace the information available to a node. A 
directed path from Node A to Node B means that Node B has access to the informa-
tion at Node A, and in general each node has access to the information of its prede-
cessor nodes. The specific information available depends on what is communicated. 
Sensor data are transmitted from an observation node to a fusion node but usually 
estimates are communicated between fusion nodes. If the estimate is the sufficient 
statistics, then the maximum information at a node consists of the sensor data based 
on all its ancestor observation nodes.
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A main problem in distributed fusion is identifying the common information 
shared by two estimates that need to be fused. The information graph provides a 
useful tool to discover the source of this common information. If two fusion nodes 
have common ancestors, then the estimates at these nodes contain the information 
of the common ancestors. If two fusion nodes have no common predecessor, there is 
no sharing of information except for the prior. The following are some examples of 
information graphs.

5.2.2.1 � Singly Connected Information Graphs for Singly 
Connected Fusion Architectures

Figure 5.3 shows the information graphs for the centralized, replicated centralized, 
and decoupled fusion architectures of Figure 5.1. Note that time is now represented 
explicitly. These information paths are singly connected because there is only one 
information path from each observation node to a fusion node.

5.2.2.2  Multiply Connection Information Graphs for Hierarchical Fusion
Figure 5.4 shows the information graph for hierarchical fusion without feedback 
architecture. Even though the fusion architecture graph is singly connected when 
there is no feedback from the high-level site, the information graph (on the left) 
is multiply connected due to repeated communication and fusion. For example, 
both fusion nodes H and L have the predecessor node L

_
, that is, the information 

at L
_

 is included in the information at H and L. Thus fusion of H and L have to 
make sure that the common information of L

_
 is not double counted. This multiply 

connected information graph can be transformed into a singly connected graph by 
modifying the processing and communication strategies. One approach is to have 
the local fusion site send only new information since the last time it communicated 
with the high-level fusion site. This is equivalent to deleting the edge at the local site 
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after each communication (local restart and sending new information in Figure 5.4). 
Effectively, the local fusion site has a separate estimator whose output is communi-
cated. The other approach of getting a singly connected graph is not to allow memory 
at the high-level fusion site. Then the fusion nodes will only have observation nodes 
from each sensor (global restart and no memory in Figure 5.4).

Figure 5.5 shows the information graph for hierarchical fusion with feedback. As 
in hierarchical fusion without feedback, the multiply-connected information graph 
for high level fusion can be converted to a singly connected network if the local 
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fusion site sends fusion results that do not rely on feedback or the sensor obser-
vations before the last communication. Effectively, the local site keeps two sets of 
books—an optimal estimate for local use based on all sensor observations and an 
estimate for communication based only on new local observations received since 
the last communication. Similarly, the low-level fusion site can obtain a singly con-
nected fusion graph by deleting the appropriate edges.

Figure 5.6 shows the information graph for hierarchical fusion with a common 
sensor. In this case, the information graph is inherently multiply connected and it is 
difficult to convert it into a singly connected information graph.

5.2.2.3  Information Graph for Distributed Architectures
The information graphs for general distributed architectures are usually multiply 
connected because of the possible communication paths. However, it is sometimes 
possible to convert them to singly connected information graphs by designing the 
appropriate information exchange. Figure 5.7 shows how the information graphs 
for peer-to-peer and broadcast fusion architectures can be made singly connected if 
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each local fusion site only communicates the new information received since the last 
communication. The dotted lines are information paths that are only maintained for 
generating the local estimates but not for communication.

The information graph can become complicated if the fusion sites only commu-
nicate their fusion results. Figure 5.8 shows a cyclic fusion architecture where site 1 
sends its local fusion result to site 3, site 3 to site 2, and site 2 to site 1. It is difficult 
to identity new information because of the loopy communication in this architecture. 
From the information graph, the most recent common predecessors of B and C are 
D and E. The common predecessors of D and E are the nodes F and G, which have 
the same information as H.

5.2.3 I nformation Communicated and Common Prior Knowledge

Defining the distributed fusion architecture also requires specifying the type of 
data communicated. The data can be the sensor measurements collected by the site 
or processing results, which can be estimates or probabilities of the state. Choosing 
what to communicate is a tradeoff between bandwidth and amount of information. 
Communicating measurements require the most bandwidth but provide the most infor-
mation. Processing is easy for the fusion site receiving the measurements because the 
measurement errors are generally independent. Effectively, each fusion site performs 
centralized fusion of measurements and the information graph is singly connected.

When processing results such as estimates or probabilities are communicated, 
additional information is frequently needed for optimal fusion by the receiver. For 
example, network topology or information pedigree is needed to construct the infor-
mation graph to identify the common information. Optimal fusion may also require 
knowing other estimates. When such information or sufficient statistics is not avail-
able, fusion can only be suboptimal. For example, optimal fusion for tracking objects 
with nonzero process noise requires knowledge of state estimates at multiple previous 
times. The fusion will be suboptimal when the state is only known at the current time.

5.2.4  Selecting Appropriate Architectures

The fusion architecture has a significant impact on the development and perfor-
mance of the distributed fusion system. A fusion architecture can be evaluated by the 
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amount of information generated, communication bandwidth, algorithm complex-
ity, and robustness. The following are some general guidelines for selecting fusion 
architectures:

•	 Use all sensor data for optimal performance. A fusion site should have 
access to as much sensor data as possible and a fusion node in the informa-
tion graph should include information on all observation nodes (ancestors) 
that can be communicated to the fusion node.

•	 Compress sensor data for efficient communication. Less communication 
bandwidth is needed if the information in multiple observation nodes can 
be captured by a single intermediate fusion node. However, compression 
may result in information loss and introduce multiply connected informa-
tion paths.

•	 Find architectures with singly connected information paths. Then the infor-
mation to be fused will not contain common information and the fusion 
algorithm will be relatively simple.

•	 Use redundant paths for robustness/survivability. Each observation node 
should have multiple paths to reach a fusion node. However, redundancy 
may result in more processing/communication cost and/or more complicated 
fusion algorithms.

5.3  BAYESIAN DISTRIBUTED FUSION ALGORITHM

The goal of distributed estimation is to generate an “optimal” estimate for each fusion 
site given the information available to the fusion site. We assume that local estimates 
(or probabilities) and not measurements are communicated to the fusion site. The 
advantage is local use of estimates and lower bandwidth due to data compression.

When measurements are communicated, as in centralized fusion, the fusion algo-
rithm can exploit the independent measurement errors or the conditional indepen-
dence of the measurements given the state or variable to be estimated. When only 
local estimates are shared across the network, this conditional independence may 
be lost due to common information resulting from prior communication. In some 
cases, the “state” may not be large enough due to internal variables not included in 
the estimates. These are issues that have to be addressed in developing distributed 
fusion algorithms.

The following sections will develop the optimal Bayesian distributed fusion 
algorithm for a general object state. For object tracking, this state is a temporal 
sequence of states (e.g., position, velocity) at each time, and the observation is a 
temporal sequences) of measurements, e.g., range, angle for a radar. For object 
classification, the state is the object class and attributes such as object size and the 
observations are observed features such as measured length.

5.3.1  Bayesian Distributed Estimation Problem and Solution

Let x be the state to be estimated. The state may be a continuous random variable 
such as the position and velocity of an object or a discrete random variable such as 
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the class of an object. Let p(x) be the prior probability density function for a continu-
ous variable or the probability distribution for a discrete variable.

Suppose the measurement sets at two fusion nodes (as in the information graph), 
node 1 and node 2, are
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These measurements may come from multiple sensors at different times or the same 
time. Assume the measurements are conditionally independent given x, i.e.,

	
p z z x p z x p z xij mn ij mn( , , , | ) ( | ) ( | )… … � �= 	 (5.2)

This assumption is valid if the measurement errors are independent across sensors 
and over time.

The fusion nodes compute the local posterior conditional probabilities p(x | Z1) 
and p(x | Z2). The goal of distributed estimation is to compute the posterior condi-
tional probability p(x | Z1 ∪ Z2) given all the measurements Z1 ∪ Z2.

The fused information set Z1 ∪ Z2 is the union of each node’s private information 
and the common information (Figure 5.9), i.e.,

	 Z Z Z Z Z Z Z Z1 2 1 2 2 1 1 2∪ = ∪ ∪ ∩( \ ) ( \ ) ( ) 	 (5.3)

where \ denotes set difference. Then, the assumption (5.2) of conditional indepen-
dence of the measurements given the state implies that
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Bayes rule leads to the Bayesian distributed fusion equation
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where the normalizing constant is given by
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This Bayesian distributed fusion equation states that the fused posterior probabil-
ity p(x | Z1 ∪ Z2) is the product of the local probabilities p(x | Z1) and p(x | Z2), divided 
by the common probability p(x | Z1 ∩ Z2), which is included in each of the local 
probabilities.

The Bayesian fusion equation can be used to derive optimal fusion equations 
for the state of interest as long as the measurements are conditionally independent 
given the state. The key is identifying the common information that has to be 
removed to avoid double counting. This common information is usually a prior 
probability or estimate or the information shared during the last communication. 
Thus, fusion requires knowing the common probability p(x | Z1 ∩ Z2) in addition to 
p(x | Z1) and p(x | Z2).

5.3.2  Bayesian Distributed Fusion for Gaussian Random Vectors

Suppose the state x is a Gaussian random vector with known mean and covariance, 
and the measurements are also Gaussian with zero mean errors and known cova-
riance. Then the local estimates are Gaussian random vectors with means x̂i and 
covariances Pi. The fused estimate is also Gaussian with mean x̂1∪2 and covariance 
P1∪2. Then the fusion equation (5.5) becomes

	 P x P x P x P x1 2
1

1 2 1
1

1 2
1

2 1 2
1

1 2∪
−

∪
− −

∩
−

∩= + −ˆ ˆ ˆ ˆ 	 (5.7)

	 P P P P1 2
1

1
1

2
1

1 2
1

∪
− − −

∩
−= + − 	 (5.8)

where x̂1∩2 and P1∩2 are the mean and covariance of the state estimate given the com-
mon information.

Equations 5.7 and 5.8 are the information matrix form of the fusion equations 
because the inverse of the covariance matrix is the information matrix. Equation 5.8 
states that the information matrix of the fused estimate is the sum of the informa-
tion matrices of the local estimates minus the information matrix of the common 
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estimate. Equation 5.7 states that the information of the fused estimate is the sum 
of the local information minus the common information. As in the general case, 
optimal fusion requires knowing the x̂1∩2 and P1∩2 in addition to the estimates and 
covariances to be fused.

The information matrix fusion equations can be derived directly from the infor-
mation filter equations (Chong 1979). Suppose each fusion node i = 1, 2, has the 
observation equation

	 Z H x vi i i= + 	 (5.9)

where
Hi is the observation matrix
vi is a zero mean independent observation noise with error covariance Ri

Then the information filter form of the estimate x̂i is given by

	 P x P x H R Zi i i i i
− − −= + ′1 1 1ˆ 	 (5.10)

with error covariance given by

	 P P H R Hi i i i
− − −= + ′1 1 1 	 (5.11)

where x ̅ and P̅ are the mean and covariance of x. Given the measurements Z1 and Z2, 
the optimal estimate x̂ and its error covariance P are given by the information filter 
equations

	 P x P x H R Z− − −= + ′1 1 1ˆ 	 (5.12)

	 P P H R H− − −= + ′1 1 1 	 (5.13)

where the measurement vector Z, observation matrix H, and noise covariance matrix 
R are
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	 (5.14)

Since

	 ′ = ′ + ′− − −H R Z H R Z H R Z1
1 1

1
1 2 2

1
2 	 (5.15)

	 ′ = ′ + ′− − −H R H H R H H R H1
1 1

1
1 2 2

1
2 	 (5.16)
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Equations 5.12 and 5.13 become

	 P x P x H R Z H R Z− − − −= + ′ + ′1 1
1 1

1
1 2 2

1
2ˆ 	 (5.17)

	 P P H R H H R H− − − −= + ′ + ′1 1
1 1

1
1 2 2

1
2 	 (5.18)

These are the information fusion equations used in Durrant-Whyte et al. (1990) to fuse 
measurements communicated by the fusion agents. Substituting into (5.10) and (5.11) 
produce the information matrix fusion equations similar to Equations 5.7 and 5.8

	 P x P x P x P x− − − −= + −1
1

1
1 2

1
2

1ˆ ˆ ˆ 	 (5.19)

	 P P P P− − − −= + −1
1

1
2

1 1 	 (5.20)

5.4 � OPTIMAL BAYESIAN DISTRIBUTED FUSION 
FOR DIFFERENT ARCHITECTURES

The Bayesian distributed fusion equation assumes a hierarchical architecture with 
no feedback. Furthermore, the local estimates are only fused once by the fusion 
agent. However, with the help of the information graph, this equation (in either gen-
eral or linear form) can be used to derive optimal fusion equations for complex archi-
tectures and identify the information that needs to be communicated in addition to 
the estimates to be fused. It is also trivial to extend to fusing multiple local estimates. 
The following sections contain some examples.

5.4.1 H ierarchical Architecture

5.4.1.1  Hierarchical Fusion without Feedback
Consider the example of Figure 5.4 with F3 as the fusion site. When there is no feed-
back from the high level, the common information in the received estimate p(x | ZL) and 
the current estimate p(x | ZH) is the estimate p(x | ZL

_) last communicated from the low-
level fusion site F2. From (5.5), the fused estimate or probability function is given by

	
p x Z Z C

p x Z p x Z

p x Z
H L

H L

L

( | )
( | ) ( | )

( | )
∪ = −1 	 (5.21)

When the probability distribution is Gaussian, applying Equations 5.7 and 5.8 yields

	 P P P PH L H L L∪
− − − −= + −1 1 1 1 	 (5.22)

	 P x P x P x P xH L H L H H L L L L∪
−

∪
− − −= + −1 1 1 1ˆ ˆ ˆ ˆ 	 (5.23)

where the subscripts represent the information nodes.



110 Distributed Data Fusion for Network-Centric Operations

5.4.1.2  Hierarchical Fusion with Feedback
For hierarchical architecture with feedback in Figure 5.5, fusion takes place at 
both levels. For fusion at the low level node F1, the common predecessor of L1 and 
H is L

_
, the fusion node of the last communication from low level to high level. For 

fusion of H at the high-level node F3 with the estimate at L2 from F2, the common 
predecessor is H

_
, the fusion node of the last communication from high level to low 

level. For low-level fusion, the common information shared (from the information 
graph) is the last estimate sent to the high level. Thus the fusion equation for low 
level is

	
p x Z Z C

p x Z p x Z

p x Z
H L

H L

L

( | )
( | ) ( | )

( | )
∪ = −

1
11 	 (5.24)

Similarly, the high-level fusion equation is

	
p x Z Z C

p x Z p x Z

p x Z
H L

H L

H

( | )
( | ) ( | )

( | )
∪ = −

2
21 	 (5.25)

When the variables are Gaussian, the low-level fusion equations are

	 P P P PH L H L L∪
− − − −= + −1 1

1 1 1 1 	 (5.26)

	 P x P x P x P xH L H L H H L L L L∪
−

∪
− − −= + −1 1 1 1

1 1 1 1ˆ ˆ ˆ ˆ 	 (5.27)

and the high-level fusion equations are

	 P P P PH L H L H∪
− − − −= + −2 2

1 1 1 1 	 (5.28)

	 P x P x P x P xH L H L H H L L H H∪
−

∪
− − −= + −2 2 2 2

1 1 1 1ˆ ˆ ˆ ˆ 	 (5.29)

5.4.2 A rbitrary Distributed Fusion Architecture

The optimal fusion algorithm for arbitrary distributed fusion architectures is 
found by repeated application of the Bayesian fusion equation (5.5). The algo-
rithm starts by identifying the common predecessor nodes of the information 
nodes whose estimates are to be fused. If there is only one common predecessor 
node, then the information at that node becomes the p(Z1 ∩ Z2) in the denomina-
tor of (5.5). If there are multiple common predecessor nodes, then (5.5) is used 
again to compute p(Z1 ∩ Z2) terms of the information (probability) at these nodes 
and the information at their common predecessor nodes. The process is repeated 
until each conditional probability involves only one information node. Thus the 
fusion equation for the general fusion architecture consists of a product of proba-
bilities representing information to be fused and divisions representing redundant 
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information to be removed. The general fusion equation has the form (Chong 
et al. 1987, 1990)

	

p x Z C p x Zi

i

N

j
j

j J

| ( | ) ( )

=

−

∈









 = ∏

1

1∪ α 	 (5.30)

where
J is a set of predecessor nodes of the fusion node
C is a normalizing constant
α(·) is either +1 or −1 depending on whether information is to be added or deleted
For Gaussian case, the fusion equations are

	

P x j P xj j

j J

− −

∈

= ∑1 1ˆ ( ) ˆα 	 (5.31)

	

P j Pj

j J

− −

∈

= ∑1 1α( ) 	 (5.32)

The hierarchical fusion equations discussed earlier are special cases of these equa-
tions. For the cyclic architecture of Figure 5.8, repeated application of the fusion 
equation results in the following equation:

	

p x Z C
p x Z p x Z

p x Z

C
p x Z p x Z p x Z

A
B C

D E

B C F

( | )
( | ) ( | )

( | )

( | ) ( | ) ( |

=

=

−

∪

−

1

1 ∪∪

−=

G

D E

B C H

D E

p x Z p x Z

C
p x Z p x Z p x Z

p x Z p x Z

)
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( | ) ( | ) ( | )
( | ) ( | )

1 	 (5.33)

The equations for the Gaussian case are

	 P x P x P x P x P x P xA A B B C C D D E E H H
− − − − − −= + − − +1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ 	 (5.34)

	 P P P P P PA B C D E H
− − − − − −= + − − +1 1 1 1 1 1 	 (5.35)

5.5  SUBOPTIMAL BAYESIAN DISTRIBUTED FUSION ALGORITHMS

The optimal distributed fusion algorithm described in the previous section is based 
upon identifying and removing redundant information using the information graph. 
When the bandwidth does not support communication of information pedigree, such 
as in ad hoc wireless sensor networks, the relevant part of the information graph 
cannot be constructed by the fusion node. Even if the information pedigree can be 
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communicated, in a dynamic network with possible failures and adaptive communi-
cation strategies, the optimal distributed fusion algorithm may not be practical due 
to the long pedigree information needed for de-correlation. This section presents 
several practical and scalable algorithms (Chang et al. 2010) based on approxima-
tions of the optimal algorithms (5.30) through (5.32). To simplify the notation, we 
again focus on the fusion of two information nodes with either probability functions 
given by p1(x) and p2(x), or estimates x̂1 and x̂2 with error covariances P1 and P2. The 
fusion result is represented by probability function p(x) or an estimate x̂ with error 
covariance P.

5.5.1 N aïve Fusion

Naïve fusion ignores the dependence in the information to be fused or the denomina-
tor in the optimal Bayesian fusion equation (5.5). Thus the naïve fusion algorithm is

	 p x C p x p x( ) ( ) ( )= −1
1 2 	 (5.36)

where C is the normalizing constant. For Gaussian case, the common information is 
similarly ignored in Equations 5.7 and 5.8, resulting in the following equations for 
the fused state estimate and error covariance

	

P P P

P x P x P x

− − −

− − −

= +

= +

1
1

1
2

1

1
1

1
1 2

1
2ˆ ˆ ˆ

	 (5.37)

By not subtracting the prior information matrix (inverse of the prior covariance 
matrix), the computed fused error covariance is smaller than the true error covari-
ance, resulting in an estimate of naïve fusion that may be overconfident.

The naïve fusion equation for the Gaussian case is sometimes called the convex 
combination equation because it can be shown that the fused estimate is given by

	 ˆ ( ) ˆ ( ) ˆx P P P x P P P x= + + +− −
2 1 2

1
1 1 1 2

1
2 	 (5.38)

For the cyclic architecture of Figure 5.8, naïve fusion only retains p(x | ZB) and p(x | ZC).

5.5.2  Channel Filter Fusion

The channel filter (Grime and Durrant-Whyte 1994, Nicholson et al. 2001, Bourgault 
and Durrant-Whyte 2004) can be viewed as a first-order approximation of the opti-
mal fusion algorithm. The distributed estimation system consists of a number of 
channels with each defined by a pair of transmitting and receiving nodes. In the 
channel filter, the fusion node keeps track of the communication history for all the 
information nodes that it receives data from. When it receives a new estimate to be 
fused from a node, it retrieves the more recent estimate from that node and considers 
it as the only common information to be removed, ignoring earlier information nodes 



113Fundamentals of Distributed Estimation

that may have contributed to the common information. In that sense, the channel 
filter can be considered as a first-order approximation to the optimal information 
graph approach.

Specifically, the channel filter fusion equation is given as

	
p x C

p x p x

p x
( )

( ) ( )
( )

= −1 1 2 	 (5.39)

where
C is a normalizing constant
p(̅x) is the probability function received from the same channel at the previous 

communication time and is the common “prior information” to be removed in 
the fusion formula, with mean x ̅ and covariance p ̅ when Gaussian.

When both p1(x) and p2(x) are Gaussian with means and covariances x̂1, P1 and x̂2, 
P2 respectively, the fused state estimate and corresponding error covariance are 
given by

	 P P P P− − − −= + −1
1

1
2

1 1 	 (5.40)

	 P x P x P x P x− − − −= + −1
1

1
1 2

1
2

1ˆ ˆ ˆ 	 (5.41)

The first-order approximation of channel filter fusion is suboptimal because it 
does not account for all common information shared by the estimates to be fused. 
However, it may only be slightly suboptimal if the time between when that redun-
dancy occurred and the current processing time is relatively long. For the cyclic 
architecture of Figure 5.8, channel filter approximates (5.33) by the following

	
p x Z C

p x Z p x Z

p x Z
A

B C

D

( | )
( | ) ( | )

( | )
= −1 	 (5.42)

and ignores the other terms in the optimal fusion equation. Similarly, the fusion 
equations for the Gaussian case become

	 P x P x P x P xA A B B C C D D
− − − −= + −1 1 1 1ˆ ˆ ˆ ˆ 	 (5.43)

	 P P P PA B C D
− − − −= + −1 1 1 1 	 (5.44)

5.5.3  Chernoff Fusion

Chernoff information fusion also ignores completely the dependence in the informa-
tion to be fused. However, instead of assigning equal weights as in naïve fusion, the 
fusion formula allows different weights for the probabilities to be fused, resulting in
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	 p x C p x p xw w( ) ( ) ( )= − −1
1 2

1 	 (5.45)

where w ∊ [0 1] is an appropriate parameter which minimizes a chosen criterion. The 
fusion algorithm is called Chernoff fusion when the criterion to be minimized is the 
Chernoff information (Cover and Thomas 1991) defined by the normalizing constant 
C. It can be shown that the resulting fused probability function that minimizes the 
Chernoff information is the one “halfway” between the two original densities in 
terms of the Kullback Leibler distance (Cover and Thomas 1991). In the case when 
both p1(x) and p2(x) are Gaussian, the resulting fused density is also Gaussian with 
mean and covariance given by

	 P wP w P− − −= + −1
1

1
2

11( ) 	 (5.46)

	 P x wP x w P x− − −= + −1
1

1
1 2

1
21ˆ ˆ ( ) ˆ 	 (5.47)

This formula is identical to the covariance intersection (CI) fusion technique 
(Chong and Mori 2001, Nicholson et al. 2001, 2002, Hurley 2002, Julier 2006, 
Julier et al. 2006). Therefore, the CI technique can be considered as a special case 
of (5.45). In theory, Chernoff fusion can be used to combine any two arbitrary 
probabilities in a log-linear fashion. However, the resulting fused probability may 
not preserve the same form as the original ones. Also in general, obtaining the 
proper weighting parameter to satisfy a certain criterion may involve extensive 
search or computation.

5.5.4  Bhattacharyya Fusion

Bhattacharyya fusion is a special case of Chernoff fusion (5.45), when the 
parameter w is set to be 0.5. Then the normalizing constant of (5.45) becomes 

B p x p x dx= ∫ 1 2( ) ( ) , which is the Bhattacharyya bound. The fusion algorithm is

	
p x B p x p x( ) ( ) ( )= −1

1 2 	 (5.48)

When both p1(x) and p2(x) are Gaussian, the fusion equation can be written as

	
P P P− − −= +1

1
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2
11

2
( ) 	 (5.49)
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Therefore, Bhattacharyya fusion is similar to naïve fusion for the Gaussian case. 
However, the resulting fused covariance is twice as big as that of naïve fusion. Note 
that the fusion equation can be rewritten as

	
P P P P P P P− − − − − − −= + = + − +1

1
1

2
1

1
1

2
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1
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( ˆ ˆ ) ( ˆ 11
2ˆ )x 	 (5.52)

This formula replaces the common prior information of (5.40) and (5.41) for 
channel filter by the average of the two sets of information to be fused, namely, 
P P P− − −⇐ +1 1

2 1
1

2
1( ) and P x P x P x− − −⇐ +1 1

2 1
1

1 2
1

2( ).ˆ ˆ  In other words, instead of remov-
ing the common prior information from the previous communication as in the chan-
nel filter case, the common information of Bhattacharyya fusion is approximated by 
the “average” of the two locally available information sets.

5.6 � DISTRIBUTED ESTIMATION FOR GAUSSIAN DISTRIBUTIONS 
OR ESTIMATES WITH ERROR COVARIANCES

In Section 5.5, we presented several suboptimal algorithms that avoid the exact iden-
tification and removal of redundant information using the information graph. These 
algorithms can be viewed as approximations of the optimal fusion algorithm for gen-
eral probability functions. This section presents fusion algorithms that are optimal 
according to some criteria when the information to be fused is either Gaussian or can 
be represented by estimates with error covariances.

In the following, we assume that the state to be estimated has mean x ̅ and cova-
riance P̅, the estimates to be fused are x̂1 and x̂2 with error covariances P1 and P2, 
and cross-covariance P P12 21= ′ . Note that in addition to the common prior x ̅ and P̅, 
there is additional dependence between x̂1 and x̂2 represented by the cross-covariance 
P P12 21= ′ . Thus removing the common prior alone is not sufficient for generating the 
best fused estimate.

5.6.1 M aximum A Posteriori Fusion or Best Least Unbiased Estimate

Let z x x= ′ ′ ′[ ]ˆ ˆ1 2  be the augmented vector of the estimates to be fused. Assume z and 
x are jointly Gaussian with mean z ̅ and x,̅ with covariances

	
P P E x x z zxz zx= ′ − − ′{ }� ( )( ) 	 (5.53)

	
P E z z z zzz � ( )( )− − ′{ } 	 (5.54)
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Then given z, p(x | z) is also Gaussian with mean and covariance given by (Anderson 
and Moore 1979)

	
ˆ ( )x x P P z zxz zz= + −−1 	 (5.55)

	 P P P P Pxz zz zx= − −1 	 (5.56)

Note that (5.55) is also the maximum a posteriori (MAP) estimate (Mori et al. 2002, 
Chang et al. 2004) and can be expressed as

	 ˆ ( ˆ ) ( ˆ ) ˆ ˆx x W x x W x x W x W x W x= + − + − = + +1 1 2 2 0 1 1 2 2 	 (5.57)

with W0 = I − W1 − W2 and P0i = E((x − x )̅(x̂i − x )̅′) for i = 1, 2, where
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−

	 (5.58)

If x̂1 and x̂2 are not jointly Gaussian but the moments are known, (5.57) is the best 
linear unbiased estimate (BLUE) (Zhu and Li 1999, Li et al. 2003). Note that the 
MAP estimate or BLUE requires more information for its calculation. In addition 
to the common prior x ̅ and P̅, and the estimates x̂1 and x̂2 with error covariances P1 
and P2, it also requires the cross-covariances P P12 21= ′  between the estimates, and the 
cross-covariances P01 and P02 between the estimates and the state. If the estimates x̂1 
and x̂2 are generated from measurements with independent errors, (5.57) and (5.58) 
reduce to the standard fusion equations of (5.19) and (5.20).

5.6.2  Cross-Covariance Fusion

The cross-covariance fusion rule (Bar-Shalom and Campo 1986) considers explicitly 
the cross-covariance of the local estimates to be fused. The fusion rule is given by

	 ˆ ˆ ˆx W x W x= +1 1 2 2 	 (5.59)

where

	
W P P P P P Pi j ji= − + − − −( )( )1 2 12 21

1 	 (5.60)

for i = 1, 2 with j = 3 − i. Since W1 + W2 = I, the fused estimate is unbiased if the 
local estimates are also unbiased. It can be shown that Equation 5.59 maximizes 
the classical likelihood function p(x̂1, x̂2|x) with x viewed as a parameter. Thus, the 
cross-covariance fusion rule is also the maximum likelihood fusion rule. As shown 
in (Chang et al. 1997), Equation 5.59 is the unique solution of the BLUE without a 
priori information, i.e., the linear solution obtained without using a priori informa-
tion (initial condition). This follows from the fact the MAP estimates becomes the 
maximum likelihood estimate when the prior covariance becomes very large.
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If we ignore the cross covariance Pij, (5.60) becomes, for i = 1, 2 with j = 3 − i,

	
W P P P P P Pi j i= + = +− − − − −( ) ( )1 2

1
1

1
2

1 1 1 	 (5.61)

which is the fusion rule obtained by treating the two estimates x̂1 and x̂2 as if they 
were two conditionally independent observations of x. This is again the convex 
combination rule.
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 . Thus, the simplified fusion rule (5.61) is obtained by inflating 

the joint covariance matrix.

5.7  DISTRIBUTED ESTIMATION FOR OBJECT TRACKING

In this section, we discuss how the general approach for distributed estimation can 
support object tracking (Liggins et al. 1997, Chong et al. 2000). Multi-object tracking 
involves two steps: associating measurements to form object tracks, and estimating the 
states of the objects given the tracks. Our discussion will focus on single object state 
estimation or filtering. The association problem in object tracking will be addressed 
in Chapter 6.

For object state estimation, the state of the object is a random process that evolves 
according to a dynamic model given by the transition probability p(xk+1 | xk), where 
xk is the state of the object at time tk. Measurements are generated from the state 
according to a measurement model p(zk | xk). The objective of object state estimation 
is to generate the estimate of the state, p(xk | Zk), given the cumulative measurements 
Zk = (z0, z1, …, zk). Recursive state estimation or filtering consists of two steps: pre-
dicting p(xk | Zk) to the time of the next measurement to obtain p(xk+1 | Zk) and updating 
with the current measurement to generate p(xk+1 | Zk+1). Since the prediction step uses 
only the object dynamic model and does not depend on measurements, distributed 
estimation focuses on the update step.

We assume a hierarchical fusion architecture to discuss the approach. Each low-
level fusion agent i generates an updated estimate of the object state given its local 
measurements p(xk | Zik) where Zik = (zi0, zi1, …, zik). The high-level fusion site or agent 
combines the low-level (updated) estimates to form the fused estimate p(xk | Zk) where 
Zk = Z1k ∩ Z2k.

5.7.1 D eterministic Dynamics

An object is said to have deterministic dynamics if its future state is determined 
completely by the current state, i.e., the state transition probability is a delta func-
tion. Ballistic missiles and space objects are examples of objects with deterministic 
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dynamics. It can be easily shown that conditional independence of the measurements 
zik given xk for all i and k implies conditional independence of the cumulative mea-
surements Zik given xk for all i and k, i.e.,

	 p Z Z x p Z x p Z xk k k k k k k( , | ) ( | ) ( | )1 2 1 2= 	 (5.62)

Thus the Bayesian distributed fusion equation can be used and
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−
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where
C is a normalizing constant
p(xk | Zk−1) is the common prior that can be extrapolated from p(xk−1 | Zk−1) provided 

by the fusion site

When the random variables are Gaussian, the fusion equations are
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where x̂i,k|l and Pi,k|l are the estimate and error covariance of xk given Zil and x̂k|l and 
Pk|l are the fused estimate and error covariance given xk and Zl.

If there is no feedback from the fusion site, the fusion equation is
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When the random variables are Gaussian, the fusion equations become
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For deterministic object dynamics, the fusion equations reconstruct the optimal cen-
tralized estimate independent of number of sensor revisits between fusion times. 
This is not the case for nondeterministic object dynamics.

5.7.2 N ondeterministic Dynamics

When the object has nondeterministic dynamics, the cumulative measurements Zik 
are no longer conditionally independent given xk. Effectively, the common process 
noise or nondeterministic dynamics destroys the conditional independence. Then 
the fusion equations (5.63) through (5.68) are no longer optimal or exact unless the 
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low-level fusion agents communicate with the high-level agent after each observation 
time. For hierarchical fusion with feedback, the high-level fusion agent also has to 
send the fused estimate back to the local agents after each fusion.

5.7.2.1  Augmented State Vector and Approximation
Let X x x xk k= ′ ′ ′[ , , , ]0 1 …  be the augmented state vector consisting of the states at multi-
ple observation times. Then the cumulative measurements Zik are conditionally inde-
pendent given Xk, and the optimal fusion equations are (5.63) through (5.68) with xk 
replaced by Xk. However, this approach may not be practical because the probability 
density functions or covariance matrices involve high dimensions.

5.7.2.2  Using Cross-Covariance at a Single Time
For problems that can be represented by Gaussian distributions or means and covari-
ances, the approach of Section 5.6 can be used to handle the conditional dependence 
due to nondeterministic dynamics. Specifically, let x̂1,k|k and x̂2,k|k be the estimates to 
be fused with error covariances P1,k|k and P2,k|k, cross-covariance P Pk k k k12 21, | , | ,= ′ and 
common prior x̂k|k−1 with covariance Pk|k−1. Then the MAP, BLUE, or cross-covari-
ance fusion rules can be used by replacing x̂i, Pi, P12, x,̅ and P̅ with x̂i,k|k, Pi,k|k, P12,k|k, 
x̂k|k−1 and Pk|k−1 respectively in the fusion equations. Chapter 6 has a comparison of the 
different fusion rules for nondeterministic dynamics.

5.8  DISTRIBUTED ESTIMATION FOR OBJECT CLASSIFICATION

The general fusion approach in Section 5.3 can be used for distributed object clas-
sification (Chong and Mori 2005) where the state of interest is a discrete and constant 
random variable representing the object class. When the conditional independence 
assumption is satisfied, optimal distributed object classification can be performed 
using (5.5) of Section 5.3. In general, selecting object class as the state will not 
satisfy the conditional independence assumption because measurements containing 
class information may also depend on other variables such as viewing angles. In the 
following, we will consider hierarchical fusion at a single time to focus on the infor-
mation that should be used in fusion. More complicated communication patterns 
will require checking for common information and removing it, using approximate 
algorithms if necessary. Chapter 9 contains a more detailed discussion on distributed 
object classification.

5.8.1 D istributed Object Classification Architectures

The common fusion architectures for object classification are centralized measure-
ment fusion, decision fusion, and probability fusion. In centralized measurement 
fusion, measurements containing object class information are fused at a central site. 
This architecture is theoretically optimal because the central site has access to all the 
measurements but requires the most communication. In decision fusion, each local 
site performs classification using the local measurements and sends the decision to 
the fusion site. Decisions require very little bandwidth to communicate but may not 
contain enough information for generating a good decision after fusion. Thus we will 
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focus on probability fusion, in which each local site generates a conditional probabil-
ity of the object class from the local measurements, and the fusion site combines the 
conditional probabilities to form the centralized conditional probability.

The key to high-performance probability fusion is determining the state used for 
generating the probability. In general, the object class is not sufficient as a state for 
optimal fusion because the measurements may depend on other object attributes in 
addition to the class (Chong and Mori 2004). Consider the example in Figure 5.10 
where a Bayesian network is used to show that the measurements z1 and z2 depend on 
the object class xC through the static object attribute xS such as size and the dynamic 
attribute xD such as viewing angle. As shown in Figure 5.10, the measurements are 
conditionally independent given xS and xD, i.e.,

	 p z z x x p z x x p z x xS D S D S D( , | , ) ( | , ) ( | , )1 2 1 2= 	 (5.69)

but not conditionally independent given only xC, i.e.,

	

p z z x p z z x x x dx dx

p z z x x p x x

C S D C S D

S D S D

( , | ) ( , , , | )

( , | , ) ( ,

1 2 1 2

1 2

=

=

∫
|| ) ( | ) ( | )x dx dx p z x p z xC S D C C∫ ≠ 1 2 	 (5.70)

Thus, for optimal distributed fusion, the state to be communicated should be xS and xD.

5.8.2 D istributed Classification Algorithms

For optimal distributed classification, the object state in the probabilities should 
make the measurements conditionally independent. For the example in Figure 5.10, 
the state consists of the static attribute xS and the dynamic attribute xD. Then the 
optimal fusion equation is
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FIGURE 5.10  Bayesian network for object classification.
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From this, the object class probability can be computed as

	
p x z z p x x x p x x z z dx dxC C S D S D S D( | , ) ( | , ) ( , | , )1 2 1 2= ∫ 	 (5.72)

When only the probabilities of the object class are communicated, naïve fusion can 
be used to obtain an approximate solution
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Note that in the case the information ignored is not the common prior due to com-
munication but the states that lead to conditional independence.

5.9  SUMMARY

This chapter presented the fundamental concepts for distributed estimation, which 
are crucial for developing distributed fusion algorithms. We discussed various 
distributed fusion architectures, their advantages and disadvantages, the use of 
information graph to represent information flow, and selection of an appropriate 
architecture. We presented the Bayesian fusion equation for combining two 
probability functions, and the equation for estimates given by means and covariances. 
The Bayesian fusion equation, when used with the information graph, can be used 
to derive fusion equations for various fusion architectures. Since the fusion equation 
can be complicated, requiring pedigree or network information for complicated 
architectures, it is necessary to approximate the optimal algorithm with suboptimal 
algorithms for implementation in real systems. When the estimates to be fused 
are Gaussian or can be characterized by means and covariances, there are several 
linear combination rules such as MAP, BLUE, and cross-covariance fusion. We also 
showed that the distributed estimation approach can be used for object tracking and 
object classification.

5.10  BIBLIOGRAPHIC NOTES

Research in distributed estimation started around 1980 and addresses the problem 
of reconstructing the optimal estimate from the local estimates (Chong 1979, Speyer 
1979, Willsky et al. 1982, Castanon and Teneketzis 1985). A general distributed 
estimation approach (Chong et al. 1982, 1983, 1985, 1987) for arbitrary architectures 
was investigated under the Distributed Sensor Networks (DSN) program sponsored by 
the Defense Advanced Research Projects Agency (DARPA). By using the information 
graph to track information flow in the system, the optimal fusion algorithm avoids 
double counting of information or data incest. The DSN program also developed 
general distributed tracking algorithms (Chong et al. 1986, 1990). Around 1990, 
researchers in the United Kingdom and Australia developed similar decentralized 
fusion algorithms (Durrant-Whyte et al. 1990, Grime and Durrant-Whyte 1994) 
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that avoid data incest, and CI algorithms (Nicholson et al. 2001, 2002) to address 
unknown correlation between local estimates to be fused. Bar-Shalom and Campo 
(1986) developed the first fusion algorithm that uses the cross-covariance between 
the local estimates. This paper was followed by the BLUE fusion algorithm (Zhu 
and Li 1999, Li et al. 2003) and the MAP fusion rule (Mori et al. 2002, Chang et al. 
2004). The last two papers also contain performance evaluation of fusion algorithms, 
along with Chong and Mori (2001) and Chang et al. (2010).
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6 Essence of Distributed 
Target Tracking
Track Fusion and 
Track Association

Shozo Mori, Kuo-Chu Chang, and 
Chee-Yee Chong

6.1  INTRODUCTION

This chapter describes an important, practical, widely studied application of the 
distributed estimation theories described in Chapter 5, i.e., distributed target track-
ing. Multiple-target tracking problems can be viewed as an extension of classical 
dynamical state estimation problems, or filtering problems (Wiener 1949, Kalman 
1960, Kalman and Bucy 1960, Anderson and Moore 1979), to estimate the states of 
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generally moving physical entities. An essence of the extension is from single-target 
problems to multiple-target problems with an unknown number of targets, without 
a priori target identification, where any observation originates from any one of the 
modeled targets, or an object of no interest (i.e., clutter, false alarms, etc.) (Blackman 
1986, Bar-Shalom and Fortmann 1988, Bar-Shalom and Li 1993, Blackman and 
Popoli 1999, Bar-Shalom et al. 2001, 2011). In short, multiple-target tracking prob-
lems are dynamical state estimation problems with data association problems.

As any other information processing system, given a set of sources of informa-
tion, i.e., sensors, optimal or near-optimal state estimates are obtained by central 
processing, i.e., by centrally processing all the relevant information provided by all 
the sensors. However, in many large-scale system designs, an alternative process-
ing architecture, i.e., distributed processing, is preferred because of the lack of sin-
gle-point-of-failure, generally reduced communication requirements, and possible 
minimization of processing bottlenecks, as discussed in the previous chapter. This 
preference is particularly prevalent for multiple-target tracking problems, mainly 
because of often severely heavy information-processing requirements for solving 
data association problems. In distributed tracking systems, the data association 
requirements are typically divided into (i) local data association where sensor 
measurements are correlated together into local (or sensor) tracks, and (ii) global 
processing where local tracks are associated and fused together into a set of global 
(or system) tracks. In this way, the processing and the communication loads may 
be system-wide balanced.

For this reason, the studies of distributed tracking started almost at the same 
time when the multiple-target tracking itself began to be studied. We can cite a 
pioneering work (Singer and Kanyuck 1971) and two seminal papers (Bar-Shalom 
1981) and (Bar-Shalom and Campo 1986), which cover two essences of distributed 
tracking, i.e., track association and track fusion. As mentioned in the previous 
chapter, the studies of the track association and fusion problems were formulated 
and solved in the framework of distributed estimation problems (Chong et al. 1985, 
1987, Liggins II et al. 1997), with general sensor and information networks. Since 
then, the amount of the literature on track fusion has exploded (Hashemipour 
et al. 1988, Durrant-Whyte et al. 1990, Belkin et al. 1993, Lobbia and Kent 1994, 
Drummond 1997a, Miller et al. 1998, Zhu and Li 1999, Li et al. 2003), and many 
others.

As described in Drummond (1997a), Liggins II et al. (1997), Chong et al. (2000), 
Moore and Blaire (2000), Dunham et al. (2004), and Liggins II and Chang (2009), 
many distributed tracking systems, both military and civilian, have been developed 
and operated, system engineering studies, mainly of so-called fusion architecture 
studies, have been conducted, and performance of various functions and algorithms 
has been examined. Recently, the topics of the distributed target tracking have been 
migrated into the area of the robotics (Durrant-Whyte et al. 1990) and the distributed 
large-scale sensor networks (Iyengar and Brook 2005).

Instead of covering the entire areas concerning the distributed tracking, this 
chapter revisits its two essences, i.e., track association and track fusion, in terms of 
track fusion rules and track association metrics. We will describe as many rules and 
metrics that have been proposed and examine them, as quantitatively as possible. 
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To do this, we need to limit our scope using simple abstract mathematical models. 
However, we will try to cover as many practical factors as possible: consequences of 
one-time versus repeated information exchanges, fusion of information from simi-
lar versus dissimilar sensors, target maneuverability, a priori position and velocity 
uncertainty, and target density. We also choose a minimum complexity of system 
architecture, i.e., a two-sensor, or two-station system, by which we can isolate the 
two essential problems, i.e., the track association and fusion, to enable clear com-
parison of many algorithms. In this way, we can discuss key design factors for the 
distributed tracking, i.e., fusion with or without feedback, and the effect of the depth 
of memory of the past informational transactions, etc.

The rest of this chapter is divided into two major sections: Section 6.2 describes 
representative track fusion rules, and numerically compares the performance, under 
a set of prescribed variations of track fusion environments and designs. Section 6.3 
examines a simple one-time track-to-track association and compares the perfor-
mance using various track-to-track association metrics.

6.2  TRACK FUSION

Although track association is prerequisite to track fusion, we will discuss track fusion 
first in this section before discussing track association in the next section. Despite a 
large volume of works on track fusion, the studies on the track association are still 
rather sparse comparing with the studies on the track fusion.

We will first consider a simple, one-time track-to-track fusion problem in 
Section 6.2.1 and more complicated cases where track fusion is done repeatedly 
in Section 6.2.2.

6.2.1 O ne-Time Track Fusion

Suppose that two sensors, i = 1, 2, have been observing the same target as

	 y H x tik ik ik ik= +( ) η 	 (6.1)

at time tik, for k = 1, … , Ni, such that t ti iNt1 < <� , where each measurement error 
ηik is an independent zero-mean Gaussian random vector with covariance matrix* 
Rik ik ik

T= ( )E η η  and Hik is an observation matrix with appropriate dimensions. x(·) in 
(6.1) is the target state process defined by

	

d

dt
x t A x t B w tt t( ) ( ) ( )= + � 	 (6.2)†

*	By XT we mean the transpose of a vector or matrix X. E is the conditional or unconditional mathemati-
cal expectation operator.

†	 More precisely, (6.2) is meant to be a stochastic differential equation, dx(t) = Ax(t)dt + Bdw(t), with 
unit-intensity Wiener process ( ( )) .[ , )w t t t∈ ∞0  We assume x(t0), ( ( )) [ , )w t t t∈ ∞0 , and (( ) )ηik k

N
i

i
= =1 1

2  are all inde-
pendent from each other.
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on [t0, ∞) with t0 ≤ min{t11, t21} on a Euclidean target state space E, with a unit-intensity 
vector white noise process ( ) [ , )�wt t t∈ ∞0 , and by the initial state x(t0), a Gaussian vector 
with mean x‾0 and covariance matrix V‾0, i.e.,* P(x(t0)) = g(x(t0) − x‾0;V‾0).

We assume the local data processor, for each sensor, i = 1, 2, produces the local 

estimate ˆ ( ) ( ) ,x x t yt F ik k
Ni= ( )=E 1  which is the conditional expectation† of the target 

state x(tF) at a common fusion time t t tF N N≥ { }max ,1 21 2 , conditioned by the local data 
( )yik k

Ni
=1, together with estimation error covariance matrix V =i E ((x̂i − x(tF))(x̂i − x(tF))T) 

that we assume is strictly positive definite, i.e., P x t y g x t x VF ik k
N

F i i
i( ( ) ( ) ) ( ( ) ; )= = −1 . Our 

track fusion problem is then defined as the problem of generating a “good” estimate x̂F 
of the target state x(tF) as a function of the local estimates x̂1 and x̂2.

The joint probability density function of the two local estimation errors can then 
be written as
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We need to consider the cross-covariance matrix, V12 = 𝔼((x̂1 − x(tF))(x̂2 − x(tF))T) 

and V V T
21 12= , in (6.3), because the initial condition x(t0) = x0 and the process noise 

( ( )) [ , )w t t t∈ ∞0  in (6.2) both commonly affect the two estimates, x̂1 and x̂2.
Let the local estimation errors be denoted by �x x x ti i F

def= −ˆ ( ), i = 1, 2. Then, we 
should immediately recognize the following three facts:

	 1.	For each i, the estimation error x~i is independent (orthogonal) to the state 
estimate x̂i.

	 2.	The two estimation error vectors, x~1 and x~2, are correlated.
	 3.	Each estimation error x~i is not necessarily independent of the target state x(tF).

Although (1) is the basic fact of the linear Gaussian estimation (cf., e.g., Anderson 
and Moore 1979), (2) and (3) are the distinct characteristics of the track fusion 
problems, which prevent us from treating the two local estimates as if they were two 
independent sensor measurements of the target state x(tF). As mentioned earlier, (2) 
originated from the common use of the initial state condition and the process noise 
while (3) is simply due to the fact that x̂i is the processed result, correlated to the 
initial condition x(t0) = x0, and hence x~i is correlated to x(tF).

Some of the track fusion rules described subsequently can be used for track fusion 
problems with nonlinear target dynamics and nonlinear observation models. In such 
a case, (6.3) may be considered as a Gaussian approximation of a non-Gaussian joint 
estimation error probability distribution.

*	For this chapter, we use P and p as the generic symbols for conditional or unconditional probability 
density or mass function, and g as the generic zero-mean Gaussian density function, i.e., g(ξ;V)def = 
det(2πV)−1/2 exp(−(1/2)ξTV−1ξ).

†	 In this chapter, we use any conditioning in the strict Bayesian sense, e.g., P(x|y) = P(x, y)/P(y). ( )yik k
Ni
=1  

is shorthand for a finite sequence ( , , , )y y yi i iNi1 2 … .
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6.2.1.1  One-Time Track Fusion Rules
In the following, for the sake of simplicity, we will drop the time index and replace 
x(tF) by x, E(x(tF)) by x‾, and write V‾ = 𝔼((x − x‾)(x − x‾)T). All the rules described in this 
section are in the form of the linear combination

	 x̂ W x W x W xF = + +0 1 1 2 2 	 (6.4)

with W0 + W1 + W2 = I (unbiasedness), where all the weight matrices are constant and 
independent of sensor data, ( )yik k

Ni
=1, i = 1, 2, either as a conscious choice, or as a 

consequence of the linear-Gaussian assumptions. The estimation error covariance 
matrix VF can therefore be evaluated by
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	 (6.5)

The covariance matrix Vi is provided with each local state estimator, i = 1, 2, and the 
a priori state variance V‾ at the fusion time tF is given by

	 V t t V t t Q t tF F
T

F= +Φ Φ( , ) ( , ) ( , )0 0 0 0 	 (6.6)

where Φ(t, τ) is the fundamental solution matrix of ( ) [ , )At t t∈ ∞0 , defined by a matrix 
differential equation (∂/∂t)Φ(t, τ) = AtΦ(t, τ) with Φ(τ, τ) = I, and Q

.
(·,·) is defined by

	

Q t t t B B t t
t

t

T T( , ) ( , ) ( , )2 1 2 2

1

2

= ∫Φ Φτ ττ τ d 	 (6.7)

for any t0 ≤ t1 ≤ t2. Later, Section 6.2.1.2 shows how to calculate the cross-covariance 
V12 between the two local state estimation errors, x~1 and x~2, as well as the cross-
covariance V0i between the state a priori expectation error, x‾ − x, and the local state 
estimation error x~i, i = 1, 2.

Some of the fusion rules described later in this section declare the estimation error 
covariance matrix VF by itself, assuming implicitly or explicitly that some of the statis-
tics, e.g., V12 or V0i, are not available when fusing the two local estimates, x̂1 and x̂2. In 
that case, the declared covariance matrix VF may not be the true one defined by (6.5). 
We will call the declared VF honest (consistent) if it coincides with the one calculated 
by (6.5), pessimistic if it is generally larger, and optimistic if smaller.

6.2.1.1.1  Bar-Shalom–Campo and Speyer Fusion Rules
The Bar-Shalom–Campo fusion rule, described in a seminal paper (Bar-Shalom and 
Campo 1986), is defined by the weights, W0 = 0, and

	 W V V V V V Vi j ji= − + − − −( )( )1 2 12 21
1 	 (6.8)
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for i = 1, 2 with j = 3 − i. Since W1 + W2 = I, the unbiasedness of the local estimates 
implies the unbiasedness of the fused estimate x̂F. As shown in Li et al. (2003), 
this fusion rule is obtained as a unique solution x = x̂F that maximizes the likelihood 
function L(x|x̂1, x̂2) defined as L(x|x̂1, x̂2) = p(x̂1 − x, x̂2 − x), where p(x~1, x~2) is the joint 
probability density function of the two local estimation errors, x~1 and x~2.

We should note that this likelihood function L(x|x̂1,x̂2) is not the likelihood 
function P(x̂1, x̂2|x) in the strict Bayesian sense, i.e., the conditional joint probability 
density function of the data, x̂1 and x̂2 given the true state x, because the estimation 
errors, (x~1,  x~2), are not independent of the target state x = x(tF). Nonetheless, 
L(x|x̂1,  x̂2) = p(x̂1 − x, x̂2 − x) is certainly qualified as a likelihood function of x in the 
classical statistics sense, i.e., a joint probability density function of x̂1 and x̂2, when 
we consider x as a constant parameter to be determined. Two other fusion rules based 
on the conditional expectation and the likelihood function, both in the strict Bayesian 
sense, will be described later in this section. Both of those rules, as well as the Bar-
Shalom–Campo rule, use the cross-covariance matrix V12, generated by the common 
factors, i.e., the common initial condition and the common process noise.

If we ignore the cross-covariance Vij, (6.8) becomes, for i = 1, 2 with j = 3 − i,

	
W V V V V V Vi j i= + = +− − − − −( ) ( )1 2

1
1

1
2

1 1 1 	 (6.9)

which is the fusion rule obtained by treating two estimates x̂1 and x̂2 as if they were 
two conditionally independent observations of x. Since the gain matrices (6.9) are 
obtained by normalizing two positive definition matrices Vi or Vi

−1 to have W1 + W2 = I, 
we may call (6.9) the simple convex combination rule, with some caution for not con-
fusing this with the covariance intersection fusion rules described later. It is also 
called the naïve fusion rule in Chang et al. (2008). We call this simplified rule the 
Speyer fusion rule, because this fusion rule seems to have appeared for the first time 
as Equation (22) of Speyer (1979).

Since det det( )det( )
V V
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 = − − , ignoring the cross-variance 

as V12 = 0 means an increase in the ellipsoidal area defined by the joint covari-

ance matrix V V

V VT

1 12

12 2









 . In that sense, we may say the simplified fusion rule 

(6.9) is obtained by inflating the joint covariance matrix. Using either fusion 
rule, the fused estimate is unbiased in the sense E(x̂F − x) = 0. For the Bar-
Shalom–Campo rule, the declared fused estimation error covariance matrix, 
V V V V V V V V V VF

T T= − − + − − −−
1 1 12 1 2 12 12

1
1 12( )( ) ( ), is honest (or consistent), while, 

ignoring the cross-covariance, V V V V V V V VF = + = − +− − − −( ) ( )1
1

2
1 1

1 1 1 2
1

1  for the 
Speyer rule is not honest and generally optimistic.

6.2.1.1.2  Tracklet Fusion Rule

For each sensor i = 1, 2, let ˆ ( ) ( ) .p x P x yi ij j
Ni= ( )=1  Then, as shown in Chong (1979), 

the tracklet fusion rule to obtain the fused probability density function p̂F by fusing 
p̂1 and p̂2 can be written as p̂F(x) = C−1p̂1(x)p̂2(x)/p−(x), with the a priori probability 
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density p−(x) and the normalizing constant C. This fusion rule can be applied to 
any probability (generally non-Gaussian) distributions on any appropriate target 
space E as long as the densities and the integral are all well defined. In our linear-
Gaussian case, as shown in Chong et al. (1983,1986,1990), etc., the tracklet fusion 
rule is defined by

	 W V V i W V V I W Wi F i F= = = − = − −− −1
0

1
1 21 2, , ; 	 (6.10)

with the declared fused estimate error covariance matrix V V V VF = + −− − −( )1
1

2
1 1, 

where V‾ = E((x‾ − x)(x‾ − x)T ) is the a priori covariance matrix.
Unfortunately, the tracklet fusion rule may not be exact in the sense, 

ˆ ( ) ( ( ) ,( ) )p x P x y yF j j
N

j j
N= = =1 1 2 1

1 2 , unless the target dynamics are deterministic, i.e., 
Bt ≡ 0 in (6.2). Nonetheless, the extrapolation of the a priori covariance matrix 
by (6.6) takes the effects of the process noise into account. However, the declared 
fused estimate error covariance matrix V V V VF = + −− − −( )1

1
2

1 1 is often not honest and 
generally optimistic.

The fusion rule (6.10) can be rewritten as
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with, for i = 1, 2,
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Equation 6.11 appears as a Kalman filter update equation that updates the state 
estimate by the two conditionally independent measurements, z1 and z2. Equation 6.12 
can be interpreted as the decorrelation of the two local estimates, x̂1 and x̂2, by 
removing the prior information represented by the pair (x‾, V‾) from x̂1 and x̂2. The 
decorrelated estimates, z1 and z2, defined by Equation 6.12, are called the equivalent 
measurements, or the pseudo-measurements, or the state estimates of tracklets (or a 
track segment, a portion of a track, small enough represented by a single Gaussian 
distribution but large enough to have such a full-state representation, defined by (zi, V

~
i)) 

(Belkin et al. 1993, Lobbia and Kent 1994, Drummond 1997a, 1997b), etc. This is 
the reason why we call this rule the tracklet fusion rule. Because Equation 6.11 is in 
the information matrix form of Kalman filter, a distributed track fusion algorithm 
using Equation 6.11 with Equation 6.12 is sometimes called information filter or 
information matrix filter (Chang et al. 2002).

The decorrelation formula (6.12) also gives us a convenient way of representing 
a tracklet or a track segment by a pair (zi, V

~
i) of the equivalent measurement and its 

measurement error covariance matrix, or equivalently V z Vi i i
� �− −1 1

,( ). From this point 

of view, the distributed track fusion algorithm that use this pair, (zi, V
~

i) or V z Vi i i
� �− −1 1

,( ) 
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to represent approximately the conditionally independent unit of information, is 
called the Channel filter in Durrant-Whyte et al. (1990) and Rao et al. (1993).

6.2.1.1.3  Minimum-Variance (MV) Fusion Rule
Let x̂F = 𝔼(x|x̂1, x̂2), i.e., the conditional expectation of the target state x = x(tF) at the 
fusion time tF, given the two local state estimates, x̂1 and x̂2. It is well known (cf., 
e.g., Rhodes 1971) that the estimate x̂F minimizes the expected estimation error* 
𝔼(∥x̂ − x∥2|x̂1, x̂2) among all the estimates x̂, as defined as any measurable functions of 
x̂1 and x̂2. Because of the Gaussianness, the fused estimate, x̂F = 𝔼(x|x̂1, x̂2), is also the 
maximum a posteriori (MAP) estimate of x conditioned by x̂1 and x̂2, and is given by 
(6.4) using W W V Vxz zz1 2

1[ ] = − ,  and W0 = I − W1 − W2, with
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	 (6.13)

where

Vzz is the self-covariance matrix of z x xT T T
=  ˆ ˆ1 2

Vxz is the cross-covariance between x and z

We should note that, since x̂i − x‾ = x̂i − x + x − x‾ = x~i − (x‾ − x), i = 1,2, we have 

E x x x x V V V Vi j
T

ij i
T

j
Tˆ ˆ− − − −( )( )( ) = + 0 0 , for i, j = 1, 2, with Vi = Vii, and E((x − x‾)

(x̂i − x‾)T) = V‾ − V0i, for i = 1, 2. Therefore, while the Bar-Shalom–Compo rule consid-
ers only the correlation caused by the common process noise, and what the tracklet 
rule considers explicitly only the correlation caused by the use of the common a 
priori information, the MV rule considers both and provides the optimal estimate as 

the conditional expectation given z x xT T T
=  ˆ ˆ1 2 . The declared fused estimate error 

covariance matrix, V V V V VF xz zz xz
T= − −1 , is honest.

As shown in Zhu and Li (1999) and Li et al. (2003), this MV fusion rule is also the 
best linear unbiased estimate (BLUE) by choosing the best weights (W0, W1, W2) to 
minimize the estimation error variance, under constraint W0 + W1 + W1 = I, and hence 
we may call it the BLUE fusion rule. The Bar-Shalom–Campo rule is obtained as the 
BLUE rule with more restriction, i.e., by the minimization with respect to (W1, W2), 
with the constraints W0 = 0 and W1 + W2 = I.

6.2.1.1.4  Bayesian Maximum-Likelihood Fusion (BML) Rule

Define z x xT T T
=  ˆ ˆ1 2  as before. Consider P(z|x), which is the conditional probability 

density of z x xT T T
=  ˆ ˆ1 2  (data) given x (state to be estimated), i.e., the likelihood 

function in the strict Bayesian sense. Reversing the roles of x and z, we have 
P(z|x) = g(z − ẑ;V̂zz) with

*	By ∥·∥, we mean the standard Euclidean norm, i.e., x x xT=  for any vector x.
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ẑ z V V x x

V V V V V

zx

zz zx xz

= + ( )
=







−

−

−

−

1

1ˆ
	 (6.14)

Hence, the likelihood function P(z|x) (as a function of x) is maximized at

	
x x V V V V V V zF xz zz zx xz zzˆ z= + ( ) ( )ˆ ˆ− − − −1

1
1 	 (6.15)

Thus the maximum likelihood estimate of the target state x given the local esti-
mates x̂1 and x̂2 can be expressed by (6.4) with the weight matrices calculated by 
[ ]W W MV Vxz zz1 2

1  = −ˆ  with M V V V Vxz zz xz
T= − −( )ˆ 1 1 with W0 = I − W1 − W2, instead of the 

MV fusion weights W W V Vxz zz1 2
1[ ] = − .

We may say the likelihood function P(z|x) is the likelihood function in the strict 
Bayesian sense, and hence we call the fusion rule defined by (6.15) the Bayesian 
Maximum Likelihood Rule, or BML Rule.

6.2.1.2  Calculation of Cross-Covariance Matrix
Besides the Speyer (simple convex combination) fusion rule and the tracklet fusion rule, 
it is necessary to calculate the cross-covariance matrix between the estimation errors, 
x~1 and x~2, of local estimates, x̂1 and x̂2. The calculation was described in Bar-Shalom 
(1981), for the synchronous sensor case, which can be easily extended to nonsynchronous 
cases as shown in Mori et al. (2002). To do this, let T tik k

N

i

i= { } == 11

2

∪  be the union of the 

observation times of the two sensors, Tk k

N( ) =1
 be the unique enumeration of T such that 

T1 < T2 < … < TN, and I i T t kk k ik= ∈{ } = ′{ }′1 2, for some  for every k.
Let V‾12k and V̂12k be the cross-covariance matrices between estimation errors of 

the state estimates of x(Tk) based on {y1k|t1k ≤ Tk−1} and {y2k|t2k ≤ Tk−1}, and between 
those by {y1k|t1k ≤ Tk} and {y2k|t2k ≤ Tk}, respectively. Then we have
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	 (6.17)

together with an appropriate initial condition, where K k1 ′ and K k2 ′′ are the Kalman 
filter gain matrices used by sensors 1 and 2 to process y k1 ′ and y k2 ′′, respectively. The 
cross-covariance matrix V12 between x~1 and x~2 can be obtained at the end of this 
recursion, with an extra extrapolation (6.16) (at the end) if necessary.

The cross-covariance matrices V̂0ik, between the estimation error of the 
state estimate of x(Tk) conditioned on {yik|tik ≤ Tk} and the a priori extrapolation 
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error 𝔼(x(Tk) − x(Tk)), can be calculated similarly by the extrapolation equation (6.16), 
and the second update equation of (6.17), to obtain V01 and V02 (which are necessary 
for calculating the MV and BML fusion rules). The local estimation error covariance 
matrices, V1 and V2, are of course provided by the local Kalman filters, while the a 
priori extrapolation error covariance matrix V‾ is calculated by (6.6).

6.2.1.3  Covariance Intersection Methods
The covariance intersection (CI) method was introduced as a method of fusing 
two estimate-covariance pairs, (x̂1, V1) and (x̂2, V2) when the cross-covariance V12 
of the estimation errors is not known or available. The CI approach is a heuristic 
approach to adjust the commonly used the simple weighting, i.e., the Speyer fusion 
rule (6.9), as
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with a fixed scalar parameter α ∈ [0, 1], i.e., (6.4) with W0 = 0, W V VF1 1
1= α − , and 

W V VF2 2
11= ( )− −α . The term “covariance intersection” originates from the fact 

that the ellipsoid* x E x
VF

∈ ≤{ }� � −1
2 2χ  is included in the intersection of two ellip-

soids, x E x
Vi

∈ ≤{ }� � −1
2 2χ , i = 1, 2, for any given χ2 > 0 (Nicholson et al. 2001, 2002, 

Julier et al. 2006). But the terminology may appear rather confusing because the 
ellipsoid x E x F VF

∈ ≤{ }� �− −x̂ 1
2 2χ  is not necessarily contained in the intersection 

x E x i Vi i
∈ ≤{ }=

� �∩ − −x̂ 1
2 2

1

2
χ .

The CI rule (6.18) can be viewed as a Gaussian case of the fusion rule,
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	 (6.19)

which is called the Chernoff fusion rule in Hurley (2002) and Julier (2006), because 
the denominator of the right-hand side of (6.19) is known as Chernoff information 
(Cover and Thomas 2006). There are several proposals about how to choose the 
parameter α ∈ [0, 1]. A couple of choices for the scalar weight α are shown below.

6.2.1.3.1  Shannon Fusion Rule
Consider the continuous-random-variable version of the entropy, known as the 
differential entropy or the continuous entropy of the fused probability distribution,

*	 By ∥·∥A, we mean the norm on any Euclidean space defined by a positive definite symmetric matrix A 

as x x Ax
A

T=def
 for each vector x.



135Essence of Distributed Target Tracking

	

H p p x p x dxF F F

E

( ) ln ( ) ( )ˆ ˆ ˆ= ( )∫− 	 (6.20)

The fusion rule that minimizes (6.20) can be called the minimum entropy fusion or 
Shannon rule. In the case where p̂F is Gaussian with the CI covariance matrix VF, 
we have H(p̂F) = (1/2)(ln(det(2πVF)) + dim(E)), the minimization of which becomes 
the minimization of the determinant. The resultant fusion rule (6.18) is called the 
Shannon rule in Chang et al. (2008).

6.2.1.3.2  Chen–Arambel–Mehra Fusion Rule
This fusion rule is defined as the one that minimizes the estimation error mean 
square, i.e., the trace of the fused covariance matrix VF defined in (6.18), 

tr V trF V V( ) = + ( )( )





α α1
1

2
1 1

1− − −
− , as a function of α ∈ [0, 1]. Let α̂ ∈ [0, 1] such 

that the trace tr(VF) is minimized at α = α̂ . Chen et al. (2002) show a very interesting 
interpretation of this optimal α̂, i.e., the corresponding CI fusion gain matrix pair, 
W V VF1 1

1= −α̂  and W V VF2 2
11= ( )− −α̂ , is an optimal solution that minimizes

	 h W W W V W W V WT T( )1 2 1 1 1 2 2 2= +tr tr 	 (6.21)

subject to the unbiasedness condition W1 + W2 = I. We call the convex intersection 
with this α̂ the Chen–Arambel–Mehra fusion rule.

6.2.1.4  Optimality of Track Fusion
The track fusion rules described so far obtain an target state estimate that is the 
“best” in some sense, e.g., maximum likelihood, maximum a posteriori (MAP), 
minimum variance, etc., given the two local target state estimates, either explicitly 
or implicitly, under the assumption that the local estimates are optimal in the usual 
sense, i.e., the outputs of the local Kalman filters. However, because the conditioning 
uses only the local estimates that are not sufficient statistics when the target dynamics 
are nondeterministic, e.g., with process noise in the target model to account for target 
maneuvers, the performance of the fused estimate is generally inferior* to that of 
the central processing using all the raw sensor data, ( )yik k

N

i

i
= =

( )1
1

2

. For this reason, 

the performance of a track fusion rules should be compared with that of central 
processing, rather than the MAP (or the MV) fusion rule, whose optimality is also 
limited to the conditioning by the local sate estimates, x̂1 and x̂2.

Furthermore, there may be one more compelling reason why the performance 
of every track fusion rule must be compared with the centralized tracking 
performance. That is because, for the first time in the long history of track fusion 
studies, it was recently shown that the reconstruction of the globally optimal 
state estimate only by fusing or combining the local estimates is possible. 
Although such reconstruction can be obviously done in cases with deterministic 
dynamics or the full-rate communication, it is remarkable to see that the fusion 

*	Except for some extreme cases such as the cases where the local agents send out the local estimates 
after every synchronized observation (i.e., the full-communication-rate cases).
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rule in Koch (2008, 2009), Govaers and Koch (2010, 2011), which we may call 
the Koch–Govaers fusion rule, can achieve the global optimality with any 
asynchronous communication and arbitrary communication rate to achieve the 
global optimality after each communication.

Using the notation in Section 6.2.1.2, the Koch–Govaers fusion rule requires 
local estimates, ( )xik k

N

i
= =

( )1
1

2
 and ( )x ik k

N

i
ˆ = =

( )1
1

2

, each x‾ik paired with the covariance 

matrix V‾k, and each x̂ik paired with the covariance matrix V̂ik, to satisfy
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and
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2
− − ˆ ˆ 	 (6.23)

The recent series of papers (Koch 2009, Govaers and Koch 2010, 2011) show that 
those two requirements can be satisfied by the extrapolation step

	

x T T V V x

V

ik k k i k
i

i k i k

k

= ( )





=

′
′=∑2

2

1 1
1

1

2

1 1Φ , ( ) ( ) ( )− −
−

− −ˆ ˆ ˆ

ΦΦ Φ ΦT T V T T Q T Tk k i k
i

k k
T

k k, , ,( )− −
−

−

− −1 1
1

1

2 1

1 1( )



 ( ) + (′

′=∑ ˆ ))





















	 (6.24)

and the updating step
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with ′ = +( )′ ′ ′ ′K V H H V H Rik k ik
T

ik k ik
T

ik− −
−

1 1

1
 if T tk ik= ′, each for each sensor i = 1, 2. The 

initialization can be done in any way to satisfy the condition, either (6.22) or (6.23), 
for any appropriate k.

We should note two crucial facts: (i) neither ( )xik k
N

i
= =

( )1
1

2

 nor ( )x̂ik k
N

i
= =

( )1
1

2
 are neces-

sarily locally optimal estimates in any sense, and (ii) both extrapolation (6.24) and 

update (6.25) require knowledge of the local variance matrices ( )Vik i
ˆ =1

2 , not only its 
own but also those of the other sensor. In other words, global optimality is obtained 
by sacrificing local optimality, and we need extensive knowledge in terms of covari-
ance matrices of the other local processor. As far as (i) is concerned, however, local 
optimality, if necessary, can be maintained by locally running the Kalman filter for 

each sensor in parallel to the estimates ( )xik k
N

i
= =

( )1
1

2

 and ( )x ik k
N

i
ˆ = =

( )1
1

2

 defined by (6.24) 

and (6.25). The latter requirement (ii), however, looks too excessive at the first glance.
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We should note, however, that for our linear-Gaussian systems, all the estima-
tion error (self and cross) covariance matrices as well as all the crucial param-
eters, such as the Kalman filter gain matrices and the innovations variance 
matrices, are all constant (i.e., not random). Hence, in the probability theory, 
they are all known or a part of the problem definition or the problem statement. 
In practice, however, the exchange or transfer of such knowledge may require sig-
nificant communication bandwidth that may or may not be available. Therefore, 
realistically, we need to assume those parameters may have to be considered 
as a part of system design parameters, i.e., off-line information communicated 
“beforehand.” Otherwise, e.g., communicating each measurement error covari-
ance matrix for every local observation to a fusion center, or to each other local 
agent, may be equivalent to or exceeds the full measurement communication. 
Furthermore, whenever the linearity or the Gaussianness is questionable and 
extended Kalman filters are needed, the covariance matrices may become data-
dependent, and hence, at least, some adjustment may become necessary. Thus the 
feasibility of this “optimal” track fusion algorithm remains to be demonstrated 
in a practical situation.

6.2.1.5  Performance Comparison of One-Time Track Fusion Rules
In order to characterize various track fusion rules and to compare with each other, 
we would like to use simple yet realistic examples. For this purpose, we chose 
a four-dimensional (two-dimensional position, two-dimensional velocity) state 

space, with the Ornstein–Uhlenbeck model, i.e., A
I

I
t ≡

−










0

0 β
, B

qI
t ≡













0
, and 

V
I

I
qp

v
v0

2

2
20

0
0 2 0=









 > = >( )σ

σ
β βσand , and the two-dimensional position-only 

observation,* Hik ≡ [I 0]. The Ornstein–Uhlenbeck model can approximate a real-
istic target maneuver behavior known as a random-tour behavior with β−1 as the 
mean time between two maneuvers or of the length of each constant-velocity leg 
(Washburn 1969, Vebber 1991). For the sake of simplicity, we use synchronous, 
uniform sampling (measurements), i.e., Δt ≡ ti(k+1) − tik for k = 1, …, N, t0 = ti1, and 
tF = tiN, for i = 1, 2.

It is customary to use the so-called almost constant-velocity model or the small-
white-noise model to model target maneuvers, i.e., β = 0. Since we have chosen 
the Ornstein–Uhlenbeck model instead, we would provide some explanation. The 
Ornstein–Uhlenbeck dynamics are usually determined by two parameters, the 
inverse β of the time constant (which can be considered the mean time between two 
maneuvers) and the white noise intensity q that drives the variations in the velocity, 
from the initial condition. However, if the target velocity is, a priori, a stationary 
process defined by the stochastic differential equation dv t v t dt qdw t( ) ( ) ( )= +−β  
with the stationary covariance matrix σvI2 , the two parameters are constrained as 
q v= 2 2βσ . Using the stationary velocity process with standard deviation σv reflects 
the physical reality of real moving objects, in particular, on ground or on surface 

*	Where I and 0 are the 2 × 2 identity and zero matrices, respectively.
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water or under water. Avoidance of ever increasing a priori velocity uncertainty 
(contradicting with reality) is the major motivation for using the Ornstein–Uhlenbeck 
model.

Figure 6.1 presents the key features of the Ornstein–Uhlenbeck model. Figure 
6.1a shows the time increase of the a priori root mean square (RMS) position by 
the Ornstein–Uhlenbeck model, which increases as β−1(1 − e−βt)σv (which can be 
approximated as σvt when β is small, and approaches 0 when β is large) by the 

velocity uncertainty, and by the white noise intensity, as σ βv t2 1−  for large β and 

( / )2 3 2 3βσvt  for small β. The increase as the function of time is generally much slower 
than the small white noise model. Figure 6.1b shows the a priori positional RMS at a 

fixed time ΔT as a function of the normalized white noise intensity q Tvσ2 ∆( ). We 
should note that, as q ↓ 0, since q v= 2 2βσ , we have β ↓ 0, i.e., the model approaches 
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FIGURE 6.1  Characterization of Ornstein–Uhlenbeck model: (a) Increase of a priori 
position uncertainty in time, (b) a priori position uncertainty as function of normalized 
white noise intensity, (c) size of state uncertainty ellipsoid as function of normalized white 
noise intensity.
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a deterministic system, and that, as the white noise intensity increases q ↑ ∞, β 
increases as β ↑ ∞, and a priori position uncertainty approaches to be stationary one.

As β ↑ ∞ (hence q ↑ ∞), the average time between maneuvers approaches zero, 
and it will eventually reach the point where there are so many maneuvers to every 
direction, the effects cancel each other, resulting in the almost stationary positional 
RMS. Figure 6.1c shows the volume of the state uncertainty hyper volume at fixed 
time ΔT (normalized by the initial state hyper volume) as the function of normalized 
white noise intensity q Tvσ2 ∆( ). It is interesting to see that, for both small and large 
q’s (consequently small and large β’s), the position-velocity joint uncertainty volume 
approaches the same volume at the initial time, and the maximum of the volume is 
attained in the middle. For a small β, the position-velocity cross-covariance makes 
the state uncertainty volume time-invariant, while for a large β, the position-velocity 
cross-covariance disappears and both position and velocity covariance matrices 
become stationary.

6.2.1.5.1  Supplementary Sensor Case
Let us consider two sensors that have almost the same performance characteristics, 
so that the addition of the second sensor to the first sensor is supplementary. As 
an extreme case in such situations, we assume, with N = 10 (track fusion after each 

sensor accumulates 10 measurements), R k N iik
m

m

≡








 = =σ

σ

2

2

0

0
1 1 2, , , , ,… , which 

implies V1 = V2.
In this extreme case, the Bar-Shalom–Campo rule is reduced to W1 = W2 = (1/2)I, which 

is the same as the Speyer rule. In other words, no matter how big the cross-covariance 
between the two local track estimation errors is, the inter-sensor cross-covariance is 
irrelevant to the fusion rule.

Moreover, because V1 = V2, any value α in the unit interval [0, 1] provides the 
same V̂F for any rule of the CI method. Although the actual fused estimation error 
covariance may change with the weight α, considering the symmetry, it is reasonable 
to choose α = 1/2, which makes both the Shannon and the Chen–Arambel–Mehra 
rules* become the same as the Bar-Shalom–Campo and the Speyer rules. As is well 
known, however, the fused estimation error covariance by any CI rule is the same 
as each local estimation error covariance and is extremely overestimated (overly 
pessimistic).

Figure 6.2 compares the performance by the four fusion rules: the Bar-Shalom–
Campo rule (also Speyer and CI rules), the MV rule, the tracklet rule, and the BML 
rule, with the centralized tracking performance, when the normalized white noise 
intensity, q tvσ2 ∆( ), is varied in a wide range. Other key parameters are set as 
σp = 10σm (the initial position standard deviation) and σv = 3(σm/Δt) (the stationary 
velocity standard deviation).

First of all, we should note that the deterioration of the estimation performance 
from centralized tracking is very small, i.e., less than 4% for the Bar-Shalom–Campo, 

*	With α = 1/2, the denominator of the right hand side of (6.19) becomes p x p x dx
E

1 2( ) ( )∫ , the expres-

sion known as the Bhattacharyya bound, and hence, we may call covariance intersection fusion rule 
with α = 1/2, Bhattacharyya fusion rule (Chang et al. 2008).
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minimum variance (MV), and the tracklet rules, over a wide range of the process 
noise intensity, which is consistent with the observations reported in Bar-Shalom and 
Campo (1986) and Mori et al. (2002). The apparent poor performance of the fusion 
rule using the likelihood function in the strict Bayesian sense, labeled as BML rule, 
in the figure, is, however, rather surprising. The deterioration of the performance of 
the BML rule from centralized tracking is within 10%–30% for both the position and 
the velocity error RMS, for small process noise intensity, when q tv< ( )σ2/∆ . However, 
when q tv> ( )σ2/∆ , the estimation errors, in particular for the velocity estimates, dete-
riorate and seem to increase rapidly.

As mentioned in Section 6.2.1.1, the BML rule is defined using the likelihood 
function in the strict Bayesian sense, i.e., the conditional probability density of the 
data P(x̂1, x̂2|x) given the target state x to be estimated. In order for the BML rule 
to be close to the optimal in the sense of the minimum variance, we must have 
V‾ ≈ Vxz(Vzz − VzxV‾−1Vxz)−1Vzx, which is apparently violated for large process noise 
intensities. As mentioned in Section 6.2.1.1, the Bar-Shalom–Campo rule uses a 
likelihood function in the classical statistics sense, and apparently, its performance 
is much better than the ML estimate using the likelihood function in the strict 
Bayesian sense. In Figure 6.2, the full extent of the BML rule performance is not 
shown, since its bad performance will otherwise obscure the comparison of the 
performance of the other three fusion rules.

The MV rule provides optimal performance in terms of the estimation error vari-
ance as shown in Figure 6.2. It is however interesting to see that the tracklet rule, 
which does not use the inter-sensor cross-covariance matrix, shows better perfor-
mance in terms of positional estimation than the Bar-Shalom–Campo rule, which 
uses the cross-covariance. But the order of the performance is reversed for the 
velocity estimation. This trend holds generally true for complementary sensor and 
repeated fusion cases, as shown later. All three fusion rules, Bar-Shalom–Campo, 
tracklet, and MV, converge to the performance of centralized tracking performance 
both when q ↓ 0 and q ↑ ∞, although the Bar-Shalom–Campo rule that does not use 
the a priori target state information exhibits a small bias as q ↓ 0.

Figure 6.3 shows a similar comparison when we vary the initial state position 
standard deviation, σp, which represents the a priori information, in a wide range.
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FIGURE 6.2  Percent increase of RMS estimation errors over centralized tracking perfor-
mance as function of normalized process noise intensity: supplementary sensors: (a) RMS 
position estimation error and (b) RMS velocity estimation error.
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For this figure, the process noise intensity and the stationary velocity covariance 
are kept constant at q tv= ∆( )0 1 2. σ  and σv = 3(σm/Δt), respectively. The Bar-Shalom–
Campo rule does not use the initial state (a priori) information, and its performance 
is invariant with respect to σp. Like Figure 6.2 obtained by varying the process noise 
intensity, the performance of the BML rule using the likelihood function in the strict 
Bayesian sense (that we may call the Bayesian likelihood function) is noticeably 
worse than the Bar-Shalom–Campo rule that is a maximum likelihood estimate 
using a likelihood function in the classical statistics sense. In particular, the estima-
tion error of the BML rule exhibits more than 20% increase in the velocity estimation 
error RMS over centralized tracking for small initial position uncertainty (small σp), 
although Figure 6.3b does not show that part. Again the position estimation perfor-
mance by the tracklet rule is better than the Bar-Shalom–Campo rule consistently, 
and the order of the performance is reversed for the velocity estimation.

We performed similar studies by changing the stationary velocity standard devia-
tion σv, and did not observe any significant effects on the performance of any of the 
fusion rules.

6.2.1.5.2  Complementary Sensor Case
Let us consider cases where two sensors compensate with each other, by letting 

R k
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, using the same parameters otherwise, 

including the Ornstein–Uhlenbeck model. Figure 6.4 shows the changes in estimation 
performance by several fusion rules due to the process noise intensity.

In this case, the 90° difference in the orientations of the local measurement error 
covariance matrices, R1k and R2k, is propagated into the local state estimation error 
covariance matrices, V1 and V2, and the state fusion weight matrices, W1 and W2, of 
various fusion rules. In particular, the difference in the behaviors of the fusion rules 
that use the inter-sensor, cross-covariance matrix V12 (Bar-Shalom–Campo and MV 
rules) and those that do not use it (tracklet, Speyer, and CI rules) becomes visible in 
Figure 6.4. Nonetheless, like the supplementary sensor case of Figure 6.3, the estima-
tion performance deterioration of the four fusion rules from the centralized tracking 
performance remains within a very small range, i.e., 4%–5%. In Figure 6.4, we exclude 
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(a) RMS position estimation error and (b) RMS velocity estimation error.



142 Distributed Data Fusion for Network-Centric Operations

the performance of the BML rule using the likelihood in the strict Bayesian sense to 
prevent its bad performance from obscuring the comparison of other fusion rules.

There are apparently two peaks in the departure of distributed tracking fusion per-
formance from the centralized tracking performance, i.e., the low q peak and the high q 
peak. For the position estimation performance, the tracklet rule that does not use the V12 
exhibits better performance over the Bar-Shalom–Campo rule for very small q's (close 
to deterministic cases). For large q's, on the other hand, the Bar-Shalom–Campo rule 
using the V12 exhibits clear advantages over the other rules that do not use V12. For the 
velocity estimation performance, the advantage of the Bar-Shalom–Campo rules over 
others (except for the MV rule) is uniform with respect to the process noise intensity q.

Unlike the supplementary sensor case (where V1 = V2), the scalar weight α in 
(6.18) does change the fused estimation error covariance VF since V1 ≠ V2. However, 
in our examples, for both supplementary and the complementary cases, since the 
measurement error covariance matrices are diagonal, all the state estimation (self and 
cross) covariance matrices are also diagonal. The minimization of the determinant 

of the CI fused state estimation error covariance matrix α αV V1
1

2
1 1

1− − −
−+ ( )( )  is 

therefore the same as the minimization of its trace, and both are reduced to the 
maximization of α(1 − α), achieved uniquely at α = 1/2. This makes all the CI rules 
identical to the Speyer rule, i.e., W V V V ii i= +( ) =1

1
2

1 1 1 2− − − , , . In other words, both 
Shannon and Chen–Arambel–Mehra rules become the same as the Speyer rule.

Figure 6.5 shows the sensitivity of the four algorithms to the initial state 
estimation accuracy, i.e., the dependence on the a priori information. Both the 
Bar-Shalom–Campo and the Speyer rules do not use the a priori information, 
and hence, only very small secondary effects are visible. Because of the sensors’ 
difference in observability, the effects of including the cross-correlation or not are 
apparent. Like the case chosen for Figure 6.3, the process noise intensity and the 
stationary velocity covariance are kept constant at q tv= ∆( )0 1 2. σ  and σv = 3(σm/Δt). 
With this parameter, as shown in Figure 6.4, the tracklet rule performs better than 
the Bar-Shalom–Campo rule, for the position estimation, while the opposite is true 
for the velocity estimation.

Other tendencies are almost identical with those shown in the supplementary sen-
sor case (Figure 6.3). Both Figures 6.4 and 6.5 exhibit the robustness of various track 
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FIGURE 6.4  Percent increase of RMS estimation errors over centralized tracking perfor-
mance as function of normalized process noise intensity—complementary sensors: (a) RMS 
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fusion rules, due to the changes in the key tracking parameters, i.e., the process noise 
intensity level and the initial state accuracy (except for the BML fusion rule), as well 
as Figures 6.2 and 6.3.

6.2.2 R epeated Track Fusion

In the previous section, we considered a simple case where track fusion takes place 
only once to fuse two local state estimates. In this section, we will explore cases 
where communication between two sensors or to a fusion center is repeated.

Figure 6.6 shows three architectures of distributed tracking systems using two 
sensors that have their own independent local data processing capabilities. The two 
sensor systems may act as two completely autonomous systems that exchange data 
between them, or alternatively, report their processed data to a high level system, 
which we may call a fusion center. The fusion center may feed fused state estimates 
back to the two local sensor systems, to improve the performance of the local 
systems. In this section, we first consider the cases where there is no feedback, and 
then later, the cases with feedback.

We assume the same linear dynamics of a target to be tracked using two sensors 
with linear observations, as described in Section 6.2.1. For the sake of simplicity, let 
us consider only cases where the informational exchange happens synchronously at 
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FIGURE 6.6  Three possible architectures using two sensor systems with local data pro-
cessing capabilities: (a) two-autonomous-sensor distributed system, (b) two-level hierarchical 
distributed system, and (c) hierarchical system with feedback.
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the same time, but repeatedly at tF1, tF2,…(t0 < tF1 < tF2 < …). The local estimates of 
the two sensors and their estimation error covariance matrices will be denoted as 
((x̂11, V11), (x̂12, V12)) at tF1, ((x̂21, V21), (x̂22, V22)) at tF2, ((x̂31, V31), (x̂32, V32)) at tF3, and so 
forth, while the fused state estimate at each tFk, k = 1, 2, … will be denoted as x̂Fk.

For repeated-fusion cases, with or without feedback, the fusion rules x̂Fk = ϕk(x̂11, 
x̂12;x̂21, x̂22; …; x̂k1, x̂k2) (where ϕk is a linear or affine function because we are using a 
linear-Gaussian model) can be categorized as follows:

	 1.	Memoryless: x̂Fk = ϕk(x̂k1, x̂k2) uses only the most recent local estimates (x̂k1, x̂k2).
	 2.	Limited memory: x̂Fk = ϕk(x̂(k−ℓ+1)1, x̂(k−ℓ+1)2; …; x̂k1, x̂k2) uses only the most 

recent ℓ pairs of local estimates.
	 3.	Full memory: The full history (x̂11, x̂12; x̂21, x̂22; …; x̂k1, x̂k2) of the past local 

estimates is used.

We may categorize the Bar-Shalom–Campo, the Speyer, and the CI rules into the 
memoryless fusion rules, while the MV, and the BML rules can be made to be either 
limited or full memory rules, and the tracklet fusion rule may become a memoryless 
or one-step limited memory rule.

6.2.2.1  Repeated Track Fusion without Feedback
Let us first consider the cases where each sensor subsystem maintains the local data 
processing only with the local data, and does not mix with data from other sensors, 
while fused state estimates are calculated by fusing the unmixed local estimates. 
The rationale for not letting the local sensor system use the fused information is 
that, depending on what fusion rule is used and how fused results are fed back to 
the local data processing system, the performance of local systems, and eventually 
of the overall system, may deteriorate, rather than improve, by contamination of 
the otherwise pure local data. This data processing can be achieved either by a 
hierarchical or two-autonomous-system design, as shown in Figure 6.7.

Figure 6.7 shows two information graphs (described in Chapter 5) to illustrate 
the information flow in track fusion without feedback. The two information 
graphs are equivalent to each other and describe informational transactions in a 

Sensor 2

t0 tF1 tF2 tF3 tF4

t0 tF1 tF2 tF3 tF4

t0 tF1 tF2 tF3 tF4

Sensor 1

Sensor 2 

Sensor 1

Sensor 2 measurements 

Sensor 1 measurements 

Sensor 2 measurements 

Sensor 1 measurements 

Fusion
center

(b)(a)

FIGURE 6.7  Information graphs for processing architectures of two-sensor track fusion 
without feedback: (a) two sensor and fusion center and (b) two autonomous sensors.
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two-sensor-one-fusion-center system and a two-autonomous-sensor system. Dotted 
lines and circles with dotted lines represent a priori information, and squares 
represent raw sensor data that are fed into and accumulated in the local sensor 
data information graph nodes. The data accumulation, represented by horizontal 
informational flows at the same horizontal position, is represented without arrows 
in the graph. As shown in the graph, the same data processing can be implemented 
in either (a) hierarchical architecture or (b) autonomous architecture (or replicated 
hierarchical architecture). In the latter case, each local system maintains two state 
estimation filters, one local and one global. The global filter maintained by each 
local sensor system is sometimes called a shadow tracker (Drummond 1997b).

The various fusion rules introduced in Section 6.2.1 can be adapted as follows:

•	 Bar-Shalom–Campo, Speyer, and CI fusion rules: Those rules do not use 
the a priori information. For repeated track fusion, the a priori information 
at one fusion time tFk can be viewed as the information accumulated up to 
the previous fusion time tF(k−1). Thus these fusion rules ignore this a priori 
information, and simply combine the latest available local state estimates 
(i.e., memoryless fusion rules).

•	 Minimum Variance (MV) Fusion Rule: As indicated in Figure 6.7, either fusion 
center or the fused state filter in a local system accumulates the local estimates 
as ((x̂11, V11), (x̂12, V12)), …, ((x̂(k−1)1, V(k−1)1), (x̂(k−1)2, V(k−1)2)), at fusion time tF, in 
addition to the current pair ((x̂k1, Vk1), (x̂k2, Vk2)). Therefore, a general linear 
estimate x̂Fk of the target state x(tF) is a linear function of all the available esti-

mates ( , )x Vi i i

k
ˆκ κ κ= =

( )1
2

1
 plus the a priori information P(x(t0)) (or equivalently 

P(x(tF)) with mean x‾k and covariance matrix V‾k). By letting z x i i

k
= ( )= =

( )ˆκ κ1
2

1 
and x = x(tFk) in (6.13), and by calculating the covariance matrices Vxz and Vzz 
with augmented dimensions, the MV fusion rule can be expressed as

	

x W x W xFk k k i i

i

k

= +
==

∑∑0

1

2

1

κ κ

κ

ˆ 	 (6.26)

which is a full-memory fusion rule. Note that the calculation of the matri-

ces, Vxz and Vzz, are not trivial involving many random vectors ˆ .x i i

k

κ
κ

( )( )= =2

2

1
 

Nonetheless, it can be done through a simple extension of the method 
described in Section 6.2.1.2. We should note that the MV fusion rule is 
called the quasi-tracklet fusion method in Gao and Li (2010).

Replacing the summation 
κ=∑ 1

k
 in (6.26) by 

κ= − +k � 1

k∑ , we have a memoryless 

(ℓ = 1) or a limited memory (ℓ ≥ 1) fusion rule. In such a case, the MV rule obtained in 
that way is the BLUE with respect to the weights (Wk0, Wk1, Wk2, …, W(k−ℓ+1)1, W(k−ℓ+1)2) 

with the constraint W W Ik i

i
k

k

0

1

2

1
+ =

=
= − + ∑∑ κ

κ �
, while the Bar-Shalom–Campo rule 

is the BLUE with respect only to (Wk1, Wk2) with Wk1 + Wk2 = I.
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The BML fusion rule using the likelihood function in the strict Bayesian sense, 
defined by (6.15) in Section 6.2.1.1 for one-time track fusion, can be extended to the 
repeated fusion rules without feedback in exactly the same way as the MV rule. However, 
because of the poor performance that we found for the single-time track fusion, we will 
exclude the BML fusion rules from our consideration in the rest of this chapter.

6.2.2.1.1  Tracklet Fusion Rule and Decorrelation Method
The tracklet fusion rule defined by (6.10) in Section 6.2.1.1 can be directly translated 
into the repeated fusion as W V Vk Fk k0

1= − − , W V Vk Fk k1 1
1= − , and W V Vk Fk k2 2

1= − . In other 
words, we can apply the one-time tracklet fusion rule (6.10) used to decorrelate the 
past fused estimate from the most recent pair of the local estimates. Without feed-
back to the local processing, it can be shown (cf., e.g., Chong et al.1990) that this 
rule can achieve the performance of the centralized tracker for deterministic target 
dynamics without process noise, and for non-deterministic target dynamics when the 
fusion rate is the same as the sensor revisit rate.

Another approach is to decorrelate the local estimates between the current esti-
mates x̂ki at the current fusion time tFk, and the previous fusion time tF(k−1), by rewrit-
ing Equation 6.12 as

	

�

�
V z V x V x

V V V
ki ki ki ki ki ki

ki ki ki

− − −

− − −

= −
= −







1 1 1

1 1 1

ˆ
	 (6.27)

to obtain the decorrelated pair (zki, V
~

ki), for each sensor, i = 1, 2. This rule is similar 
to Equation 6.11 except that the local past estimates in used in decorrelation 
(Chong 1979). As mentioned in Section 6.2.1.1, the vector, zki, i = 1, 2, obtained this 
way, is called the pseudo-measurement or the equivalent measurement, and the 
measurements between the two consecutive fusion times tF(k−1) and tF are often called 
a tracklet. The decorrelated pair (zki, V

~
ki), i = 1, 2, is then used to obtain the updated 

fused estimate x̂Fk, using the Kalman filter update equations

	

V x V x V z V z

V V V
Fk Fk Fk Fk k k k k

Fk Fk k

− − − −

− − −

= + +
= + +

1 1
1
1

1 2
1

2

1 1
1
1

ˆ � �

� �VVk2
1−






	 (6.28)

The local prediction (x‾ki, V‾ki) and the global prediction (x‾Fk, V‾Fk) can be obtained by 
the extrapolation described in Section 6.2.1.1.

The tracklet fusion rule may viewed as a memoryless rule, since it uses only 
the most recent pair of local estimates, (x̂k1, x̂k2), although it uses the extrapolated 
a priori state mean. On the other hand, decorrelation of the local estimates uses 
the extrapolated pair of (x‾k1, x‾k2) of the last local estimates (x̂(k−1)1, x̂(k−1)2), as well as 
the extrapolation x‾Fk of the last fused state estimate x̂F(k−1), i.e., a fusion rule with 
limited (one-step) memory. However, it can be readily shown that the two methods 
are equivalent to each other only if the target dynamics are deterministic, i.e., Bt ≡ 0 
in (6.2). However, when the target dynamics are not deterministic, their performance 
will be different. As mentioned in Section 6.2.1.1, this local estimate decorrelation 
fusion rule is called the Channel filter in Bourgault and Durrant-Whyte (2004).
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6.2.2.1.2  Numerical Example of Repeated Track Fusion without Feedback
Figure 6.8 compares the performance of various track fusion rules applied to repeated-
fusion-without-feedback case. We used the same simplified model defined in Section 
6.2.1.5, i.e., the Ornstein–Uhlenbeck model with the time constant β and q v= 2 2βσ ,  
with a priori position standard deviation, σp and the velocity standard deviation σv. 

Only the complementary case with R k
m

m
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2

0
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4 0

0
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σ

 is used.

As shown in Section 6.2.1.5, 10 local synchronous measurements are taken 
between two consecutive fusion times, which are repeated 5 times, at the end of 
which we evaluate the performance of each repeated track fusion rule by the methods 
described in Section 6.2.1.2. The performance is shown only for the variation of the 
normalized process noise intensity. When the initial positional covariance matrix 
(determined by σP) or the stationary velocity covariance matrices (determined by 
σv) is varied, virtually no sensitivity was found due to the relatively long simulation 
period.

Comparing Figure 6.8 with Figure 6.4 in Section 6.2.1.5, the relative trends of 
the various fusion rules remain the same for the positional estimation performance, 
while the deterioration of the velocity estimation performance when the process 
noises is noticeably smaller in the repeated fusion than the one-time fusion. 
Since this is a complementary-sensor case, the local estimation error covariance 
matrices are different, and hence the fusion weights of the Bar-Shalom–Campo 
and the Speyer rules are different, resulting in some differences in Figure 6.8. 
However, because of the use of the completely complementary sensors defined 
by constant measurement error covariance matrices, Rk1 and Rk2, all the CI fusion 
rules become the same with α = 1/2, as in the one-time fusion case (for Figure 6.4) 
and is identical to the Speyer rule.

As described in (6.26), the full-memory MV fusion rule uses an increasing num-
ber of past fused state estimates in the fusion rule as track fusion is repeated, requir-
ing correlation among a larger number of past local estimates. To obtain Figure 6.8, 
we considered two cases for the number of local estimates used by the MV estimate. 
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FIGURE 6.8  Percent increase of RMS estimation errors over centralized tracking perfor-
mance as function of normalized process noise intensity: repeated fusion without feedback—
complementary sensors: (a) RMS position estimation error and (b) RMS velocity estimation 
error.
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Case 1 (MV1) uses only the most recent local estimate for each sensor and the 

fused estimates is ˆ ˆx W x W xFk k k ki ki

i

= +
=
∑0

2

2

 for each sensor and the fused estimate is 

ˆ ˆ ˆx W x W x W xFk k k ki ki k k i

i

= + +( )( ) ( )
=
∑0 1 1

2

2

− − . As mentioned earlier, the MV fusion rules 

outperform any other fusion rules that were compared. We should also note that, 
except for the MV2 fusion rule, all the fusion rules do not exhibit the convergence 
to the performance of the centralized tracking when the system approaches the 
deterministic dynamics, i.e., β ↓ 0, which may be a general indication of a potential 
instability associated with repeated fusion without feedback. Nonetheless, as seen in 
Figure 6.8, the performance deterioration of distributed tracking from centralized 
tracking by various fusion rules remains relatively very small, i.e., 1%–5%, over a 
very wide range of the process noise intensity level q. In particular, the performance 
by the relatively simple fusion rules, i.e., Bar-Shalom–Campo, Speyer, and CI, is 
found to be very robust.

The tracklet rule shown in Figure 6.8 is in its decorrelation form, which is widely 
used to decorrelate a sequence of up-stream trackers’ outputs that are input into a 
fusion engine that fuses tracking information from multiple sources, given in terms 
of state estimates rather than raw sensor measurements. The decorrelation form of 
the tracklet rule is defined by (6.27) and (6.28). This tracklet fusion rule is practical 
because it does require inter-sensor local target state estimation error covariance, 
and the result in Figure 6.8 justifies its use in the cases where fused state estimates 
are not fed back the local tracks.

6.2.2.2  Repeated Track Fusion with Feedback
It is rather intuitive to expect better state estimation performance, both local and 
global, by feeding back the fused state estimates to the local tracking agents. 
However, even using linear models, i.e., a rather idealized version of generally 
nonlinear real-world systems, such expectation may not be realized, depending on 
what fusion rule is used. This is the case because, although some fusion rules may 
perform reasonably well for state estimates at fusion times as shown in Chang et al. 
(2002), they may declare wrong, generally unreasonably optimistic estimation error 
covariance matrices, thereby contaminating the performance of the local trackers. 
This may cause secondary effects such as contamination of the fused state estimates 
generated later in by local tracking agents and subsequent deterioration of the overall 
performance. For this reason, repeated fusion without feedback may be preferred in 
many practical cases.

Repeated track fusion with feedback can be illustrated by the information graph 
shown in Figure 6.9.

In this figure, feedback is represented by those from the fusion center to the local 
processors in (a) two-local-sensor-one-fusion-center architecture and by arrows that 
connect local processing information graph nodes directly in (b) two-autonomous-
sensor architecture. In (b), two-autonomous-sensor distributed architecture, each 
local processing node sends its current state estimate at an agreed upon fusion time 
to the other node, and upon the receipt of the state estimate from the other node, 
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fuses the local and remote state estimates into the global estimate at that moment. 
Then, until the next fusion time, each local sensor processes only its local data.

Figure 6.10 shows the performance of the various fusion rules adapted to repeated 
track fusion with feedback, using the same complementary-sensor model used to 
compare the performance of Figure 6.8. The adaptations are shown below.

6.2.2.2.1  Bar-Shalom–Campo, Speyer, and CI Rules
The same fusion rules are used but the local state estimates and estimation error 
covariance matrices modified by feedback are used. All the covariance matrices 
are diagonal due to the use of the same diagonal measurement error covariance 
matrices Rki’s. Hence, all the CI rules become the same with α = 1/2 as shown earlier. 
However, although the Bar-Shalom–Campo fusion rule provides the honest fused 
state estimation error covariance, neither the Speyer nor the CI fusion rule does. The 
Speyer rule ignores the cross-covariance and results in generally optimistic estimation 
error covariance matrices, whereas the CI rules generally produce grossly pessimistic 
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FIGURE 6.9  Information graphs for processing architectures of two-sensor track fusion 
with feedback: (a) two sensor and fusion center and (b) two autonomous sensors.
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estimation error covariance matrices, with a typical determinant about four times 
bigger than that of the actual estimation error, both contaminating the local trackers’ 
performance.

6.2.2.2.2  Tracklet Rule
In this fusion rule, ˆ ˆ ( ˆ ˆ )x V V x V x V xFk Fk k k k k Fk Fk= + −− − − −

1
1

1 2
1

2
1 1, the a priori global state esti-

mation pair, ( x‾Fk, V‾Fk), obtained by extrapolating the last fusion result ( x‾F(k−1), V‾F(k−1)), 
is used to eliminate the redundant information contained by the two local state esti-
mates through the feedback and remove double counting. Nonetheless, the declared 
fused estimation error covariance matrix ˆ ( )V V V VFk k k Fk= + −− − − −

1
1

2
1 1 1 is not honest and 

generally optimistic, thus contaminating the local sensor data processing.

6.2.2.2.3  MV Fusion Rule
The MV1 rule as defined in Section 6.2.1.1, which only uses the most recent local 

estimates as
 

ˆ ˆ ,x W x W xFk k k ki ki

i

= +
=

∑0

1

2

 is used because the most recent estimates 

contain all the significant updates by the local agents due to feedback of the fused 
estimation results to the local agents. Any version of the MV fusion rules based 
on the BLUE principle generates honest estimation error covariance matrices, and 
hence there will be no contamination propagated through fusion and its feedback to 
the local processors.

6.2.2.2.4  Numerical Example of Repeated Track Fusion with Feedback
The same simplified linear models with synchronized complementary sensors as 
those to produce Figure 6.8 are used for Figure 6.10.

The behavior of the tracklet fusion rule is much more stable than that in fusion 
without feedback and behaves as a good approximation of the MV rule, which we 
may consider an almost optimal distributed fusion algorithm, as far as positional 
estimation is concerned. As observed in Figures 6.2 through 6.5, 6.8 and 6.10, 
however, the simpler rules, i.e., Bar-Shalom–Campo, Speyer, and CI, may provide 
better velocity estimation performance for a range of the process noise intensity levels 
q. The MV rule may be improved more by considering linear optimal estimate using 
longer length of memory. On the other hand, the Bar-Shalom–Campo, the Speyer, 
and the CI fusion rules do not use the a priori information. In the fusion with feedback 
case, we can see its consequences in Figure 6.10, although all the variations are within 
a relatively small margin, i.e., 5%. Therefore, we see again the robustness of the 
simple fusion rules, despite concerns about the use of information that may be much 
less than information available at each fusion time, and about the contamination of 
the local tracker by not honest (either pessimistic or optimistic) state fusion estimation 
error covariance matrices.

6.3  TRACK ASSOCIATION

Track association is a prerequisite for track fusion in a distributed tracking system. 
However, in many cases, association is rather obvious, and therefore target state 
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estimation from multiple sensors or track fusion becomes the major problem. On the 
other hand, when the target density is high, track association becomes a much more 
important problem than track fusion. As the track density becomes even higher, track 
association and track fusion can no longer be treated as separate problems. In that 
case, many local track association hypotheses are possible and equally likely, so that 
the best local association hypothesis may not provide high-quality tracks for associa-
tion at the fusion site. Then some form of distributed multiple hypothesis tracking is 
needed (Chong et al. [1990], Dunham et al. [2004]).

In this section, we treat the situation where the local tracks are good enough so 
that distributed tracking can be viewed as a two-stage problem, i.e., track associa-
tion followed by track fusion. The concept of distributed tracking in terms of track 
association was developed shortly after target tracking started to be investigated 
with modern estimation theory or filtering theory. Early work includes Singer and 
Kanyuck (1971) and Yaakov Bar-Shalom (1981).

6.3.1 T rack Association Problem Definition

We use the same linear-Gaussian model described in Section 6.2.1. We assume, 

however, a fixed number n of “true” targets represented by the system ( ( )) ,x ti t t
i

n

∈ ∞[ ) =
( )0 1 

of n replicated stochastic processes on the time interval [t0, ∞) with the joint initial

condition Pr , , ;ob x t dx t x t dx t g x t x V dx tn n i i1 0 1 0 0 0 0 0 0 0( ) ∈ ( ) ( ) ∈ ( ){ } = ( )( )… − (( )
=

∏
i

n

1

.
 

Each individual stochastic process x t i ni
t t

( )( ) =
∈ ∞ )0

1
,

, , ,… , is defined as in 

Section 6.2.1, with a system ( ( )) ,�w ti t t
i

n

∈ ∞[ ) =
( )0 1 

of white noises, or equivalently Wiener 

processes ( ( )) ,w ti t t
i

n

∈ ∞[ ) =
( )0 1

. The target density can be measured by γ0(x) = ng(x − x‾0;V‾0) 

so that for any measurable subset B in the target state space E the integral γ o x dx
B

( )∫  
is the expected number of targets whose initial condition xi(t0) is in the set B.

Instead of assuming the number n of targets to be a known constant, we may 
assume that n is a random variable. When n is a Poisson random variable, the system 

x ti i

n
( )0 1( ) =

 of random vectors in E is a Poisson point process. We maintain the 
constant n assumption for this chapter for the sake of simplicity, because the main 
purpose of this chapter is to compare various track association metrics.

We assume the following scenario: All the targets are visible by each of the two 
sensors, i.e., we assume the detection probability (for the local track level) by each 
sensor is unity. We also assume that there are no false tracks. The last assumption 
is supported by the fact that any track made up solely of false alarms would have 
been weeded out by the local sensor’s tracking. Thus we have n targets that are 
observed by two sensors, which produces n local tracks through Ni measurements, 
i = 1, 2, prior to a fusion time tF. Then our goal is to associate two sets of local 
tracks represented by the n-tuple of state estimates, ˆ ( )x ti F i

n
1 1( ) =

, and ˆ ( )x ti F i

n
2 1( ) =

, at 
the fusion time tF, where each estimate x̂ij is associated with the estimation error 
covariance matrix Vij.
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Uncertainty of the association between the true targets and the set of tracks from 
each sensor, i = 1, 2, can be modeled by two independent assignment functions ai that 
is a permutation on the set {1,…, n}. The association hypothesis between the two 
sets of local tracks is then expressed as a i a a i( ) = ⋅( )( )2 1

1− , i.e., the i-th track from 
sensor 1 and the a(i)-th track from sensor 2 share the same origin. The problem is 
then the determination of the most likely or most probable association according to 
an evaluation function that has the general form

	

P a C i a i
i

n

( ) = ( )( )
=

∏−1

1

� , 	 (6.29)

where
C is the normalizing constant
ℓ(i, j) is the likelihood of track i from sensor 1 that shares the same origin (target) 

as track j from sensor 2

Under an appropriate set of assumptions mentioned earlier, (6.29) becomes the a 
posteriori probability of the association a conditioned by the set of state estimates of 
all the tracks from both sensors, with the normalizing constant C. However, in this 
chapter, we consider (6.29) as the expression that relates the association hypothesis 
evaluation function to the track association metrics represented by the likelihood 
function ℓ(i, j) or its half negative logarithm, L(i, j) = −(1/2)ln (ℓ(i, j)).

6.3.2 T rack Association Metrics

Using the negative half logarithm L(i, j) = −(1/2)ln (ℓ(i, j)), the optimal track association 

â is obtained by minimizing the association cost f a L i a i
i

n

( ) = ( )( )
=∑ ,

1
. By the track 

association metrics, we mean the metrics that represent the cost L(i, j) for associating 
the ith track from sensor 1 and the jth track from sensor 2. Some of the metrics in the 
following list were originally developed as the metric to be used in the classical chi-
square test, but can be considered as an association metric because of its structure.

Singer–Kanyuck metric: In a pioneering paper (Singer and Kanyuck 1971), the 
usual chi-square metric

	
L i j x x x x V V xi j V V i j

T
i j i

i j
, ( ) ( ) (( ) = = +

+( )ˆ ˆ ˆ ˆ ˆ1 2
2

1 2 1 2
1

1
1 2

1− − −−
− xx jˆ 2 ) 	 (6.30)

is proposed. This metric can be interpreted as the negative half logarithm of

	

� i j p x p x dx g x x V g x x V dx gi j i i

EE

j j, ; ;( )= ( ) ( ) = ( ) ( )∫∫ ˆ ˆ ˆ ˆ1 2 1 1 2 2− − = xx x V Vi j i j1 2 1 2 − ˆ ; +( )
	

(6.31)

when we eliminate the factor det(2π(V1i + V2j))−1/2, or its negative half logarithm 
ln (det(2π(V1i + V2j))), as a constant that appears in the metrics for the other pairs.
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Bar-Shalom metric: Yaakov Bar-Shalom proposed the metric

	
L i j x xi j V V V Vi j ij ij

T,( ) =
+( )ˆ ˆ1 2

2

1 2 12 12

1−
− −

− 	 (6.32)

in Bar-Shalom (1981) to be used also in a chi-square test for the track association, 
where V12ij is the cross-covariance between two tracks, track i from sensor 1 and 
track j from sensor 2, obtained assuming that they originate from the same target. 
This metric can be interpreted as the negative half logarithm of
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when we ignore the factor det 2 1 2 12 12
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, or its negative half 

logarithm ln det 2 1 2 12 12π V V V Vi j ij ij
T+( )( )( )− − , as a constant that is to be canceled out.

CI metric: To the best of our knowledge, there is no track association metric based 
on the CI principle. However, based on the observation on the two metrics described 
earlier, and on the definition of the CI fusion (6.19), an appropriate track association 
metric may be defined as
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This metric can be interpreted as the negative half logarithm of
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logarithm, as a constant that is to be canceled out. The “optimal” weight α̂ij ∈ [0, 1] may 

be chosen as the one that either maximizes the determinant det α αV Vi j1
1

2
11− −−+ ( )( ) 

(corresponding to the Shannon fusion rule), or minimizes trace ( ( ) )α αV Vi j1
1

2
1 11− − −−+( ) 

(corresponding to the Chen–Arambel–Mehra fusion rule).

Chong–Mori–Chang metric: Under the assumption that there are no false tracks 
and missed tracks for the two-sensor track-to-track association, we can show that 
the Bayesian track association hypothesis evaluation formula is expressed by (6.29) 
using the track association likelihood given by



154 Distributed Data Fusion for Network-Centric Operations

	

� i j
p x p x

p x
dx

g x x V g x x Vi j

E

i i j j
,

; ;( ) ( ) ( )
( )

( ) (∫ = = 
− −ˆ ˆ ˆ ˆ1 2 1 1 2 2 ))

( )
( ) ( )
( ) ( )













∫ g x x V
dx

V V

V V

E

Fij

i j

−

=

;

det det

det det
e

ˆ

1 2

1 2

xxp − − + − − −− − −
1
2

1
2

2
2 2

1
1

2
1 1ˆ ˆ ˆ ˆ ˆx x x x x xFij i V F j V F

Vi j













	
(6.36)

where
p−(x) = g(x − x‾; V‾) is the a priori probability density of the target state x = x(tF) at 

the fusion time tF

(x̂Fij, V̂Fij) is the pair of the fused state estimate and the estimation error covariance 
matrix, obtained by the track fusion rule, defined by (6.15) in Section 6.2.1.1, i.e.,
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all under the hypothesis that the i-th track from sensor 1 and the j-th track from 
sensor 2 originate from the same target. Unfortunately, like the tracklet fusion rule 
(6.15), the last statement is true only when the target dynamics are deterministic, i.e., 
there is no process noise (Bt = 0). Nonetheless, like the tracklet fusion rule, combin-
ing with the nondeterministic extrapolation formula, the track association metric of 
(6.36) can be adapted to the nondeterministic cases by combining with the nonde-
terministic extrapolation formula. By eliminating the four determinant factors from 
(6.36) as the factors that can be canceled out, the negative half logarithm of the track 
likelihood becomes
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Expanded State metric: This metric is obtained by expanding the target state 
from the state x(tF) at the fusion time tF to the states at multiple times, (t1, t2, …, tn), 
within the time interval [t0, tF]. If this set (t1, t2, …, tn) covers all the measurement 
times by both sensors, we can reformulate the nondeterministic problem defined in 
Section 6.2.1, as a static state problem in which the “static” states are (x(t1), …, x(tn)) 
instead of x(tF). In this way, all the uncertainty generated by the process noise is 
translated into the cross-covariance among the target states at different times. Then 
the track association hypothesis evaluation formula (6.29) using the Chong–Mori–
Chang metric (6.36) becomes truly the conditional probability of each association 
hypothesis in the Bayesian sense, from which we can obtain the MAP probability 
track association hypothesis by solving the classical bipartite assignment problem.

Remarks: Strictly speaking, the use of (6.29) is justified only when the number of 
targets is known, i.e., when there is no missed target and there are no false tracks. 
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When missed targets are possible, we may have unpaired local tracks. In such a case, 
as shown in Mori and Chong (2003) and Ferry (2010), when there may be unpaired 
local tracks, each track-to-track association must be adjusted according to the estimate 
of the target density, and when the a priori number of targets is not Poisson, the con-
stant C in (6.19) may depend on the number of paired and unpaired local tracks. The 
cases where there may be false tracks are theoretically more complicated. We can find 
a proposal of track-to-track association metric used in such a case in Blackman and 
Popoli (1999), and a recent theoretical treatment can be found in Mori et al. (2009).

The sensor biases and the track association are closely related, and may not be 
separable in some cases. In such a case, the track association metric in (6.29) can be 
modified by the sensor bias probability distribution, as shown in Levedahl (2002), 
Mori and Chong (2007), and Ferry (2010).

6.3.3  Comparison of Track Association Metrics

In order to compare the various track association metrics described in Section 6.3.2, 
we will examine the track association performance using the evaluation function 
(6.29) with different track association metrics. A simple linear model, using the 
Ornstein–Uhlenbeck target dynamics and two complementary sensors described in 
Section 6.2.1.5, is used for this purpose. The complementary sensor case was chosen 
to mimic a situation where each local sensor is able to separate the targets relatively 
well into a set of high-quality local tracks, but there is still significant association 
uncertainty between the local tracks from both sensors, as illustrated in Figure 6.11.

Figure 6.12 shows the result of this comparison. Unlike the track fusion 
performance analysis of Section 6.2, there is no obvious analytical method of 
predicting the track association performance by any of the association metrics 
described earlier. Therefore, Monte Carlo analysis was conducted. In each run, 
a random set of 100 targets was generated according to the model described in 
Section 6.3.1, assuming synchronous observation with the same number of 10 local 
measurements for each track. The initial position uncertainty standard deviation is 10 
times as big as the measurement error, i.e., σP = 10σm. The figure shows a comparison 

Tracks from
sensor 1 Tracks from

sensor 2

FIGURE 6.11  Local tracks from two complementary sensors.
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of association performance by (1) the Bar-Shalom metric, (2) the Singer–Kanyuck 
metric, (3) Chong–Mori–Chang metric, and (4) the extended state metric, varying 
(a) the normalized process noise intensity q and (b) the initial position uncertainty 
standard deviation σp. The complementary sensor case with 90° different sensor 
measurement error covariance matrices is used for this comparison, resulting in the 
equal weights for the CI fusion rule, i.e., α = 1/2, in (6.18). The corresponding CI 
track association metric is defined by (6.34) with equal weight αij ≡ 1/2. This weight 
makes the CI association metric the same as the Singer–Kanyuck metric.

For each run, we examined each target to see whether the tracks originating 
from that target are correctly associated or not. Then the probability of correct asso-
ciation, as defined as the probability of each track from sensor 1 being assigned to 
the “correct” track from sensor 2 (“correct” as indicated by the ground truth), was 
calculated as the number of correctly associated targets over the total number of 
targets. Each point in the figure was obtained by averaging 1000 samples.

In Figure 6.12a and b, the advantage of using the inter-sensor cross-covariance in 
the association metric is clearly shown by the better performance of the Bar-Shalom 
metric over the Singer–Kanyuck or the Chong–Mori–Chang metric that does not use 
the cross-covariance matrix. The deterioration of the association performance for the 
middle range of the process noise intensity can be explained by its effect on the joint 
target state density, shown in Figure 6.1c in Section 6.2.1.5. The use of the a priori state 
mean by the Chong–Mori–Chang metric results in better association performance by 
that using the Singer–Kanyuck metric, but the difference is rather small because the 
10 local measurements may lessen the effect of the initial condition. The association 
performance using either of metrics is worse than that of the Bar-Shalom metric that 
uses the cross-covariance. In almost all situations, the extended state metric exhibits 
much better association performance than the other association metrics because it 
considers the state estimates at multiple times, and not just at the fusion time.

6.4  CONCLUSIONS

This chapter has addressed the track fusion and association problems in distrib-
uted multiple-target tracking. We have reviewed several track fusion algorithms 
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FIGURE 6.12  Track association performance comparison: (a) track association perfor-
mance as function of normalized process noise intensity and (b) track association perfor-
mance as function of normalized initial position standard deviation.
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developed over the last three decades and compared their performance. The use 
of linear-Gaussian models allows closed form analytical performance evaluation. 
Simple but realistic target dynamics with the Ornstein–Uhlenbeck model were used 
to compare the various track fusion rules for one-time fusion, and repeated fusion 
cases, with and without feedback of the global fused target state estimates to the local 
tracking agents. Our analysis indicates that even though some fusion rules perform 
slightly better than others depending on the situation, the performance of the more 
common fusion rules such as speyer, minimum variance (MV) or BLUE, Bar-Shalom 
Campo, decorrelation, is only slightly worse (<5%) than that of centralized tracking. 
The choice of the appropriate fusion rule should depend on factors such as communi-
cation requirements, implementation difficulty, and robustness.

Various track association metrics were compared with respect to track association 
performance for a simple one-time track fusion. For the complementary sensor case, 
we confirmed clearly better track association performance of the Bar-Shalom metric 
that considers the cross-covariance between two local tracks hypothesized to origi-
nate from the same target, over the Singer–Kanyuck metric or the Chong–Mori–
Chang metric that does not use such cross-covariance information. At the same time, 
the extended state vector for track association, which requires more data and com-
putation, exhibits much better track association performance than any other associa-
tion metrics. This is not surprising because association tracks with only the state 
estimates are difficult when the target is maneuvering. An approximate extended 
state track association metric may be desirable in the case of highly nondeterministic 
target dynamics.
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7.1  DECENTRALIZED DATA FUSION INTRODUCTION

A decentralized data fusion (DDF) system consists of a network of sensing and 
computing nodes that aim to cooperatively estimate a common state [12]. Fusion 
occurs on each node using locally obtained observations and communications 
from neighboring nodes, without relying on a centralized decision or fusion 
system. This chapter summarizes and builds on previous research in DDF, 
including [18,22].

DDF systems have been characterized by three constraints [9,12]:

	 1.	There should be no single central fusion center; no single node should be 
central to the successful operation of the network.

	 2.	There is no common communication facility; nodes cannot broadcast results 
and communication must be kept on a strictly node-to-node basis.

	 3.	Sensor nodes do not have any global knowledge of the network topology; 
nodes should only know about connections in their own neighborhood.

The resulting estimates in the decentralized system can be compared to an equivalent 
centralized estimator operating with the same observations and modeling assump-
tions. The focus of this chapter is on exact solutions for DDF, which are equivalent 
to centralized data fusion, in the following sense:

•	 The use of consistent fusion with information terms which are conditionally 
independent given the state, as opposed to methods which double count or 
miss information terms or use conservative fusion methods.

•	 The use of direct solution methods as opposed to iterative or convergent 
methods.

This chapter is organized as follows. Section 7.2 introduces the information form, 
which is used in this chapter as the expression for fusion operations. Section 7.3 
discusses the fusion update and communication aspects of DDF and discusses the 
operation of DDF on tree topology networks. Section 7.4 introduces the trajectory 
state formulation for dynamics and uses this to operate decentralized networks for 
dynamic systems, including handling delayed, asequent and burst communications 
issues. Section 7.5 extends the tree topology to k-tree topologies for redundant and 
dynamic decentralized topologies.
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7.2  INFORMATION FORM INTRODUCTION

For the decentralized algorithms presented in this chapter, it is convenient to express 
the fusion operations in terms of information by reformulating multiplication of 
probability as summation of log-probability.
The main properties that motivate the use of the information form are as follows:

	 1.	Additivity of fusion and observation updates
	 2.	Sparsity of the information matrix

Consider a random variable x with prior probability density function (PDF) described 
by a Gaussian PDF, together with a linear observation, described by a Gaussian 
likelihood:

	
p

b
T( ) exp ( ) ( )x x x P x x= − − −





−1 1
2

1ˆ ˆ 	 (7.1)

	
p

c
T( | ) exp ( ) ( )z x Hx z R Hx z= − − −



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−1 1
2

1 	 (7.2)

Where the observation is modeled as

	 z Hx w w 0 ww R= + = =E E T[ ] [ ] 	 (7.3)

Under Bayes’ rule, p(x | z) = p(z | x)p(x)/p(z), the posterior PDF given the prior and 
observation is

	
p

d
T T( | ) exp ( ) ( ) ( ) ( )x z x x P x x Hx z R Hx z= − − − − − −





− −1 1
2

1
2

1 1ˆ ˆ 	 (7.4)
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The two expressions for the posterior must equate
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By matching first and second derivatives of each side with respect to x, this results in

	 P P H R H+
− − −= +1 1 1T 	 (7.7)

	 P x P x H R z+
−

+
−

+
−= +1 1 1ˆ ˆ T 	 (7.8)
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The information form is defined by these terms P−1 and P−1x̂:
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Consequently, given Y and y,̂ the estimate is recovered by the solution of the linear 
system

	 Yx yˆ ˆ= 	 (7.10)

The estimate x̂ will be identical to that obtained by a covariance-based Gaussian 
estimator such as a Kalman filter operating under identical assumptions.

So, given a prior PDF described by information matrix Y and information vector y, 
the posterior following the observation is

	 Y Y H R H+ −= + T 1 	 (7.11)

	 y y H R z+ −= + T 1 	 (7.12)

It is convenient to label the observation as contributing observation information in 
the form

	 I H R H= −T 1 	 (7.13)

	 i H R z= −T 1 	 (7.14)

In general, the fusion of multiple, statistically independent terms is a straightforward 
addition:

	

Y Y y y+ += =∑ ∑i

i

i

i

	 (7.15)

7.3  DECENTRALIZED FUSION AND COMMUNICATION

This section discusses DDF with a focus on the fusion and update steps resulting 
from communication and observations. These aspects are highlighted by considering 
DDF on a static state variable. Section 7.4 extends this discussion by considering 
system dynamics and temporal aspects.

The static case highlights the basic properties of the fusion component of the 
decentralized system, since the present formulation of DDF is built on the additive 
properties of the information fusion operations.
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The system then consists of a common static state x, which is to be estimated 
on the multiple platforms. The decentralized system is required to obtain an esti-
mate in exact agreement with an equivalent centralized estimator using the same 
observations and modeling assumptions. In a static system, the posterior informa-
tion is identically the sum of the individual independent observation information 
terms

	

Y H R H y H R z= =∑ ∑− −
k
T

k

k k k
T

k

k k
1 1ˆ 	 (7.16)

	 x̂ Y y= /
	 (7.17)

In essence, the DDF nodes communicate to obtain the Y and ŷ sums in Equation 
7.16. The required globally agreeing estimate is then obtained through the solution 
of Equation 7.17 separately at each node.

Different algorithms on different topologies operate different methods for obtain-
ing the sums in Equation 7.16:

•	 In a centralized estimator, each H R Hk
T

k k
−1  and H R zk

T
k k
−1  is communicated to 

the central estimator, which performs the sum in Equation 7.16.
•	 In a fully connected decentralized topology, each node transmits H R Hk

T
k k
−1  

and H R zk
T

k k
−1  to each other node. Each node is then able to separately 

perform the sum in Equation 7.16.
•	 In a tree-connected decentralized topology, nodes accumulate partial sums 

of Equation 7.16 and communicate in a tree to obtain the global sums. This 
topology is discussed further later.

7.3.1 T ree Network Topology, Channel Cache

This section considers the singly connected or tree decentralized topology. Under 
this topology, the graph properties of the tree and the distributivity of the addition 
are exploited in order to perform the required summation in Equation 7.16.

A tree topology has no cycles. This means that for each node any communications 
to a neighbor cannot affect any other neighbor. Also, any communications from a 
neighbor cannot be affected by any other neighbor. This occurs because at any node, 
a, the neighbors of the neighbors of a, excluding a, are disjoint.

	 For every node  in a tree: \  are disjointa a a{ ( ( ))}N N 	 (7.18)

where
(a) is the neighbor of node a
S\a is the set S excluding a
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This means that the sum in Equation 7.16 can be written as a hierarchy of partial 
sums over disjoint subsets:

	

Y I I I Ia a i j k

k j ij i ai a

= + + + +










∈∈∈
∑∑ { }{ }
{ ( )\ }{ ( )\ }( )

�
NNN

∑∑ 	 (7.19)

The tree topology guarantees that the terms inside each summation are disjoint 
(independent from each other) and therefore prevents double counting of observa-
tion information.

The algorithm developed in this section will be referred to as the channel cache 
algorithm. The channel cache algorithm is a variant of the well-known channel filter 
algorithm [6,9,12,18–20,22]. The channel cache algorithm is also inspired by junc-
tion tree algorithm for inference in graphical models [21] and [16].

The operation of a tree topology decentralized network is illustrated in Figure 7.1. 
Figure 7.1 shows a branch in a tree network.

Each node stores its own observation information (dark gray) in the form 
I = HTR−1H and i = HTR−1z. These correspond to the I terms in Equation 7.19. 
These observation information terms are required to be statistically independent 
information unique to one node.

The communicated term from a node i to a is an information matrix Cia (and its 
information vector counterpart). Cia consists of the transmit node’s own independent 
observation information plus the sum of all communicated terms received from the 
“upstream” part of the tree network:

	

C I Cia i ji

j i a

= +
∈
∑

{ ( ) \ }N

	 (7.20)

Node A

Node AObs.

Node B

Node B Obs.

Node C

Node C Obs.

Node D

Node D Obs.

A BC

D

FIGURE 7.1  DDF with channel caches. Four nodes are arranged in the topology shown in 
the lower right. Each node stores its own fused observations (dark gray). Each node caches the 
received communication term from each of its neighbors (light gray). The total fused information 
at each node is the sum of each stack, since each layer consists of independent information. The 
transmitted communication term is the sum of the stack excluding the destination’s cache term.
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∑∑I I Ci j kj
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	 (7.21)

Each node locally caches the received communication term from each of its neigh-
bors (light gray) in a so-called channel cache. All of the channel cache, C, and the 
observation, I, information terms are statistically independent.

Transmission of a communication term has no effect at the transmitting node, so 
transmissions can be lost without breaking the consistency of the estimates. On recep-
tion of a communication term, the received term is simply stored in the channel cache. 
This means that duplicate transmissions and/or duplicate receptions are acceptable.

Each node can obtain the total network sum, Y, by summing its own observation 
information together with all the locally cached communication terms, e.g., at node a:

	

Y I Ca a ia

i a

= +
∈
∑
N ( )

	 (7.22)

The net result is that the network computes a series of partial sums, with each node 
obtaining the sum as in Equation 7.19. For each node, the evaluation of Equation 7.19 
operates as a series of messages propagating inward on the tree toward that node.

Nodes initialize their observation and communication cache information terms to 
zero, I = 0, C = 0, such that nodes can produce estimates even before the network has 
finished propagating terms across the network span.

7.3.2 R elated Channel Filter Approaches

The previous section presented the channel cache algorithm for tree topology net-
works. The channel cache is closely related to the channel filter algorithm, which has 
been discussed in various papers [6,9,12,18–20,22].

The approach used in a channel filter is to maintain the total information estimate 
at each node and maintain the common information between pairs of nodes on a tree 
network. The channel filter’s use of the common information is motivated by the fol-
lowing equation for the fusion of a local YA and a received communication YB from 
a remote node:

	 Y Y Y YA B A B A B∪ ∩= + − 	 (7.23)

Each primary operation of the channel filter is described next (referring to operations 
at a node i, transmitting to a node a and receiving from a node j). Table 7.1 summarizes 
the channel algorithms. The channel filter consists of the following operations:

•	 Observation: Yi + = I. Observation information I adds simply into the total 
information Yi without affecting any channel common information.

•	 Transmit: The node’s current total information is transmitted, Cia = Yi. It is 
assumed that the destination node a will successfully receive the communi-
cation; therefore, the common information is set Yia = Yi.
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•	 Receive: The received information is Yji, so given the existing common infor-
mation Cji, the total information is updated: Yi + = Cji − Yji. The nodes now 
have common information from the communication, so the node sets Yji = Cji.

•	 Result: The total information is maintained in Yi.

Both the channel filter and the channel cache algorithms are designed to exploit a 
tree topology network. At each node, both the channel filter and channel cache algo-
rithms store an information matrix and vector for each neighbor, intended to ensure 
correct consistent interaction with that neighbor. The basic difference between the 
channel filter and the channel cache algorithms is as follows:

•	 The channel filter algorithm maintains the common information between the 
local total information and each neighbor’s total information.

•	 The channel cache algorithm maintains the contributed information from 
each neighbor.

Using the common information requires both nodes to maintain identical copies of 
the common information, which is vulnerable to failure if the two copies differ (cases 
in which this can happen are discussed later). The common information maintained 
at both nodes on a channel is required to be identical, since the common information, 
Yi∩ j, is symmetrical between two nodes, i.e., Yi∩ j = Yj∩ i [12].

By contrast, the channel cache algorithm maintains a local record of the 
contributed information from the neighbor. This decouples the communication 
between nodes such that the changes only occur locally when information is 
received, not when it is transmitted. Table 7.2 shows a decentralized communication 
transaction between two nodes, showing both the contributed information and the 
common information, in the case of an ideal communication. The communication 
must update the common information at both nodes, which requires an assumption 
of successful communication for the sender. On the other hand, the communication 

TABLE 7.1
Summary of the Primary Operations for the Channel Cache 
and Channel Filter Algorithms

Obs Update
Channel Cache

Ii+ = I
Channel Filter

Yi+ = I

Transmit C I Cia i ji

j i a

= +
∈
∑

{ ( )\ }N

C Y

Y Y
ia i

ia i

=
=

Receive Store Cji Y C Y

Y C
i ji ji

ji ji

+= −
=

Result Y I Ci i ji

j i

= +
∈
∑
N ( )

Use Yi
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only needs to update the contributed information record once (at the destination 
node) and only upon an actual successful communication.

Table 7.2 also shows that the two contributed information terms sum to the com-
mon information:

	
Y Y YA B B A A Bcontributed to contributed to+ = ∩ 	 (7.24)

The channel filter algorithm can fall into cases where the two common-information 
records can differ due to miscommunication:

•	 Asynchronous operation. If nodes send messages which “cross over,” then 
their common-information records can become misaligned. An example 
is shown in Table 7.3. Consider a pair of nodes i,j which transmit almost 
simultaneously at times ti, tj and receive at times ri, rj. This asynchronous 
case arises if rj > tj or ri > ti.

•	 Lost transmissions. The channel filter algorithm can also become mis-
aligned in the case of transmissions which are lost. This occurs if a node 
completes the “transmit” update to its channel filter but the destination fails 
to receive the message. An example is shown in Table 7.4.

7.3.3  Summary

This section described DDF with a focus on the observation update and the decen-
tralized communication, particularly in tree topology networks.

The fusion of independent observation and/or communicated information is 
additive when performed in the log-likelihood or information form. Therefore, the 
problem of forming a decentralized estimate which is identical to a centralized 
equivalent reduces down to a decentralized algorithm for forming a correct sum of 
the observation information terms.

When applied to tree topology networks, it suffices to maintain a local node 
information matrix and vector and one information matrix and vector for each 
neighbor in the network.

TABLE 7.2
Common Information versus Contributed Information in an Ideal Pair of 
Communications

At Node A At Node B

CommentLocal Total
Contrib 
from B

Common 
with B

Common 
with A

Contrib 
from A

Local 
Total

a 0 0 0 0 b Start.

a 0 a a a b + a A → B

a + b B a + b a + b a b + a A ← B
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This section presented the channel cache algorithm for handling the local node 
information and decentralized communications operations. The channel cache 
algorithm handles imperfect communications such as asynchronous transmissions, 
lost transmissions in a simple manner. The channel cache algorithm operates on 
records of contributed information from each neighbor. This is in addition to the 
capabilities previously possible with channel filters on tree networks, especially the 
avoidance of double counting, avoidance of conservative fusion, while achieving 
global agreement among nodes in a decentralized network.

The aforementioned discussion has focused on the observation update and the 
decentralized communication. The following section extends the discussion of DDF 
into dynamic systems.

7.4  DYNAMIC SYSTEMS

The observation and communication updates, as described in the previous section, 
were discussed with respect to a static system, i.e., a single-state vector x. This 
section extends the discussion into dynamic systems and reviews the smoothing 
or trajectory state formulation of dynamic systems to formulate DDF for 
estimation of dynamic systems. This trajectory state formulation of dynamics is 
then applied to address the issues of delayed and asequent observations and burst 
communications in DDF.

TABLE 7.3
Asynchronous Operation

Channel Filter

At Node A At Node B

CommentLocal Total
Common 
with B Comms Comms

Common 
with A Local Total

a 0 — — 0 b Start.

a a a (out) (out) b b b Transmit.

b b b (in) (in) a a a Receive.

Channel Cache

At Node A At Node B

CommentLocal Total
Common 
with B Comms Comms

Common 
with A Local Total

a 0 — — 0 b Start.

a 0 a (out) (out) b 0 b Transmit.

a + b b b (in) (in) a a a + b Receive.

Note:	 In the channel filter algorithm, nodes that both transmit simultaneously result in incorrectly 
swapped estimates rather than fused estimates. The channel cache algorithm modifies the 
node state only on reception, not transmission, and hence is able to operate correctly.
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When the decentralized system has observation and/or communication interrup-
tions and delays, it becomes important to decide when and where the dynamic propa-
gation of the estimate is to be applied. Furthermore, at each decentralized node, 
there are stored communication terms relating to other nodes, and so it is also neces-
sary to consider the dynamic propagation of these.

This section presents the trajectory state approach to representing system 
dynamics. The trajectory state approach expands the state for a dynamic sys-
tem into a joint state consisting of a sequence (trajectory) of states. The tools for 
manipulating joint probabilities in several dimensions and tools for manipulating 
probabilities and decentralization of static states then become applicable to the 
dynamic system.

The trajectory state approach relates to smoothing methods used in Kalman 
smoothing [17]. It is also known as delayed states and has been used to account for 
delayed decision making in estimation such as delayed associations [15]. The use of 
delayed states in the information form, with the resulting sparse structure, has been 
applied in localization and mapping [8,10]. Delayed states have more recently been 
applied to DDF as a tool for delayed measurements [1] and for delayed and asequent 
measurements and communications [4].

TABLE 7.4
Lost Transmission

Channel Filter

At Node A At Node B

CommentLocal Total
Common 
with B Comms Comms

Common 
with A Local Total

a 0 — — 0 b Start.

a a a (out,lost) — 0 b A → B (lost)

b b b (in) (out) b b b A ← B

b b b (out) (in) b b b A → B

Channel Cache

At Node A At Node B

CommentLocal Total
Contrib 
from B Comms Comms

Contrib 
from A Local Total

a 0 — — 0 b Start.

a 0 a (out,lost) — 0 b A → B (lost)

a + b b b (in) (out) b 0 b A ← B

a + b b a (out) (in) a a a + b A → B

Note:	 In the channel filter algorithm, a lost transmission results in a loss of the new information in 
the lost transmission. The information is not recovered at subsequent communications, due 
to the operation of the algorithm subtracting (incorrect) common information. For the chan-
nel cache algorithm, a lost transmission has no effect, and hence the information is correctly 
gained upon the next successful communication.
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This section focuses on correct approaches to dealing with delayed, asequent, 
and burst communications with dynamic models that are known and can be applied 
by each node. The trajectory state approach can be extended to allow the decentral-
ized system to distribute dynamic models which originate from one node (known 
as model distribution). The issue of dynamic communication topologies in DDF is 
discussed separately in Section 7.5.

7.4.1  State Dynamics

This section explains the state dynamics and trajectory state form, in general. Section 
7.4.2 applies these to DDF specifically.

7.4.1.1  State Dynamic Model
We consider a basic, linear discrete time state dynamic model in the form

	 x Fx Bu Gvk k k k+ = + +1 	 (7.25)

where
xk is the state vector at instant k
F is the state transition matrix
vk is unknown, zero mean, white noise, E[vk] = 0, E k k

T[ ]v v Q=
uk is a known control signal, if available

The conventional treatment is to form a prediction by using a dynamic transformation 
of the estimate [2]

	 ˆ ˆx Fx Buk k k+ = +1 	 (7.26)

	 P FP F GQGk k
T T

+ = +1 	 (7.27)

where this is considered to be a transformation of the estimate, replacing the esti-
mate for time k by that for time k + 1, as a discrete operation.

7.4.1.2  Trajectory Information Approach
Equation 7.27 can actually be considered (see later) to consist of an augmentation of 
the estimate into the latter timestep k + 1, followed immediately by a marginalization 
to remove timestep k. In this way, the prediction operation in Equation 7.27 moves 
the estimate forward in time but removes the state components for the past timestep. 
This removal of the past timestep makes it impossible (or difficult) to fuse late 
observations or communicated information. This transformative prediction approach 
thus requires observations to be fused in at the appropriate timestep.

This section describes an alternative approach known as delayed state or 
trajectory state approach, which is designed to address the aforementioned issues. 
In the trajectory state approach, instead of considering prediction equations 
to explicitly transform the estimate from time k to k + 1, we instead consider the 
trajectory described by a joint state X x x=  +k k 1 .
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The key reason why this is useful is as follows: If we operate with a joint trajectory 
state vector X x x x=  + +k k k n1 � , then observations and communications 
in any time (k to k + n), and the dynamic model all act additively on the joint state X. 
Thus the methods of Section 7.3 remain applicable, since they are designed to exploit 
additive operations over decentralized networks.

Therefore, we rearrange Equation 7.25 to focus on the joint trajectory state 

X x x=  +k k 1 :

	 Bu Fx x Gv= − + −+k kI 1 	 (7.28)

	
Bu F x x Gv= −    −+I k k

T
1 	 (7.29)

where  denotes the identity matrix. We can then consider Equation 7.29 in the form 
of an observation, as in Equation 7.3:

	

z H x w ww R

Bu F x x Gv Gvv G GQG

= + =

= −    − =+

E

E

T

k k
T T T T

[ ]

[ ]I 1 	
(7.30)

Considering the dynamic model in the form of an observation requires the following 
replacements:

	
H F R GQG z Bu← −  ← ←I T 	 (7.31)

By analogy with Equation 7.13, the dynamic model can then be represented as an 
information matrix and vector in the joint trajectory state X:

	 I H R H i H R z= =− −T T1 1 	 (7.32)
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	 (7.33)

where Q ≜ GQGT.

7.4.1.3  Equivalence to the Conventional Approach
We next show the equivalence of the trajectory state approach to existing prediction 
equations in the information and covariance forms. To show the equivalence, we 
setup the same initial conditions and steps as for a prediction:

	 1.	Define some prior information in the earlier timestep xk: Yk and yk satisfying 
Ykxk̂ = yk.

	 2.	Allow no prior information in the latter xk+1.
	 3.	Apply the dynamic model to the joint xk and xk+1.
	 4.	Evaluate the marginal information in the latter timestep xk+1.
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The posterior information, Y and y, after step 3 (i.e., given the prior and the dynamic 
model) is

	
Y

Y 0

0 0
H R H y

y

0
H R z=









 + =









 +− −k T k T1 1 	 (7.34)
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	 (7.35)

Equation 7.35 is equivalent to the conventional prediction in Equation 7.27 (proofs 
are provided in the appendix):

•	 The joint X̂ satisfies YX̂ = y, with ˆ ˆ

ˆ

ˆ

ˆ
X

x

x

x

Fx Bu
=









 =

+










+

k

k

k

k1

.

•	 The xk marginal of Y remains as the given Yk and yk.
•	 The xk+1 marginal of Y yields known expressions [2,19] for the prediction in 

covariance and information forms:

	 Y FP Fk k k k
T

+
−= +1

1
| |{ }Q 	 (7.36)

	 = − −M MG G MS 1 T 	 (7.37)

	
y MG G F y Y Buk k

T T
k k k k+

− −
+= − +1

1
1| | |[ ]I S 	 (7.38)

	
( )S = + −G MG QT 1 	 (7.39)

	
( )|M F Y F= − −T

k k
1 	 (7.40)

7.4.1.4  Multiple Trajectory States
Earlier we discussed the formation of a pair of joint successive dynamic states, xk 
and xk+1. Now consider a longer sequence of trajectory states. The original discrete 
time dynamic model in Equation 7.25 holds for each pair of successive dynamic 
states; therefore, each successive pair has the dynamic model information added, as 
in Equation 7.33. The information matrix and vector for the dynamic model between 
any successive states k and k + 1 is
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We later re-write I
A D

D Ck T
dyn =









  and

 
i a ck

Tdyn = ( )  to save space.
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Over a sequence of trajectory states, these pairwise Idyn blocks add up to form a 
sparse banded matrix:
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(7.42)

The benefit of the trajectory state formulation is that observations of states within 
the trajectory appear additively in the information matrix. For example, the total 
information for the trajectory system from times 1 to 8, including a prior Y1 | 1 at time 
k = 1, an observation I5 at time k = 5, and the dynamic model information between 
each time is given by
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where the observation information I5 appears as an addition on the diagonal of 
Y corresponding to the state at the observed time.
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To propagate the trajectory state system forward in time (maintaining a fixed 
duration trajectory), there are two steps:

	 1.	Augmenting the system with the additional timestep. This requires 
expanding the state vector for the new timestep (k + 1) and adding the 
dynamic model information Ik

dyn and ik
dyn.

	 2.	Marginalizing away the earliest timestep.

The system following propagation by one timestep is now given by
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where Y2 | 1 and y2 | 1 are

	 Y C D Y A D
2 1 1 1

1

| ( | )= − + −T 	 (7.45)

	 = − +− − − − −Q Q Q Q1 1
11

1 1 1F Y F F F( )|
T T 	 (7.46)

	 y c D Y A y a2 1 1
1

1| ( ) ( )= − + +−T 	 (7.47)

	 = + + −− − − − −Q Q Q Q1 1
11

1 1
11

1Bu F Y F F y F Bu( ) ( )| |
T T 	 (7.48)

Y2 | 1 is actually the same expression as for the predicted Yk+1 | k in Equation 7.35. This 
is proven in the appendix. The earlier prior information, Y1 | 1, clearly resides in a 
nonadditive form, in the expression DT(Y1 | 1 + A)−1D.

In summary:

•	 The augmentation process, which extends the system to further timesteps, 
continues the same sparse banded pattern in the information matrix.

•	 The fusion of observations within the duration of the trajectory states is a 
straightforward addition in the information matrix and vector.

•	 Marginalization of the earliest timestep in a succession of trajectory states 
follows the same pattern as for information filtering prediction, leaving 
any observations or prior information in the removed timestep k in a 
nonadditive form.
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7.4.2 D ynamics in Decentralized Data Fusion

The previous section discussed the state dynamics generally, resulting in the for-
mation of a trajectory state system. The key advantage of using a sequence of 
trajectory states is that for observations of states within the trajectory states, the 
observation information is additive, just as for observations of a static state. This 
additivity of observation information applies regardless of the timing or sequence 
of observations, as long as the state at the observed time exists in the current set 
of trajectory states.

This section describes the application of the trajectory state approach for 
handling timing issues in DDF. In particular, we consider the following problem 
cases:

•	 Delayed and asequent data fusion, in which an observation from an ear-
lier time becomes available after a prediction step, has been performed 
(delayed) or after other data have been fused for later times (asequent). 
Delayed and asequent observations usually refer to local sensor node 
observations.

•	 Burst communication, which occurs when decentralized communications 
is resumed after a period of interruption. The communications that occurs 
after the interruption is referred to as burst communication, since it aims to 
deliver a large amount of information in a short time (or single message) 
to re-establish agreement between the nodes. Burst communications can 
also be thought of as delayed/asequent fusion across multiple decentralized 
nodes.

The key issue behind the aforementioned difficulties is additivity of observation and 
communicated information, and the fact that for states that have been replaced by 
predictions cannot be updated additively by other predictions. This is explained in 
further detail next.

7.4.2.1  Common Process Noise Problem
The underlying issue of concern relates to the common process noise problem. They 
are so called because separately predicted terms ignore their common use of the 
same process noise. This can also be expressed as the problem that the fusion of 
predicted information is unequal to the prediction of fused information:

	 Predict Fuse  Predict Predict( ( , )) ( ( ), ( ))A B A B≠ Fuse 	 (7.49)

Consider a case where a fused estimate is predicted forward. The fused estimate at 
time k is obtained as the sum of two independent information terms, e.g., Yk,a and Yk,b.

	 Y Y Yk k a k b= +, , 	 (7.50)

The correct expression for the predicted information for time k + 1 requires the pre-
diction of the sum
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	 Y Yk k+ =1
exact Predict( ) 	 (7.51)

	 = +− −{ }FY Fk
T1 1Q 	 (7.52)

If, however, the term Yk,a has already been predicted forward, a common approxima-
tion to Yk+1 is to take

	 Y Y Yk k a k b+ = +1
approx Predict Predict( ) ( ), , 	 (7.53)

	 = + + +− − − −{ } { }, ,FY F FY Fk a
T

k b
T1 1 1 1Q Q 	 (7.54)

The approximate form is not generally equal to the exact form Y Yk k+ +≠1 1
approx exact. 

The approximate form ignores the fact that there is only one underlying process; 
hence, the two prediction instances share common process noise, v (of which 
E[vvT] = Q). To consider the approximation further, consider a simpler worst case 
where Ya = Yb:
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where
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for which it can be seen that
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	 Y Y Yk k k+ + +≤ ≤1 1 12exact approx exact 	 (7.59)

This shows that Yk +1
approx is always slightly overconfident, but is close to Yk +1

exact for small 
Q. However, for large Q, the Yk +1

approx is overconfident, being up to 2 1Yk +
exact in the worst 

case. Predicting the Yk,a and Yk,b independently is equivalent to claiming that there 
are two independent process models available.

7.4.2.2  Delayed and Asequent Observations
A delayed observation occurs when an observation from an earlier time becomes 
available after a prediction step has been performed [19]. The problem of delayed 
observations can occur in any form of estimator, not only decentralized estimators. 
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Delayed observations can occur as a result of processing and/or communication 
delays before observations are available at the estimator.

An asequent observation occurs when an observation from an earlier time 
becomes available after other data have been fused for later times [19]. Asequent 
observations may occur if multiple sensors are used locally on a single node, and 
these sensors have differing observation delays. The case of asequent observations 
occurring on distinct decentralized nodes is similar, but since it involves the commu-
nication aspect it is more similar to the burst communications case discussed later.

The problem with delayed or asequent data fusion is that once the estimator has 
predicted the local state forward to time k + 1, the (late) incoming information for 
time k needs to be considered. If the late arriving information is predicted forward 
separately, the common process noise problem applies (as discussed in Section 7.4.2) 
and the result will be approximate and over-confident.

The problem with delayed and asequent data fusion is basically caused by the 
filter architecture destructively predicting estimates forward. That is, applying the 
prediction equations in a way that replaces a local estimate.

The proposed solution instead applies the trajectory state approach to avoid 
destructively predicting estimates until after a window of time has passed, 
while still obtaining correct current-time filter estimates given all available past 
observations.

The trajectory information matrix is constructed as in Section 7.4.1:
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where Yk:k+4 is written with observation information on each timestep, indicating 
how current, delayed, and/or asequent observations can be fused additively in the 
trajectory information matrix and vector at their appropriate timestep, as long as that 
timestep is available within the trajectory state system.

Given the trajectory state system, the estimate solution for the current (latest) 
timestep will be equivalent to a filtered solution, correctly accounting for the late 
and asequent observations. Methods for obtaining the solution are discussed in 
Section 7.4.2.

The trajectory state approach with N timesteps of trajectory states defers the 
destructive prediction of the earliest state by N timesteps, allowing delayed and 
asequent observations in that duration. However, very late observations beyond 
N timesteps will still be subject to the same common process noise problem preventing 
their use. Very late observations beyond N timesteps are expected to occur less 
frequently and be less informative to the present estimate and should be discarded 
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(which is conservative). Note that the intention of the trajectory state method is to use 
N timesteps such that the system can still benefit from the observations with small 
delay which are very likely to occur and very beneficial to the present estimate.

7.4.2.3  Burst Communications
Burst communication occurs when decentralized communications are resumed after 
a period of interruption. The communications that occurs after the interruption is 
referred to as burst communication since it aims to deliver a large amount of informa-
tion in a short time (or single message) to re-establish agreement between the nodes.

The problem with burst communications occurs when the estimator predicts the 
local state forward during a period of interrupted communications. The problem is 
that other decentralized nodes will also perform the same prediction on their local esti-
mates. When the nodes re-connect and communicate, the common process noise prob-
lem arises, since the information from each node will have been separately predicted.

The problem with delayed and asequent data fusion is again caused by the filter 
architecture destructively predicting estimates forward. That is, applying the predic-
tion equations in a way that replaces a local estimate.

The proposed solution, as for asequent observations, involves using trajectory 
states in order to maintain a window of some duration in which communications can 
be late, but still fuse additively into states in the trajectory window. Estimates for the 
current time can still be obtained from the system, conditioned on all the available 
past observations.

Referring to Equation 7.60, the decentralized system can communicate the diago-
nal matrix consisting of the Ik blocks:
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	 (7.61)

This becomes equivalent to a sequence of static decentralized problems, one for each 
timestep. The band structure corresponding to the dynamic model can be applied 
locally at each node.

For normal operation, with frequent communications, the nodes transmit their 
current Ik block. But if the communications is blocked for an interval of time and 
then later resumed, the resulting burst communications will contain the diagonal 
blocks Ij:k for the fused observations for the blocked interval.

The methods for obtaining the solution are discussed in Section 7.4.2.

7.4.2.4  Solution Using Trajectory States
The cases of delayed and asequent observations and burst communications presented 
earlier can be addressed using a set of trajectory states. This section focuses on how 
to solve the resulting trajectory state system:
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The system in Equation 7.62 is a block tridiagonal sparse linear system. Such a system 
can be solved very efficiently in O(n) time, for n trajectory states [11]. It is also possible 
to obtain smoothing estimates for the duration of the trajectory states by solving the joint 
system fully. This basically corresponds to solving for the latest estimate as described 
later, together with back-substitution for the smoothed estimates of the earlier states.

7.4.2.5  Filtering the Trajectory State System
The solution process for the filtered estimate of a trajectory state system is very 
similar to an online filtering process. In that case, the dynamic model in the trajec-
tory state system need only be defined implicitly, leaving only the diagonal blocks 
(observations and prior) to be explicitly stored. So the current filtering estimate can 
be obtained basically by running the information filtering prediction cycles, start-
ing from the prior information in the start of the trajectory and using the stored 
fused observation information at each time. Note that we only need to run this when 
requiring an estimate for the present state. Multiple observations can be added into 
the trajectory system without requiring this solve process. This approach is less gen-
eral than the next, which will be described in greater detail.

7.4.2.6  Filtering with Stored Filter Estimates
In most cases, it is likely that observations and decentralized communications will 
arrive with only a small delay, and thus only affect the latter part of the trajectory 
state system. In that case, it is inefficient to process the entire trajectory state system 
for its whole duration. Also, allowing re-processing only the affected portion of the 
trajectory may allow a longer trajectory system to be used. When an estimate of the 
present state is required, it is only necessary to process forward from timestep k − n 
to the present, where timestep k − n is the earliest changed state in the trajectory. 
(Changes include local observations and decentralized communications.) In this 
way, the cost in computation to re-process following delayed or asequent observa-
tions or newly arrived burst communications depends on how far back the observa-
tion occurs, such that the normal case of short delays can proceed forward with little 
overhead.
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This method is similar to that described for asequent data fusion in Ref. [19]. The 
difference is that we store the observations Ik in the trajectory state approach, not 
only the filtered estimates. This allows the handling of burst communications and 
also simplifies the case for asequent observations.

This method corresponds to filtering, but stores in memory the filtered estimates 
for a few key timesteps in the trajectory duration. The system needs to store Ij for 
each timestep, and Yj | j−1 and yj | j−1 for a few key timesteps.

The Ij terms for each j and the filtered Yk−n | k−n−1 for the earliest trajectory state 
timestep, k − n are statistically independent of each other. These are regarded as 
“source” information. The stored filter Yj | j−1 estimates for the other timesteps are not 
independent of each other, and not independent of the Ik or Yk−n | k−n−1. These are to be 
regarded as a computational aid, storing partial results. These filter Yj | j1 could instead 
be re-processed from the initial Yk−n | k−n−1 and the observation information terms Ij.

This occurs as follows:

	 1.	The forward filtering can start from time k − n where timestep k − n is the 
earliest changed state in the trajectory, or wherever a starting or stored 
prior information exists. Starting from time k − n, define a current informa-
tion matrix and vector of the size of the state at a single time:

	 Y Y y yc k n k n c k n k n= =− − − − − −| |1 1 	 (7.64)

	 2.	For each time j = k − n: k
	 a.	 Fuse observations for time j:

	
Y Y Y I y y y ic j j j j j c j j j j j= = + = = +− −| | | |1 1 	 (7.65)

	 b.	 Predict the current Yj | j and yj | j to time j + 1 using Equation 7.37 (except 
at the last time k):
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	 c.	 The resulting Yc = Yj+1 | j and yc = yj+1 | j can be stored if desired, so pro-
cessing can resume from time j + 1 later.

	 3.	The resulting Yc = Yk | k and yc = yk | k is the filtered information for the state at 
time k. X̂k is obtained from

	
ˆ | |x Y yk k k k k= −1 	 (7.70)
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7.4.2.7  Operation of Channel Caches with Trajectory States
Figure 7.2 shows the combined trajectory state and channel cache–based DDF node. 
The node stores the observations Ij and ij for each timestep k − n to k in the trajectory 
state window for each channel. These are the channel cache contributed information 
terms from the neighbors. The node similarly stores its own observations for each 
timestep. The node also stores the prior Yk−n | k−n and yk−n | k−n. The complete trajectory 
state system is formed by summing all the entries for each timestep, including the 
dynamic model information.

To shift the combined system forward by one timestep, at the back of the trajectory 
state window (earliest timestep), the prior Yk−n | k−n is propagated forward as in Equation 
7.43. The observations Ik−n+1 are added into Yk−n+1 | k−n, leaving the next prior Yk−n+1 | k−n+1. 
The observations for time k − n + 1 are then popped out of the trajectory system, so that 
the guaranteed conditional independence of all information terms is maintained. The 
front end (latest and current timesteps) of the trajectory state window is extended into 
timestep k + 1, ready for new observations or channel terms.

7.4.3  Summary

This section presented the smoothing or trajectory state formulation of dynamic 
systems to formulate DDF for estimation of dynamic systems. This trajectory state 
formulation of dynamics was then applied to address the issues of delayed and 
asequent observations and burst communications in DDF.

The solution method for the trajectory state formulation requires nodes to store 
the fused observation information for each timestep for a finite duration, allowing for 
observation and communication delays. For efficient solving it is also useful to store 
the results of filter estimates.

Obs, channel cache A
Obs, channel cache B
Obs, channel cache C
Obs, local
Prior Yk − n | k − n

Dynamic model

k − n k

Obs, channel cache A
Obs, channel cache B
Obs, channel cache C
Obs, local
Prior Yk − n +1 | k − n + 1

Dynamic model

k − n + 1 k + 1

FIGURE 7.2  Illustration of combined trajectory state and channel cache–based DDF at a 
single node. The lower portion shows the whole system propagated forward by one timestep.



184 Distributed Data Fusion for Network-Centric Operations

7.5 � K-TREE TOPOLOGIES FOR REDUNDANT 
AND DYNAMIC NETWORKS

The algorithms presented in Section 7.3.1 relate to tree topology networks. Exact 
decentralized estimation has, in the past, largely been restricted to singly connected 
tree networks [7,9,18,20]. The key point relating to tree networks is that the DDF 
problem can be reduced down to a problem of finding a global sum of informa-
tion terms, which is performed in an efficient local manner on a tree network. In 
tree networks, there is only one path between any two nodes. This is used in the 
decentralized algorithm to ensure exact fusion, especially avoiding cases of double 
counting or rumor propagation in the network. However, the single path property of 
tree networks also means that tree networks are vulnerable to the failure of nodes 
and links, since the failure of any nonleaf node or link would leave the network in 
multiple disconnected pieces. Tree networks include both “star” and chain topolo-
gies as well as branching trees.

This section presents an extension beyond tree communications network topolo-
gies into so-called k-tree network topologies. The k-tree topologies are more general 
than tree topologies but are more specialized for scalability than arbitrary topolo-
gies. The presentation of this section is based on Ref. [24]. The k-tree is an extension 
beyond tree topologies, which keeps an overall strict tree-like pattern on a large 
scale (N nodes ⨠ k), as shown in Figure 7.3f, but allows redundant, looped, dynamic 
topologies or other subsets of full connection within groups of nodes smaller or 
equal to k + 1. The costs in storage and communication grow with k but not with N, 
the total number of nodes in the network. The k-tree topologies are intended to be 
used with as small k as possible.

The motivation behind using k-tree topologies is to improve redundancy and 
dynamism while maintaining scalability and correctness. For redundancy and 
fault robustness, it is desirable to allow the network to include multiple redundant 
paths such that some links or nodes can fail without disconnecting the network 
topology. It is also desirable to improve dynamism so that some topology changes 
are able to allow for link failures and re-connections, especially for mobile decen-
tralized networks. The dynamic topology capability is closely related to the link 
redundancy capability, because once the algorithm is capable of handling multiple 
paths redundantly, then the network can pick and choose among them dynamically. 
These capabilities are obtained while ensuring the scalability and correctness of 
the DDF network.

The k-tree topology is used to define an allowable topology; the allowable set of 
links for the decentralized network. Once this k-tree allowable topology is estab-
lished, it defines which nodes can communicate on which links and establishes what 
each node needs to store and communicate in order to ensure correct and exact DDF, 
as will be described later in this section. This use of a defined restricted topology 
is similar to how spanning-tree algorithms can be used to define an allowable tree 
of links in an otherwise unstructured network for DDF [16,18]. A spanning-tree can 
then be used with tree-topology decentralized networks (as in Section 7.3.1), but 
these do not offer a simple, exact method for handling the data fusion aspects of 
changing topology or dealing with link failures.
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FIGURE 7.3  Example k-tree topologies. Each line is an allowable decentralized 
communication link, each vertex is a decentralized node. (a) A complete two-tree topology, 
(b) a mixed one-two-tree topology, (c) a one-tree topology over the same nodes, (d) a ring 
topology (black lines) is a subset of a two-tree (gray dashed lines), (e) a complete three-tree 
network, (f) a larger two-tree example showing the broad scale tree topology for N ⨠ k.
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In a k-tree allowable topology (and using the k-tree algorithms presented here), 
nodes can communicate dynamically on all/any links within the k-tree topology, 
even if there are multiple redundant paths or loops and links fail and reconnect 
unpredictably.

A k-tree allowable topology becomes an arbitrary unrestricted topology for k ≥ N, 
the number of nodes. This would allow completely arbitrary dynamic and redundant 
decentralized communications, but would however result in expensive storage and 
communication.

The treewidth of a graph is well known for its role in limiting the complexity of 
algorithms in graph theory [3,13,14], graphical models [5], and sparse linear algebra 
[21]. Given the strong effect of the treewidth on the complexity of the algorithms and 
network, we considered generalizations of one-tree topologies into k-tree topologies, 
focusing in particular on the next-highest k; k = 2, since it is the simplest topology 
that demonstrates the novel properties of the k-tree approach. It is notable that arbi-
trarily large ring networks can be expressed as a two-tree network. Example k-tree 
topologies are shown in Figure 7.3.

A complete k-tree graph is made up of cliques of k + 1 nodes [13,14]. Each adjacent 
pair of cliques overlaps at k nodes (a junction or separator). The overall graph of 
connections between the cliques is a tree. A k-tree graph has treewidth of k, so called 
because the separators are made of k nodes.

Table 7.5 shows the number of links in various k-tree topologies compared 
with those of a fully connected topology. This shows that the number of k-tree 
links grows at O(n2) up until n = k + 1 (when the first k + 1 clique is formed), after 

TABLE 7.5
Number of Allowable Links Using Trees of Different k versus 
Fully Connected

N Nodes 1-Tree 2-Tree 3-Tree 4-Tree k-Tree Full

1 0 0 0 0 0

2 1 1 1 1 1

3 2 3 3 3 3

4 3 5 6 6 1
2

2( )n n− 6

5 4 7 9 10 for n ≤ (k + 1) 10

6 5 9 12 14 15

7 6 11 15 18 21

8 7 13 18 22 kn k k− +1
2

2( ) 28

9 8 15 21 26 for n > (k + 1) 36

10 9 17 24 30 45

20 19 37 54 70 190

n > (k + 1) n − 1 2n − 3 3n − 6 4n − 10 kn k k− +1
2

2( ) 1
2

2( )n n−

n⨠1 O(n) O(n) O(n) O(n) O(n) O(n2)
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which each additional node only adds an extra k links. Hence, the number of 
k-tree links grows as O(n) ultimately. By contrast, the fully connected topology 
always grows as O(n2).

7.5.1 D ecentralized Data Fusion on k-Trees

The decentralized algorithm defines what each node needs to store and communi-
cate such that each node can obtain the global fused information. The algorithm 
actively limits the data sizes communicated and stored, leading to the scalable 
performance of the system. The goal of the topology and message passing is to 
produce a set of terms pi(x), such that the fusion of these is a consistent estimate 
for the state x:

	

p x
c

p xi

i

∪ = ∏( ) ( )
1

	 (7.71)

These pi(x) are probabilities which are conditionally independent of each other 
given x, or equivalently, that they have independent errors.

As shown earlier, it is convenient to express this as a sum of information terms:

	

Y Y∪ = ∑ i

i

	 (7.72)

	

y y∪ = ∑ i

i

	 (7.73)

7.5.2 D ata-Tagging Sets

The approach used here guarantees against double counting of information by using 
explicit “data-tagging” sets. A data-tagging set is a set of separate information terms, 
Yi, each with a unique identifier. Each data-tagging set stores only conditionally 
independent terms, so Equation 7.72 can be used on all items in a data-tagging set 
to recover a consistent fused estimate. Fusion of two or more sets is performed as a 
set union followed by Bayesian fusion (Equation 7.72). The set union step identifies 
any terms with matching labels and ensures that these are counted only once in the 
Bayesian fusion. Thus data-tagging avoids double counting of information.

The approach used here ensures scalability by summarizing every stored or 
communicated data-tagging set into a minimal size. This summarization process 
exploits the global k-tree property and uses the local topology around the sending 
and receiving nodes. The necessary local topology properties are guaranteed by 
designing the global network topology as a k-tree.

The proposed approach uses an efficient, minimal form of data-tagging. This 
is in contrast to the inefficient full data-tagging approach. In the full data-tagging 
method, each node maintains a set of independent information terms (conditionally 
independent of each other, given the true state), including its own sensor observations. 
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In communicating out to any neighbor, the full set of information terms is sent. In 
receiving communication from a neighbor, the received set is merged (unioned) into 
the local set. The full data-tagging approach guarantees avoidance of double counting 
in arbitrary network topology and allows arbitrary dynamism, but is expensive for 
large-scale networks. Eventually every node’s storage and every communicated set 
have the full list of the conditionally independent information terms arising from every 
other node. In the full data-tagging approach, the node storage and communication size 
is O(n) for n nodes in the whole network. This increasing storage and communication 
size limits the scalability of the network for large n. The full data-tagging approach is 
equivalent to a k-tree operating with k ≥ n for n nodes in the network.

The proposed k-tree approach is obtained by reducing the data-tagging sets to 
exploit the tree nature of the communications network. The communications and 
storage scheme proposed achieves correct operation in k-tree networks without using 
full data-tagging, thus obtaining a decentralized algorithm which is scalable in the 
number of nodes.

The “stack” of channel cache terms, in Section 7.3.1, Figure 7.1 is actually a mini-
mal data-tag set for the tree network. Each node has n + 1 entries corresponding to 
the n neighbors and a single entry for itself.

7.5.3  Separator and Neighborhood Properties

Before explaining the k-tree decentralized algorithm, it is necessary to discuss some 
properties of the k-tree.

7.5.3.1  Separator Property
An important k-tree property is the existence of tree separators, as shown in Figure 
7.4. In a k-tree any k-clique is a separator. Each separator divides the network into 
distinct parts. Within each part, the effect of all other parts can be summarized 
into the separator. Separators enable efficient summarization of entire branches of 
the k-tree network. Separators use the k-tree separator property: in a k-tree, if any 
path between any two nodes i,k passes through the separator, then all paths between 
nodes i,k pass through the separator.

These separators are used at the borders of the local neighborhood  to sum-
marize the fused total of the rest of the network beyond the local neighborhood. For 
example in Figure 7.4, the total information in each half can be expressed as

a b

c d

e

f

g

h

FIGURE 7.4  Illustration of the separator property. In a k-tree any k-clique is a separator. 
Each separator divides the network into two parts. In this figure, b − d is the separator. The 
two parts and the intersection are shown. Within each part, the effect of the other part can be 
summarized into the separator.
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Y Y Yrhs interior separator= +{ } [ ] 	 (7.74)

	
= + + + + +{ } [ ]Y Y Y Y Y Yb e h d f bd 	 (7.75)

	
Y Y Y Y Y Y Ylhs = + + + + +{ } [ ]a b c d g bd 	 (7.76)

where Ybd represents information in the separator b − d.
The identifiers in the data-tagging sets are used to identify which node or branch 

of the tree network the information originates from. This means that the identifier 
should be a set of node labels, to allow reference to one neighbor, or k neighbors on 
a k-tree branch separator.

7.5.3.2  Local Neighborhood Property
A consequence of the separator property is that the local neighborhood around a node 
becomes a sufficient representation for that node’s interaction with the whole rest of 
the network. The k-tree networks allow an efficient decentralized and local neighbor-
hood representation to serve as the only required topology awareness at the nodes. 
This is important for scalability, allowing the representation of a global network with 
only small local neighborhood representations. The local neighborhood is therefore 
an important data structure used in the algorithm proposed in this chapter.

At any node, i, the local neighborhood subgraph consists of i, the neighbors of 
i and the links and cliques between them, as shown in Figure 7.5.

The local neighborhood representation is motivated by the k-tree “junction path 
covering property”: in a k-tree, if any path between any two nodes i,k passes through 
the local neighborhood of a node j, then all paths between nodes i,k pass through the 
local neighborhood of j.

This junction path covering property means that the local neighborhood around 
a node j has control over how any messages can pass from one side to the other. The 
local neighborhood encodes which neighbors to communicate with, which infor-
mation terms must be maintained separately in data-tag sets (for correctness), and 
which terms can be fused into others (for scalability).
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c d
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c d
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FIGURE 7.5  Illustration of the local neighborhood representation, . In k-tree networks, the 
local neighborhood  is an efficient local summary of the relevant parts of the global topology: 
(a) global network topology, (b) local neighborhood representations, , at a, b, e respectively. 
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For one-tree topologies used in prior works, the local neighborhood representa-
tion is simply the list of neighboring vertices and list of the corresponding edges to 
those neighbors.

7.5.4  k-Tree Communications Algorithm

This section explains the decentralized communications algorithm for k-trees. We 
explain the algorithm in the case that the complete k-tree is present. Note, however, 
that the full set of links is not required.

The algorithm will be described by referring to the sending node, t (“transmitting 
vertex”) and the receiving node d (“destination vertex”). The transmitting node 
knows the topology of the allowable links within its own neighborhood of the 
allowable k-tree topology, denoted as . The sending node has an existing data-tag 
set. The objective of the algorithm is to calculate a reduced data-tag set to send to 
the destination, d.

The communications algorithm is simply stated as follows:

•	 The data-tag set is reduced into the intersection of the local and destination 
neighborhoods.

The communications algorithm is given in algorithm 1 and illustrated in Figure 7.6. 
In step 1, the algorithm initially copies the local data-tag set to the output data-tag 
set. This corresponds to the full data-tagging solution. The subsequent steps erase 
and/or summarize some of the entries, thus ensuring scalability. For step 2, data-tag 
terms involving the destination vertex are redundant and can be explicitly deleted. 
Step 3 eliminates any data-tag terms which are not neighbors of the destination 
vertex. This is explained in the following section.
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FIGURE 7.6  Summary of the communications algorithm. The local neighborhood at the 
source node is summarized into the neighborhood separator for the destination. This summa-
rized separator set is sent to the destination and merged into the local set. (a) The full network, 
highlighting neighbor-hoods of Vh and Vm and their intersection. (b) At Vh the network beyond 
the immediate neighbors is already summarized within the neighborhood. (c) To prepare a 
communication set, the source Vh can summarize its local neighborhood set into the intersec-
tion with the destination neighbor Vm (resulting in the left hand set). This set is communicated 
to Vm. Vh keeps the union of the received set (left) with its local set (right).
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7.5.4.1  Data-Tag Set Elimination
This section explains the marginalization process which summarizes nonlocal 
information, in Algorithm 1.

Elimination proceeds at each step by eliminating a so-called leaf vertex, which 
reduces the size of the data-tag set. A leaf vertex in an ordinary tree would be any ver-
tex with exactly one edge. More generally, however, there are k-tree leaves which are 
defined as follows: A vertex which is part of exactly one clique of k + 1 is a k-tree leaf.

Eliminating a k-tree leaf results in its former k + 1 clique being reduced to a clique 
of k. To eliminate a vertex v in a k + 1 clique

•	 The result data-tag term r is that with identifier containing the k node labels 
of the neighbors of v

•	 For each data-tag term, t, whose identifier contains v: add t into r

Examples of leaf vertex elimination for k ≤ 3 are shown in Table 7.6.

7.5.5 L ink and Node Failure Robustness

The key properties of the proposed approach are correct fusion, scalability and 
robustness against node and link loss. Achieving these properties simultaneously is 
achieved by using the bounded treewidth network topology.

TABLE 7.6
Leaf Vertex Elimination

Three-tree
a b

v
c

a b

c

{abc} += [v {av} {bv} {cv} {acv} {bcv} {abv} ]

Two-tree
a b

v

a b
{ab} += [v {av} {bv} {abv}]

One-tree
a

v

a

{a} += [v {av} ]

Note:	 The decentralized algorithm uses leaf vertex elimination to reduce the 
size of the set communicated to a neighbor. In each case in the table, 
vertex v is to be eliminated. Vertex v has been identified as unnecessary 
to communicate explicitly, so is instead all terms involving v are merged 
into the resulting separator term.
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The proposed method is robust against link and node failures simply because it 
can send information terms on multiple paths. This still yields correct and consistent 
fusion since the method uses data-tagging to avoid double counting and/or the need 
for conservative fusion. Furthermore, the method still yields a scalable solution for 
large networks since the multiple-path and data-tagging is only performed within the 
nodes and separators of the k + 1 cliques.

Figure 7.7 shows the pattern of communication of individual information terms in the 
data-tag sets. In various cases, there are multiple sources redundantly communicating 
the same term. The receiving node always stores the incoming information terms into a 
given data-tag set entry. The receive process has no effect other than storing the infor-
mation, so it is acceptable to receive the same term multiple times from different paths.

7.5.6  Summary

This section presented an algorithm for scalable DDF based on k-tree topologies. 
The k-tree topologies are more densely connected than 1-trees, but still have an 
overall sparse (k-)tree topology which gives scalability for large networks. The k-tree 
topologies have some redundancy in the topology, which makes them more robust 
to node or link failures than 1-tree topologies. The k-tree topologies allow dynamic 
changes to the communications topology within subsets of links in the k-tree. Finally, 
k-tree topologies transition into the fully connected topology and fully data-tagged 
decentralized algorithm as k increases to N, the number of nodes in the network. 
Thus k-trees allow some trade-off via k between the tree-based approaches (k ≪ N) 
and the unstructured approaches (k ∼ N).

ALGORITHM 1: K-TREE DECENTRALIZED COMMUNICATIONS

Compute the communication output data-tag set to send
Input: : a copy of the local neighborhood graph
Input: t: this transmitting node in 
Input: d: the destination neighbor in 
Input: localTags: the local data-tag set
Result: destTags: the output data-tag set to send
1. Starting case: No summarization:
Copy destTags ← localTags
2. Delete terms involving d:
Erase term d from destTags
Erase any terms for d separators from destTags
3. Summarize away parts not local to d:
Determine the region to summarize out, S:
S is all vertices in  except d and its neighbors
while S is not empty do

Find a leaf vertex l of  in S
Eliminate l, updating destTags
Erase l from S
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7.6  CONCLUSION

This chapter presented and reviewed methods for DDF. This chapter focused on the 
channel cache algorithm for DDF in tree topologies and robustness to imperfect 
communications. In the second part, this chapter reviewed the trajectory state formulation 
of dynamic systems to formulate DDF for the estimation of dynamic systems. This 
trajectory state formulation of DDF was applied to address the issues of delayed and 
asequent observations and burst communications in DDF. In the final part, this chapter 
extended the operation of DDF on tree topology networks into so-called k-tree topologies. 
The k-tree topologies are tree-like on the broad scale, which gives good scalability for 
large networks of nodes. The k-tree topologies allow loops, dense connections, and hence 
redundancy and dynamic changes among groups of up to k + 1 nodes.

Taken together, these algorithms contribute significantly toward achieving DDF 
that is robust to communications latencies and failures, but still yield centralized 
equivalent estimator performance and are scalable for larger networks.

7.A  APPENDIX

7.A.1 M arginalization in the Information Form

This appendix states the expressions required for marginalization in the information 
form. Consider an information matrix partitioned into state variables xa and xc:
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FIGURE 7.7  Diagrams showing the individual data-tag terms which would be stored and 
communicated in the given topology. At each node the diagram shows the stored terms at that 
node (cluster of labels), including its own independent information (circled labels). Each arrow 
indicates the communication of an individual data-tag term. Terms which originate from each 
node are shown in different shades. Communications which result from the fusion of multiple 
terms are shown in dashed lines. Communications is strictly with nearest neighbors only, but 
the sum of all data-tag terms at each node equals the global sum of independent information.
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where these satisfy YX̂ = ŷ
Then the marginal information matrix Ya and marginal information vector ya 

which satisfy YaX̂a = ŷa, and similarly for Yc are

	 Y A BC B y a BC c Y x ya
T

a a a a= − = − =− −1 1 ˆ ˆ 	 (7.78)

	 Y C B A B y c B A a Y x yc
T

c
T

c c c= − = − =− −1 1 ˆ ˆ 	 (7.79)

7.A.2 T rajectory Information Form Equivalence

As stated earlier, the following are both equivalent:
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•	 The xk marginal of Y is equal to the prior Yk and yk. This means that aug-
menting a predicted state xk+1 onto a given xk system (including the addition 
of the dynamic model information) does not alter the marginal PDF for xk. 
This is shown as follows.
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•	 We write the xk marginal of Y as Yk
marg, leaving Yk to mean the prior infor-

mation matrix of timestep k

	 Y Y F F F Fk k
T Tmarg = + −− − − − −{ } { }Q Q Q Q1 1 1 1 1 	 (7.84)

	 = Yk 	 (7.85)

•	 The xk+1 marginal of Y yields known expressions [2,19] for the prediction in 
covariance and information forms:

	 Y FP Fk k
T

+
−= +1

1{ }Q 	 (7.86)

	 = − + − −M MG G MG Q G M( )T T1 1 	 (7.87)

	
( )M F Y F= − −T

k
1 	 (7.88)

The xk+1 marginal of Y, using Equation 7.79, is

	
Y F Y F F Fk k

T T
+

− − − −= − +
−

1
1 1 1 11

Q Q Q Q[ ] 	 (7.89)

Using the matrix inversion lemma:

	
[ ] [ ]BCD A A A B C DA B DA+ = − +− − − − − −−1 1 1 1 1 11

	 (7.90)

With A B F C Y D F→ → → →−Q k
T1

	 Y FY Fk k
T

+
− −= +1

1 1[ ]Q 	 (7.91)

	 = + −[ ]FP F GQGk
T T 1 	 (7.92)

which is the covariance form prediction equation.
The information form prediction equation is obtained by a different use 

of the matrix inversion lemma, using

	 A FY F B G C Q D G→ → → →−
k

T T1

	 Y FY F GQGk k
T T

+
− −= +1

1 1[ ] 	 (7.93)

	 = − +− −M MG Q G MG G M( )1 1T T 	 (7.94)

where

	 M FY F F Y F= =− − − −[ ]k
T T

k
1 1 1
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Equations 7.89, 7.92, and 7.94 can also be found systematically from the 
following augmented system [23]:
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where ν is a vector of Lagrange multipliers [23] and vk is the (unknown) 
process noise, as in Equation 7.25.

•	 Marginalizing (7.95) in the ordering (v, ν, then xk) results in the predicted 
information marginal:

	 Y F Y F F Fk
T T

+
− − − − −= − +1

1 1 1 1 1Q Q Q Q( ) 	 (7.96)

•	 Marginalizing (7.95) in the ordering (xk, ν then v) results in the same predicted 
information marginal, in the form conventionally used in information filtering:

	 Y M MG Q G MG G Mk
T T

+
− −= − +1

1 1( ) 	 (7.97)

	 M F YF= − −T 1 	 (7.98)

•	 Marginalizing (7.95) in the ordering (xk, v then ν) results in the inverse of 
the expression used in the covariance form Kalman filtering:

	 Y FPF GQGk
T T

+
−= +1

1( ) 	 (7.99)
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8.1  INTRODUCTION

Measurement-to-track fusion (MTF) refers to the process of collecting measurement 
data and then using it to improve the accuracy of the most recent estimates of the 
numbers and states of targets. Over the last two decades, both the theory and the 
practice of MTF have become increasingly mature. But, in parallel, another devel-
opment has occurred: the increasing prevalence of physically dispersed sensors 
connected by communications networks, ad hoc or otherwise. One response to this 
development might be to try to apply MTF techniques to such situations. But because 
transmission links are often bandwidth-limited, it is often not possible to transmit 
raw measurements in a timely fashion, if at all. Consequently, emphasis has shifted to 
the transmission of track data and to track-to-track fusion, hereafter abbreviated as 
“T2F.” Most commonly, the term “track data” refers to target state estimates and their 
associated error-covariance matrices—as supplied, for example, by a radar equipped 
with an extended Kalman filter (EKF). T2F refers to the process of merging single- or 
multi-target track data from multiple sensor sources, with the aim of achieving more 
accurate localization, increased track continuity, and fewer false tracks.

T2F is fundamentally different than MTF. In particular, it cannot be addressed by 
processing tracks in the same way as measurements. Both MTF theory and practice 
are commonly based on two independence assumptions. First, measurements are sta-
tistically independent from time-step to time-step. Second, measurements generated 
by different sensor sources are statistically independent.

However, single-target track data is the consequence of some recursive filtering pro-
cess, such as an EKF, and consequently is inherently time-correlated. If it is processed 
in the same way as measurements, spuriously optimistic target localization estimates 
will be the result. “Tracklet” approaches [1], such as inverse Kalman filters, decorre-
late tracks so that they can be processed in the same way as measurements. However, 
such techniques cannot be effectively applied when targets are rapidly maneuvering, 
since decorrelation must be performed over some extended time-window.

Furthermore, multisource track data (like multisource measurement data) in dis-
tributed networks can be corrupted by “double counting” [2]. A simple example: 
data from node A is passed to nodes X and Y, which then pass it to node B. If node B 
processes this data as though it were independent, then spuriously optimistic target 
localization will again be the result. Many T2 fusion solutions have been devised for 
networks with pre-specified topologies. But such methods will not be applicable to 
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ad hoc networks. “Pedigree” techniques have been proposed to address this chal-
lenge, by having every node “stamp” the tracks with suitable metadata before passing 
them on. In a large network, however, accumulated metadata can eventually greatly 
exceed the size of the track data that it documents. This problem can be sidestepped 
through node-to-node querying methods—but at the cost of increased bandwidth 
requirements. (A more practical difficulty: the large number of legacy networks 
makes it unlikely that any pedigree convention is likely to be accepted, standardized, 
and implemented across all or even some of them.)

In part because of such issues, T2F theory is probably as underdeveloped now 
as MTF theory was two or three decades ago. The goal of this chapter is to try to 
remedy this situation by proposing the elements of a general theoretical foundation 
for T2F, building on ideas that I first suggested in 2000 [3]. These ideas have recently 
been greatly refined, especially by Daniel Clark and his associates [4–6].

The methodology will be the same as that which I have previously applied to MTF 
and which has been described in Statistical Multisource-Multitarget Information 
Fusion [7]:

	 1.	Model an entire multisensor-multitarget system as a single, evolving sto-
chastic process using the theory of random finite sets.

	 2.	Formulate an optimal solution to the problem at hand—typically in the 
form of some kind of multisource-multitarget recursive Bayes filter.

	 3.	Recognize that one way to accomplish this is to find an optimal solution to 
the corresponding single-sensor, single-target problem and then generalize 
it to the multisensor-multitarget case.

	 4.	Recognize that this optimal solution will almost always be computationally 
intractable, and thus that principled statistical approximations of it must be 
formulated.

The principled approximation methods that I have most frequently advocated are as 
follows:

	 1.	Probability hypothesis density (PHD) filters, in which the multitarget pro-
cess is approximated as an evolving Poisson process [7, chapter 16].

	 2.	Cardinalized PHD (CPHD) filters, in which it is approximated as an evolv-
ing identically, independently distributed cluster (i.i.d.c.) process [7, 
chapter 16].

	 3.	Multi-Bernoulli filters, in which it is approximated as an evolving multi-
Bernoulli process [7, chapter 17].

In what follows I will consider only the first two approximation methods, which will 
be applied to three successively more difficult multisource-multitarget track fusion 
challenges:

	 1.	Exact T2F of independent track sources.
	 2.	Exact T2F of track sources with known double-counting.
	 3.	Approximate T2F of track sources having unknown correlations, using mul-

titarget generalizations of Uhlmann and Julier’s covariance intersection (CI) 
approach.
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In each of these cases I proceed by formulating a general approach to multisource-
multitarget T2F and then by deriving more computationally tractable approximations 
using CPHD and PHD filters in the manner proposed by Clark et al.

The chapter is organized as follows:

	 1.	Section 8.2: Review of single-target T2F theory.
	 2.	Section 8.3: Review of those aspects of finite-set statistics (FISST) required 

to understand the chapter.
	 3.	Section 8.4: Direct generalization of single-target T2F to multitarget T2F.
	 4.	Section 8.5: Approximation of this general approach using CPHD and PHD 

filters.
	 5.	Section 8.6: A discussion of possible implementation approaches.
	 6.	Section 8.7: Mathematical derivations.
	 7.	Section 8.8: Summary and conclusions.

8.2  SINGLE-TARGET DISTRIBUTED FUSION: REVIEW

In this section, I summarize some major aspects of single-target T2F that will be 
required for what follows:

	 1.	Section 8.2.1: The single-target recursive Bayes filter is the foundation of 
the material in this section. I summarize the basic elements of this filter and 
define the concept of a “track” in general.

	 2.	Section 8.2.2: Single-target T2F when the track sources are independent. 
Approach: the track-merging formula of Chong et al. and its special case, 
Bayes parallel combination.

	 3.	Section 8.2.3: Single-target T2F when the track sources are dependent 
because of known double-counting. Approach: the generalized track-
merging formula of Chong et al.

	 4.	Section 8.2.4: Single-target T2F when the track sources are linear-Gaussian 
but their correlations are completely unknown. Approach: the CI method of 
Uhlmann and Julier.

	 5.	Section 8.2.5: Single-target T2F when the track sources are arbitrary and 
their correlations are completely unknown. Approach: Mahler’s generalized 
CI method, rechristened by Julier and Uhlmann as “exponential mixture” 
(XM) fusion.

8.2.1  Single-Target Bayes Filter

The approach in this section is based on the Bayesian theoretical foundation for 
single-target tracking, the single-target Bayes nonlinear filter (see Chapter 2 of [7]). 
This filter propagates a Bayes posterior distribution fk | k(x | Zk) through time

	 � → → →+ + +
+f Z f Z f Zk k

k
k k

k
k k

k
| | |( | ) ( | ) ( |x x x

predictor corrector

1 1 1
11) → � 	 (8.1)
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where
x is the single-target state-vector
Zk: z1,…,zk is a time-sequence of measurements collected by the sensor at times 

t1,…,tk

The Bayes filter presumes the existence of models for the sensor and for the pre-
sumed interim target motion, for example the additive models

	 X x W Z x Vk k k k k k k+ + + += + = +1 1 1 1| ( ) , ( ) ,ϕ η 	 (8.2)

where (1) x is the target state, (2) the deterministic motion model φk(x) is a nonlinear 
function of x, (3) Wk is a zero-mean random vector (the “plant noise”), (4) the 
deterministic measurement model η(x) is a nonlinear function of x, and (5) Vk is a 
zero-mean random vector (the sensor measurement noise). Given these models one 
can construct a Markov transition density and likelihood function. For the additive 
models, for example, these have the form

	 f f f fk k k k kk k+ + +′ = − ′ = −+1 1 11| ( | ) ( ( )), ( ) ( ( )).x x x x z x z xW Vϕ η| 	 (8.3)

The single-target recursive Bayes filter is defined by the time-update and measure-
ment-update equations

	
f Z f f Z dk k
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k
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where the Bayes normalization factor is

	
f Z f f Z dk k

k
k k k k

k
+ + + + += ⋅∫1 1 1 1 1( | ) ( | ) ( | ) .|z z x x x 	 (8.6)

Information of interest—target position, velocity, type, etc.—can be extracted 
from fk | k(x | Zk) using a Bayes-optimal multitarget state estimator. The maximum a 
posteriori (MAP) estimator, for example, determines the most probable target state:

	
x x

x
k k k k

kf Z+ + + +
+=1 1 1 1

1
| |argsup ( | ).MAP 	 (8.7)

Multisensor, single-target MTF with independent sensors is accomplished by applying 
Equation 8.5 successively for each sensor. Suppose, for example, that there are s 
sensors. Their respective, simultaneously collected measurements z z

1
, ,… s  are mediated 

by likelihood functions f fk

s

k

s1

1

1

1+ +…( | ), , ( | )z x z x . By applying Equation 8.5 first using 

f k

1

1

1

+ ( | )z x  and then using f k

2

1

2

+ ( | )z x  and so on, the measurements z z
1
, ,… s

 are not only 
fused, but differences in sensor noise, sensor geometry, sensor obscurations, etc., are 
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taken into account. Equivalently, one can apply Equation 8.5 to the joint likelihood 
function

	 f Z f fk k

s

k

s1

1

1

1

1

1+ + +=( | ) ( | ) ( | )x z x z x� 	 (8.8)

where Z
s

= …{ , , }z z
1

 denotes the set of multisensor measurements.
When motion and measurement models are linear-Gaussian, the Bayes filter 

reduces to the Kalman filter. Likewise, the multisensor Bayes filter (for independent 
sensors) reduces to the multisensor Kalman filter. In either case, a “track” can mean 
any of the following: (1) an instantaneous state-estimate xk+1 | k+1, (2) xk+1 | k+1 together 
with its error covariance matrix Pk+1 | k+1, (3) a labeled time-sequence of state-estimates, 
or (4) a labeled time-sequence of state-estimates and error covariance matrices.

Remark 1: Since my goal is to develop a more general T2F theory, in what follows 
a “track” at a particular time-step k will refer to the entire distribution fk | k(x | Zk), 
rather than to the estimates xk | k or (xk | k, Pk | k) extracted from it. Also, for the sake of 
notational simplicity, I will typically suppress measurement-dependence and employ 
the abbreviation

	 f f Zk k k k
k

|

.

|( ) ( | ).x x=
abbr

	 (8.9)

8.2.2 T 2F with Independent Sources

Suppose that a single target is being tracked and that s independent sources, relying 
on their own dedicated local sensors, provide track data about this target to a T2F site. 

The jth sensor suite collects a time-sequence Z Z Zk
j j j

k: , ,1 … , where Z
j

l  denotes the 
set of measurements supplied by the jth source’s sensors at time tl. The source does 
not pass its measurements directly to the fusion site. Rather, it passes the following 
information:

•	 Measurement-updated, single-target track data, in the form of posterior 

distributions f f Z
j

k k

j

k k
k

j

| |( ) ( | )x x=
abbr.

•	 Time-updated, single-target track data, in the form of distributions 

f f Z
j

k k

j

k k
k

j

+ +=1 1| |( ) ( | )x x
abbr.

Let f f Zk k k k
k

| |( ) ( | )x x=
abbr.

 be the fusion node’s determination of the target state, given 
the accumulated track data Zk supplied by all of the sensor sources. Then Chong 
et al. [2] noted that the fused data at time-step k + 1 is exactly specified by the follow-
ing track-merging formula:
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where the constant of proportionality is
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This formula also applies to the asynchronous-sensor case. If each source has its 
own data rate, then the measurement-collection times t1,…,tk can be taken to refer to 
the arrival times of data from all of the sources, taken collectively. If at time tl only 
sl of the sources provide data, then Equation 8.10 is replaced by the corresponding 
formula for those sources only.

Equation 8.10 is an immediate consequence of Bayes’ rule. Let f Zk

j

+1( | )x  be the 
joint likelihood function for the jth source’s local sensors. Then

	 f f Z f Z fk k k k k

s
k k k+ + + + + + +∝ ⋅1 1 1

1
1 1 1 1| |( ) ( | ) ( | ) ( )x x x x� 	 (8.12)

and thus Equation 8.10 follows from the fact that f f Z f
j

k k k

j

k

j

k k+ + + + +∝ ⋅1 1 1 1 1| |( ) ( | ) ( )x x x  
for all j = 1,…,s.

Suppose, now, that the sources do not pass on their time-updated track data 

f
j

k k+1| ( )x  but, rather, only their measurement-updated track data f
j

k k+ +1 1| ( )x . (This is 
what happens with radars equipped with EKFs, for example.) In this case, Equation 
8.10 can no longer be constructed, and some approximation must be devised.

One approach is to presume that all of the sources employ identical target motion 

models. That is, the sources’ Markov densities f
j

k k+ ′1| ( | )x x  are identical to the fusion 

site’s Markov density: f f
j

k k k k+ +′ = ′1 1| |( | ) ( | )x x x x  for all j = 1,…,s. Under this assump-
tion, the fusion site can itself construct time-updated track data for the sources, using 
the prediction integral

	
f f f d
j

k k k k

j
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and then apply Equation 8.10.
A second but more restrictive approximation is also possible. It is based on the 

presumption that the sources’ time-updated track data is identical to the fusion site’s: 

f f
j

k k k k+ +=1 1| |( ) ( )x x  for all j = 1,…,s. In this case, Equation 8.10 reduces to

	 f f f fk k k k
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This formula is known as “Bayes parallel combination” [7, p. 137].
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8.2.3 T 2F with Known Double-Counting

In the previous section, it was assumed that each data source is equipped with 
its own suite of dedicated sensors—that is, the sources share no sensors in com-

mon. That is, expressed with greater mathematical precision, let Z Z
i i

k1, ,…  be the 

time-sequence of measurement-sets for the ith source and let Z Z
j j

k1, ,…  be the time-

sequence of measurement-sets for the jth source. Then Z Z
i

l

j

l∩ φ  whenever i ≠ j, 
for all l = 1,…,k.

If on the other hand Z Z
i

l

j

l∩ φ , then the sources are sharing at least some sensors 
and double-counting of measurements occurs. Chong et al. [2] generalized Equation 
8.10 to this case—assuming that one knows, a priori, which sensors are being shared 

by which sources. Define Z Z Zk k

s

k+ + += ∪ ∪1

1

1 1� . Let

•	 Z k

12

1+  be the measurements supplied to the second source that are not in Z k
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•	 Z k

13

1+  the measurements supplied to the third source that are not in Z Zk k
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1+  the measurements supplied to the fourth source that are not in 
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and so on. Define
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Then Equation 8.10 generalizes to
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If Equation 8.16 is to be applied, the jth source must know which sensors it shares 

with each of sources 1,…,j − 1, and must pass on f Z
j

k k

j

+1|

( )

( | )x  in addition to f
j

k k+1| ( ).x  
Clearly, as the number of sensors increases, the problem becomes more complex, in 
terms of both computational cost and communications requirements.

Equation 8.16 is, once again, an immediate consequence of Bayes’ rule:
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As an example, set s = 2 and suppose that f fk k k k+ +=1

1

1| |( ) ( )x x . Then Equation 8.16 
reduces to the following formula of Chong et al. [2]:
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For in this case, Z Z Z Zk k k k
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8.2.4  Covariance Intersection

Sections 8.2.2 and 8.2.3 address situations in which enough a priori knowledge is 
available to make exact track merging possible. In general, however, this will not 
be possible. This is because not enough a priori information is available, or because 
even if available it cannot be effectively utilized. This situation is, in part, what the 
CI method of Uhlmann and Julier [8–10] is intended to address.

Suppose that a single target is being observed by two track sources. At time-

step k, the first source provides a track ( , )| |x
0 0

k k k kP  and the second source provides a 

track ( , )| |x
1 1

k k k kP . CI is a method for merging ( , )| |x
0 0

k k k kP  and ( , )| |x
1 1

k k k kP  into a single 
(xk | k,Pk | k) that is robust with respect to ambiguity. This means, in particular, that the 
uncertainty Pk | k in xk | k is neither too small (over-confidence) nor too large (under-

confidence). Let 0 ≤ ω ≤ 1 and define ( , )| |x
ω ω

k k k kP  by

	 P P Pk k k k k k| | |( )− − −= − +1 1
0

1
1

1
ω

ω ω 	 (8.24)
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	 P P Pk k k k k k k k k k k k| | | | | |( ) .− − −= − +1 1
0 0 1

1 1
1

ω ω
ω ωx x x 	 (8.25)

The matrix Pk k

ω
|  is positive-definite regardless of the value of ω, and ( , )| |x

ω ω
k k k kP  

instantiates to ( , )| |x
0 0

k k k kP  resp. ( , )| |x
1 1

k k k kP  when ω = 0 resp. ω = 1.
Suppose that

	 ( ) ( )| | |x x x x− − ≤−0 1
0 0 2

k k
T

k k k kP σ 	 (8.26)

	 ( ) ( )| | |x x x x− − ≤−1 1
1 1 2

k k
T

k k k kP σ 	 (8.27)

are the error hyper-ellipsoids of size σ associated with the tracks ( , )| |x
0 0

k k k kP  and 

( , )| |x
1 1

k k k kP . Then it can be shown that, for any 0 ≤ ω ≤ 1 and any σ > 0,

	 ( ) ( ) .| | |x x x x− − ≤−ω ω ω
σk k

T
k k k kP 1 2 	 (8.28)

That is, the error hyper-ellipsoid of the merged track always contains the intersection 
of the interiors of the error hyper-ellipsoids of the original tracks.

Intuitively speaking, ω should be chosen so that the hypervolume of the hyper-

ellipsoid ( ) ( )| | |x x x x− − =−ω ω ω
σk k

T
k k k kP 1 2 is as small as possible. That is, the merged 

hyper-ellipsoid should have the best possible fit to the intersection-region of the two 
original hyper-ellipsoids. Uhlmann and Julier proposed choosing ω =  ̂ω so that it 

minimizes either the trace tr Pk k

ω
|  or the determinant det |Pk k

ω
. They demonstrated that 

this approach yields an approximation of the exact merged track that is unbiased and 
whose degree of uncertainty is not overstated.

Fränken and Hüpper [11] subsequently proposed a more computationally tractable 
“fast CI” approximation. Here, ω is chosen according to the formula
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These authors also proposed the following generalization. Consider the multisource 
CI problem defined by
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with ω1 + ⋯ + ωn = 1. Then their proposed approximation is
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where

	

P Pkk k k

i

i

n

− −

=

= ∑1 1

1

| .

Much research has been devoted to determining the effectiveness of CI. The emerg-
ing consensus seems to be that CI tends to produce estimates of the fused track that 
are pessimistic. That is, the fused target-localizations are significantly worse than 
what one would get from an exact fused solution. This behavior is exactly what one 
would expect, given that, by design, CI must address worst-case situations in which 
to-be-fused tracks could be highly correlated.

8.2.5 E xponential Mixture Fusion

The CI method addresses the merging of only linear-Gaussian track sources. How 
might it be generalized to more general sources? In 2000 [3], I observed that the fol-
lowing identity is true:
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where, in general, NP0 0( )x x−  denotes a multidimensional Gaussian distribution 
with mean x0 and covariance matrix P0. That is, CI can be expressed entirely in 
terms of density functions rather than covariance matrices. I proposed, therefore, 
that the following definition be taken as the obvious generalization of the CI merging 
formula to arbitrary track sources:
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Hurley independently proposed Equation 8.34 in 2002 [12]. He also justified its theo-
retical reasonableness on the basis of its similarity to Chernoff information, which 
is defined as follows:
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As it turns out, Equation 8.34 is a special case of “logarithmic opinion pooling,” 
when the opinions of only two experts are being pooled [13]. This means that CI 
is itself a special case of logarithmic opinion pooling, given that the opinions of 
two linear-Gaussian experts are being pooled. Julier and Uhlmann have described 
Equation 8.34 as an “XM model” for track fusion [14,15]. (It has also been given the 
name “Chernoff fusion” [16].) I will adopt their terminology in what follows, abbre-
viating it as “XM fusion.” (Julier has also suggested approximations for computing 

the XM fusion formula when the original distributions f k k

0

1 1+ +| ( )x  and f k k

1

1 1+ +| ( )x  are 
Gaussian mixtures [14].)

The XM fusion density has several appealing properties. First, and perhaps most 
importantly, Julier has shown that it is invariant with respect to double counting [17]. 

That is, suppose that the distributions f k k

0

1 1+ +| ( )x  and f k k

1

1 1+ +| ( )x  have double-counted 

information in the sense of Section 8.2.3. Then f k k

ω

+ +1 1| ( )x  incorporates the double-
counted information only once, in the same sense as does Equation 8.20.

Second, for all 0 ≤ ω ≤ 1 [9]:
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The first inequality indicates that f k k

ω

+ +1 1| ( )x  does not reduce information (as 
compared to the original distributions), whereas the second one indicates that it can 
also increase it.

In Ref. [3], I proposed the following as the most theoretically reasonable procedure 
for optimizing ω

	
ˆ argsupsup ( ),|ω

ω

ω
= + +

x
xf k k1 1 	 (8.38)

in which case f k k

ω

+ +1 1| ( )x  with ω =  ̂ω results in the best choice of track merging. That 
is, the optimal value of ω is the one that results in the largest MAP estimate. (Note 

that Equation 8.38 can be approximated by computing the covariance matrix Pk k

ω
|  

of f k k

ω

+ +1 1| ( )x  and minimizing its determinant or trace, as originally proposed by 
Uhlmann and Julier [8-10].)

Julier has proposed [14] that, rather than Equation 8.38, a more theoretically 
principled optimization procedure would be to choose ω as the maximizing value 
in Equation 8.35:
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This has the effect of minimizing the degree of overlap between the distributions 

f k k

0

1 1
1

+ +
−

| ( )x ω
 and f k k

1

1 1+ +| ( )x ω. His reasoning is as follows. First, ω̌ reflects the infor-

mation contained in the distribution f k k

ω

+ +1 1| ( )x  as an entirety—rather than just the 

information contained at a single point, the MAP estimate. Second, 
ˇ
f k k

ω

+ +1 1| ( )x  can 

be shown to be equally distant from f k k

0

1 1+ +| ( )x  and f k k

0

1 1+ +| ( )x  in a Kullback–Leibler 
information-theoretic sense.

Nevertheless, I argue that Equation 8.38 is a more justifiable theoretical choice, 
for two reasons:

	 1.	 In target tracking, a track distribution fk | k(x) is of little interest unless one 
can extract from it an accurate estimate of target state. Using the entire 
distribution fk | k(x) for this purpose is typically a bad idea. For example, 
in practical application, most of the modes of fk | k(x) will be minor modes 
caused by clutter returns, along with (if SNR is large enough) a single larger 
target-associated mode. Thus an estimator that employs all of fk | k(x)—the 
expected value x‾k | k of fk | k(x) for example—can produce unstable and very 
unaccurate estimates. The MAP estimator, Equation 8.7, is usually more 
appropriate for practical application, since it tends to produce more stable 
and accurate state estimates.

	 2.	Abstract information-theoretic distances should be treated with caution 
when isolated from physical intuition. There is a literal infinitude of infor-
mation-based distance concepts—most obviously, the Csiszár-divergence 
family [18,19]
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and its multitarget generalizations [20], where c(x) is some nonnegative convex func-
tion. For example, choose the convex kernel c(x) to be cω(x) = (1 − ω)x + ω − xω. Then 
Chernoff information can be expressed in terms of Kcω, which is

	
K f f f f dc k k k k k k k kω
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In addition to these, there are many distance metrics on probability distributions, 
such as Wasserstein distance. Which of these is “best,” why is it best, and what might 
its physical interpretation be?
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The reasoning behind Equation 8.38, by way of contrast, inherently arises from 
the practical goal of trying to achieve the most accurate and stable state estimates 

possible. For each ω, consider the following statements about f k k

ω

+ +1 1| ( )x :

	 1.	 It is the distribution of the merged track.

	 2.	The MAP estimate for this track is x xx

ω ω
k k k kf+ + + +=1 1 1 1| |argsup ( ) .

	 3.	The larger the value of sup ( )|x xf k k

ω

+ +1 1 , the more probable—and therefore 

the more sharply localized— x
ω

k k+ +1 1|  will be.
	 4.	Thus one should choose that value ω̂ of ω which corresponds to the most-

probable (best localized) MAP estimate.

The necessity of this line of reasoning will become apparent when I propose multi-
target generalizations of XM fusion later in the chapter. In this situation, concepts 
such as covariance or trace can no longer even be defined. Concepts such as Chernoff 
information and Csiszár discrimination can still be defined, but their physical mean-
ing is even less evident than in the single-target case. The primary difficulty is a 
practical one, namely that in multitarget problems the computability of Equation 8.38 
will be questionable. Thus computational tractability will usually be the primary 
motivation for choosing information-theoretic or other optimization approaches in 
preference to Equation 8.38.

8.3  FINITE-SET STATISTICS: REVIEW

In this section, I briefly review basic elements of finite-set statistics (FISST) [7,21,22] 
that are required for the material that follows:

	 1.	Section 8.3.1: The multisensor-multitarget recursive Bayes filter. This is the 
foundation for the approach to T2F that will be introduced shortly.

	 2.	Section 8.3.2: A brief summary of the basic elements of the FISST dif-
ferential and integral multitarget calculus, including Poisson processes and 
i.i.d.c. processes.

	 3.	Section 8.3.3: The PHD filter. This is the first computational approximation 
of the multitarget Bayes filter.

	 4.	Section 8.3.4: The CPHD filter. This is the second computational approxi-
mation of the multitarget Bayes filter.

	 5.	Section 8.3.5: A brief summary of significant recent advances involving 
PHD and CPHD filters.

8.3.1 M ultitarget Recursive Bayes Filter

My approach to multisource-multitarget T2F is based on the multisensor-multitarget 
recursive Bayes filter [7, chapter 14]. Let Z(k): Z1,…,Zk be a time-sequence of 
multisensor-multitarget measurement-sets Zi collected at times t1,…,tk. That is, 
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each Zi consists of the measurements collected by all available sensors at or near 
time-step i. They can have the form Zi = ; (no measurements collected); Zi = {z1} (one 
measurement z1 collected); Zi = {z1,z2} (two measurements z1,z2 collected); and so on. 
Given this, the multitarget Bayes filter propagates a multitarget posterior distribution 
fk | k(X | Zk) through time:

	 � → → →+ + +f X Z f X Z f Xk k
k

k k
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k k|
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1 1 1 || )( )Z k + →1 � 	 (8.42)

Here, X is the single-target state-set—i.e., X = if no targets are present, X = {x1} if a 
single target with state x1 is present, X = {x1,x2} if two targets with states x1,x2 are 
present, etc. The “cardinality distribution”
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defines the posterior probability that the multitarget scene contains n targets, where 

·δX∫  indicates a multitarget “set integral” as defined in Section 8.3.2.

The multitarget Bayes filter presumes the existence of multitarget motion and 
measurement models, for example:

	 Ξ Σk k k k k k k kS X B T X C+ + + += ∪ = ∪1 1 1 1| |( ) , ( ) 	 (8.44)

where
Sk(X) is the random finite subset (RFS) of persisting targets
Bk is the RFS of appearing targets
Tk+1(X) is the RFS of target-generated measurements
Ck+1 is the RFS of clutter measurements

Given these models, using multitarget calculus (Section 8.3.2) one can construct a 
multitarget Markov transition density and a multitarget likelihood function

	 f X X f Z Xk k k+ +′1 1| ( | ), ( | ) 	 (8.45)

(see Chapters 12 and 13 of [7]). Because of this systematic specification of models, 
at any given time-step the distribution fk | k(X | Z(k)) systematically encapsulates 
all relevant information regarding the presumed strengths and weaknesses of the 
targets, and the known strengths and weaknesses of the sensors.

The multitarget Bayes filter is defined by the predictor and corrector equations
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where

	
f Z Z f Z X f X Z Xk k
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In what follows, I will abbreviate, for all k ≥ 0,
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	 f X f X Zk k k k
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	 (8.50)

Information of interest—number of targets, the positions, velocities, and types of the 
targets, etc.—can be jointly extracted from fk | k(X | Z(k)) using a Bayes-optimal mul-
titarget state estimator (see Section 14.5 of [7]). For example, the joint multitarget 
(JoM) estimator is defined by

	
X f X Z
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k k
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where c is a fixed constant which has the same units of measurement as the single-
target state x.

Remark 2: Generally speaking, c should be approximately equal to the accuracy 
to which the state is to be estimated, as long as the following inequality is satisfied 
[7, p. 500]: fk + 1 | k + 1(X | Z(k + 1))·cn̂ ≤ 1 for all X, where n̂ is the MAP estimate derived 
from the cardinality distribution.

8.3.2 M ultitarget Calculus

The finite-set statistics multitarget integral-differential calculus is central to the 
approach that I advocate. Functional derivatives and set derivatives [7, chapter 11] 
are key to the construction of “true” multitarget Markov densities and multitarget 
likelihood functions. They are also key to the construction of principled approxima-
tions of the multitarget Bayes filter, such as the PHD and CPHD filters.

A set integral accounts for random variability in target number as well as in target 
state. Let fk | k(X) be a multitarget probability distribution. Then it has the form
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Let F[h] be any functional—i.e., a scalar-valued function whose argument h is a 
function h(x). Then the functional derivative of F with respect to any finite set 
X = {x1,…,xn} with |X| = n ≥ 0 is given by
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where δx(x′) denotes the Dirac delta function concentrated at x. Functional deriva-
tives and set integrals are inverse operations, in the sense that
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Here, for any function h(x),
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In this chapter, we will require frequent use of two special multitarget processes. 
Suppose that f(X) is a multitarget probability distribution. Then it is the distribution of

•	 A Poisson process (Poisson RFS) if

	 f X e DN X( ) = ⋅− 	 (8.58)

where

	
N D d= ∫ ( )x x

D(x) is the PHD, or “intensity function,” of the process

•	 An independent, identically distributed cluster (i.i.d.c.) process (i.i.d.c. RFS) if

	 f X X p X sX( ) | | ! (| |)= ⋅ ⋅ 	 (8.59)

where
s(x) is the spatial density
p(n) is the cardinality distribution of the process

Equation 8.58 is a special case of Equation 8.59 with p(n) = e−N · Nn/n!
As an example, one can verify that Equation 8.58 defines a multitarget 
probability distribution:
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Likewise, Equation 8.59 defines a multitarget probability distribution:
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8.3.3 PHD  Filter

Constant-gain Kalman filters—the alpha-beta filter, for example—provide the most 
computationally tractable approximation of the single-sensor Bayes filter. A constant-
gain Kalman filter propagates the first statistical moment (posterior expectation) x̂k | k 
in place of fk | k(x | Zk), using alternating predictor steps x̂k | k → x̂k + 1 | k and corrector 
steps x̂k + 1 | k → x̂k + 1 | k + 1.

The PHD filter mimics this basic idea, but at a more abstract, statistical level 
[7, Chapter 16] [23]. It propagates a first-order multitarget moment of the multitarget 
posterior fk | k(X | Z(k)) instead of fk | k(X | Z(k)) itself:
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k

k k
k
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This moment, the PHD, is the density function on single-target states x defined by
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δ 	 (8.65)

It is not a probability density, since its integral is in general not 1. Rather, 

N D dk k k k| | ( )= ∫ x x is the total expected number of targets in the scenario. Intuitively 

speaking, Dk | k(x) is the track density at x. The peaks of Dk | k(x) are approximately at 
the locations of the most likely target states. So, one way of estimating the number 
n̂ and states x̂1,…, x̂ n̂ of the predicted tracks is to take n̂ to be the nearest integer n̂ in 
Nk+1 | k and then determine the n̂ highest peaks of Dk | k(x).

The PHD can be propagated through time using the following predictor (time-
update) and corrector (data-update) equations. Neglecting the spawning of targets by 
other targets, these are
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Here,

•	 Nk k
B
+1|  is the expected number, and sk k

B
+1| ( )x  the spatial distribution, of newly 

appearing targets.

•	 p pS S k k( ) ( ), |′ = ′+x x
abbr.

1  is the probability that a target with state x′ at time-step 
k will survive into time-step k + 1.

•	 fk+1 | k(x | x′) is the single-target Markov transition density.

•	 p pD D k( ) ( ),x x= +

abbr.

1  is the probability that a target with state x at time-step 
k + 1 will generate a measurement.

•	 L fkz x z x( ) ( | )= +

abbr.

1  is the single-target likelihood function.
•	 λk+1 is the clutter rate and ck+1(z) is the spatial distribution of the Poisson 

clutter process, where

	
τk D k kp L D d+ += ⋅ ⋅∫1 1( ) ( ) ( ) ( ) .|z x x x xz 	 (8.68)

One can get an intuitive understanding of how the PHD filter works by noticing that 
the measurement-updated expected number of targets is
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where
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The nondetection term N k k

ND

+ +1 1|  is an estimate of the number of targets that have not 

been detected. The detection ratio N k k

D

+ +1 1| ( )z  assesses whether or not z originated 

with clutter or with a target. If N k k

D

+ + >1 1 1 2| ( ) /z —that is, if τk+1(z) > λk+1ck+1(z)—then 

z is “target-like.” If N k k

D

+ + <1 1 1 2| ( ) /z  then it is “clutter-like.”
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The derivation of Equation 8.67 requires the following simplifying assumption: 
the predicted target process is approximately Poisson. As is evident from Equation 
8.67, the PHD filter does not require explicit measurement-to-track association. It 
has computational order O(mn), where m is the current number of measurements 
and n is the current number of targets. It tends to produce inaccurate (high variance) 
instantaneous estimates Nk | k of target number. Thus it is typically necessary to 
average Nk | k over some time window.

The PHD filter can be implemented using both sequential Monte Carlo (SMC, 
a.k.a. particle-system) approximation, or Gaussian-mixture approximation. In the 
first case, it is called a “particle-PHD filter” and in the second case a “GM-PHD 
filter” (see Chapter 16 of [7] and [45–47]).

8.3.4  CPHD Filter

The CPHD filter generalizes the PHD filter [7, chapter 16] [23]. It admits more general 
false alarm models (called “independent, identically distributed cluster” [i.i.d.c.] 
models) than the Poisson models assumed in the PHD filter. It propagates two things: 

a spatial distribution sk | k(x) and a cardinality distribution p n p n Zk k k k
k

| |
( )( ) ( | )=

abbr.
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target number n:

	

� →





→ +

+

s Z

p n Z

s Z

p
k k

k

k k
k

k k
k

k

|
( )

|
( )

|
( )( | )

( | )

( | )x xpredictor
1

11

1 1
1

1 1|
( )

|
( )

|
(( | )

( | )

( |k
k

k k
k

k kn Z

s Z

p n Z






→ + +

+

+ +

corrector x
kk +






→

1) )
� 	(8.72)

If N n p n Zk k k k
k

n
| |

( )( | )= ⋅
≥∑ 0

 is the expected number of targets, then Dk | k(x | Z(k)) = Nk | k · 

sk | k(x | Z(k)) is the corresponding PHD. Or, equivalently, s Z N D Zk k
k

k k k k
k

|
( )

| |
( )( | ) ( | ).x x= −1

CPHD Filter Time-Update Equations. The predictor equations for the CPHD filter are
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where p n jk k
B
+ −1| ( ) is the cardinality distribution of the birth process and where
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CPHD Filter Measurement-Update Equations. If m = |Zk+1| where Zk+1 = {z1,…,zm} 
is the newly collected measurement-set, then the corrector equations for the CPHD 
filter are
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where

	

E
m j p m j Z G

m l
k

k j k k k
j

k
j

m

ND

+

+ + +
+

==
− ⋅ − ⋅ ⋅

−

∑
1

1 1 1
1

0
( )! ( ) ( ) (

(

)|
( )κ σ φ

))! ( ) ( ) ( )|
( )⋅ − ⋅ ⋅+ + +

=∑ p m l Z Gk l k k k
l

k
l

m

1 1 1
0

κ σ φ
	 (8.82)

	

E
c

m j p m j Z G
k

k

k j k j kD

+
+

+ + +
= ⋅

− − ⋅ − − ⋅ − ⋅
1

1

1 1 11 1 1
( )

( )

( )! ( ) ( { })
z

z

zκ σ ||
( )

|
( )

(

( )! ( ) ( ) (

)k
j

k
j

m

k l k k k
l

km l p m l Z G

+

=

−

+ + +

∑
− ⋅ − ⋅ ⋅

1

0

1

1 1 1

φ

σ φκ ))
l

m

=∑ 0 	

(8.83)

and where

	
σ σ τ τ

j k m j
k

k

k m

k m

Z
c c

( )
( )
( )

, ,
( )
( )

,+
+

+

+

+
= …






1

1 1

1 1

1

1

z
z

z
z

	 (8.84)

	

G P p nk k
l

k n l k k k
n l

n l

+ ′ +
′−

′≥

= ⋅ ′ ⋅∑1 1|
( )

, |( ) ( )φ φ 	 (8.85)

	

G P p nk k
j

k n j k k k
n j

n j

+
+

′ + +
′− −

′≥ +

= ⋅ ′ ⋅∑1
1

1 1
1

1

|
( )

, |( ) ( )φ φ 	 (8.86)



220 Distributed Data Fusion for Network-Centric Operations

	
φk D k kp s d= − ⋅∫ + +( ( )) ( )|1 1 1x x x 	 (8.87)

	
τk D k kp L s d+ += ⋅ ⋅∫1 1( ) ( ) ( ) ( )|z x x x xz 	 (8.88)

where Pn,i = n!/(n − i)! is the permutation coefficient.
The corrector equations for the CPHD filter require the following simplifying 

assumption: that the predicted target process is approximately an i.i.d.c. process. The 
CPHD filter has computational order O(m3n), though this can be reduced to O(m2n) 
using special numerical techniques.

The CPHD filter can be implemented using both particle approximation and 
Gaussian-mixture approximation. In the first case, it is called a “particle-CPHD 
filter” and in the second case a “GM-CPHD filter.”

8.3.5  Significant Recent Developments

The theory and practice of random set filters has developed rapidly in recent years. 
In this section, I briefly summarize a few of the most recent advances:

	 1.	Track-before-detect filtering in pixelized images without preprocessing. 
Most multitarget tracking algorithms using pixelized image data rely on 
some kind of image preprocessing step to extract detection-type features: 
threshold detectors, edge detectors, blob detectors, etc. In Ref. [24], Vo, 
Vo, and Pham have demonstrated a computationally tractable multitarget 
detection and tracking algorithm that does not require such preprocessing. 
It is based on a suitable modification of the “multi-Bernoulli filter” 
introduced in Ref. [7, chapter 17] and then corrected and implemented in 
Ref. [25].

	 2.	Simultaneous localization and mapping (SLAM). When neither GPS nor 
terrain maps are available, a robotic platform must detect landmarks, 
use them to construct a terrain map on the fly, and simultaneously orient 
the platform with respect to that map. The current state-of-the-art in 
SLAM is the FastSLAM approach, which employs measurement-to-track 
association, in conjunction with heuristic procedures for clutter rejection 
and initiation and termination of landmarks. Mullane, Vo, Adams, and Vo 
have shown that a PHD filter-based SLAM filter significantly outperforms 
FastSLAM in regard to the accuracy of both platform trajectory estimation 
and landmark detection and localization [26,27]. Clark has devised an 
even faster and more accurate SLAM-PHD filter based on a cluster-
process formulation [28].

	 3.	“Background agnostic” (BAG) CPHD filters. The “classical” CPHD filter 
relies on an a priori model λk+1, ck+1(z), p mk +1

κ ( ) of the clutter process and 
on an a priori model pD(x) of the state-dependent probability of detection. 
In 2009, I initiated a study of PHD and CPHD filters that do not require a 
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priori clutter models but, rather, are capable of estimating them, on the fly, 
directly from the measurements. In Refs. [29,30], the clutter process was 
assumed to be a finite superposition of Poisson clutter processes, each with 
an intensity function of the form κ(z) = λ · θc(z) with clutter rate 0 ≤ λ ≤ 1 
and spatial distribution θc(z) parameterized by c. Unfortunately, the result-
ing PHD/CPHD filters are combinatorially complex. Subsequently, in Ref. 
[31], I derived computationally tractable version CPHD filters. In this case, 
the clutter process is assumed to be an infinite superposition of Bernoulli 
clutter processes, each with an intensity function of the form κ(z) = λ · θc(z) 
with 0 ≤ λ ≤ 1. Then, in Ref. [32], I showed how to further extend these 
filters when both the clutter process and pD(x) are unknown. This filter has 
been implemented in certain special cases and shown to perform reason-
ably well under simulated conditions [33,34].

	 4.	“Background agnostic” multi-Bernoulli filters. Vo, Vo, Hoseinnezhad, and 
Mahler have generalized the just-mentioned approach to nonlinear situa-
tions, via a particle-filter implementation of a background-agnostic multi-
Bernoulli filter [35–37].

	 5.	Principled, tractable multisensor CPHD/PHD filters. The PHD/CPHD 
filter measurement-update steps described in Sections 8.3.3 and 8.3.4 
are inherently single-sensor formulas. What of the multisensor case? In 
practical application, the de facto approach has been to employ the “iter-
ated corrector” approximation. That is, apply the measurement-update 
equations successively, once for each sensor. It is well known that this 
approach is not invariant to changes in the order of the sensors. Moreover, 
for the PHD filter (but apparently not for the CPHD filter) it turns out 
that the iterated-corrector approach leads to performance degradation 
when the probabilities of detection for the sensors are significantly dif-
ferent [38]. In Ref. [39], I introduced a new approximation that leads to 
principled, order-invariant, computationally tractable multisensor PHD 
and CPHD filters. Nagappa et al. have shown that this approximation 
outperforms the interated-corrector approach and, for the PHD filter, is 
also a good approximation of the theoretically correct two-sensor PHD 
filter [40].

	 6.	Joint multisensor-multitarget tracking and sensor-bias estimation. 
Current multitarget detection and tracking algorithms presume that all 
sensors are spatially registered—i.e., that all sensor states are precisely 
specified with respect to some common coordinate system. In actuality, 
any particular sensor’s observations may be contaminated by spatial 
misregistration biases that may take translational, rotational, and other 
forms. In Ref. [41], I proposed an approach that leverages any unknown 
targets that may be in the scene, if there are enough of them present, 
to estimate the spatial biases of the sensors while simultaneously 
detecting and tracking the targets. Ristić and Clark have implemented 
a cluster-process variant of this approach for a specific kind of spatial 
misregistration, and found that it performs well [42].
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8.4  GENERAL MULTITARGET DISTRIBUTED FUSION

In this section, I show how to directly generalize the single-target T2F theory of 
Section 8.2 to the multitarget situation. The section is organized as follows:

	 1.	Section 8.4.1: Multitarget T2F when the track sources are independent. 
Approach: multitarget generalization of Equation 8.10.

	 2.	Section 8.4.2: Multitarget T2F when the track sources are dependent 
because of known double-counting. Approach: multitarget generalization 
of Equation 8.16.

	 3.	Section 8.4.3: Multitarget T2F when the track sources are arbitrary and their 
correlations are completely unknown. Approach: multitarget generalization 
of XM fusion, Equations 8.34 through 8.38.

8.4.1 M ultitarget T2F of Independent Sources

Suppose that multiple targets are being tracked, and that s independent sources, 
relying on their own dedicated local sensors, provide track data about these targets 

to a T2F site. The jth sensor suite collects a time-sequence Z Z Zk
j j j

k: , ,1 … , where Z
j

l 
denotes the set of measurements supplied by the jth source’s sensors at time tl. The 
source does not pass this information directly to the fusion site. Rather, it passes the 
following information:

•	 Measurement-updated multitarget track data, in the form of multitarget 

probability distributions f X f X Z
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k k
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k k
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•	 Time-updated multitarget track data, in the form of multitarget distributions 
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abbr.

 be the fusion node’s determination of the multitarget 
state, given all the accumulated track data supplied by the sensor sources. Then the 
exact multitarget generalization of Equation 8.10 is the following multitarget track-
merging formula, first introduced in Ref. [3]:
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This is the fundamental formula for multitarget T2F with independent sources. As 
in Section 8.2.2, it is being assumed here that the sources provide their data in lock-
step, simultaneously at every time-step. Once again, however, it also applies to the 
asynchronous case. If each source has its own data rate, then the measurement-
collection times t1,…,tk can be taken to refer to the arrival times of data from all of 
the track sources, taken collectively. If at time tl only sl of the sources provide data, 
then Equation 8.10 is replaced by the corresponding formula for only those sources.



223Toward a Theoretical Foundation for Distributed Fusion

The approximations described in Section 8.2.2 apply equally well here. Suppose 
that the sources do not pass on their time-update track data but, rather, only their 
measurement-update track data. Presume that all of the sources employ identical 
target motion models. Then (in principle) the fusion site can construct time-update 
track data for the sources, using the multitarget prediction integral

	
f X f X X f X X
j

k k k k
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k k+ += ′ ⋅∫1 1| | |( ) ( | ) ( ) ,δ 	 (8.90)

and then apply Equation 8.89.
Alternatively, assume that the sources’ time-updated track data is identical to the 

fusion site’s: f X f X
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which is the multitarget version of Bayes parallel combination, Equation 8.14.
Equations 8.89 and 8.91 are computationally intractable in general. The task of devis-

ing more tractable approximations of them will be taken up in Sections 8.5.1 and 8.5.2.

8.4.2 M ultitarget T2F with Known Double-Counting

Suppose now that the data sources share sensors, but that it is known which sensors 

are being shared by which sources. As in Section 8.2.3, define Z Z Zk k
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1. Then the multitarget version of Equation 8.16 is
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This is the fundamental formula for multitarget T2F with known double-counting. 
As in Section 8.2.3, the jth source must know which sensors it shares with each of 

sources 1, …, j − 1, and must pass on f Z
j

k k

j

+1|

( )

( | )x  in addition to f
j

k k+1| ( )x .
Equation 8.92 is computationally intractable in general. More tractable approxi-

mations of it will be taken up in Sections 8.5.3 and 8.5.4.

8.4.3 M ultitarget XM Fusion

Suppose that multiple targets are being observed by two track sources. At time-

step k, the first source provides a multitarget distribution f Xk k

1

1 1+ +| ( ) and the second 
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source provides a multitarget distribution f Xk k

2

1 1+ +| ( ). Then the multitarget version of 
the single-target XM fusion formula, Equation 8.34, is [3]
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This is the general formula for the XM fusion of multitarget track sources with 
completely unknown correlations. As I did in Ref. [3] and at the end of Section 8.2.5, 
I argue that the most theoretically reasonable optimal XM fusion procedure is as 
follows:
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where c is as defined in Equation 8.51: a fixed constant which has the same units of 
measurement as the single-target state x.

However this may be, Equations 8.93 through 8.95 are computationally intractable 
in general. More tractable approximations of these equations will be taken up in 
Sections 8.5.5 and 8.5.6.

8.5  CPHD/PHD FILTER DISTRIBUTED FUSION

In this section, I derive CPHD filter-based approximations of the multitarget T2F 
approaches described in Section 8.4. The section is organized as follows:

	 1.	Sections 8.5.1 and 8.5.2: Multitarget T2F when the track sources are inde-
pendent. Approach: CPHD and PHD filter approximations of Equation 8.89.

	 2.	Section 8.5.3: Multitarget T2F when the track sources are dependent because 
of known double-counting. Approach: CPHD and PHD filter approxima-
tions of Equation 8.92.

	 3.	Sections 8.5.5 and 8.5.6: Multitarget T2F when the track sources are arbi-
trary and their correlations are completely unknown. Approach: CPHD and 
PHD filter approximations of Equation 8.93, as proposed by Clark et al.

8.5.1  CPHD Filter T2F of Independent Sources

Suppose as in Section 8.4.1 that multiple targets are being tracked, and that s independent 
sources, relying on their own dedicated local sensors, provide track data about these 
targets to a T2F site. The jth sensor suite collects its measurements, processes them 
using a CPHD filter, and then passes on the following to a central T2F site:
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•	 Measurement-update multitarget track data, in the form of spatial 

distributions s s Z
j

k k

j

k k
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| |
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abbr

 and cardinality distributions 
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•	 Time-update multitarget track data, in the form of spatial distri

butions s s Z
j

k k

j

k k
k

j

+ +=1 1| |
( )( ) ( | )x x

abbr

 and cardinality distributions 

p n p n Z
j

k k

j

k k
k

j

+ +=1 1| |
( )( ) ( | )

 abbr

Then the multitarget track merging formula—i.e., a CPHD filter approximation of 
Equation 8.89—is as follows (see Section 8.7.1):
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where
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Suppose that we use the approximations p n p n p nk k k k

s
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1

1 1| | |( ) ( ) ( )�  and 

s s sk k k k
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1
1 1| | |( ) ( ) ( )x x x� . Then we get the CPHD filter analog of the Bayes 

parallel combination formula, Equation 8.14:
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Remark 3: Equations 8.100 and 8.101 have been employed as the basis for the 
principled approximate multisensor CPHD and PHD filters [39] mentioned in 
Section 8.3.5.

8.5.2 PHD  Filter T2F of Independent Sources

What is the analog of Equation 8.97 for PHD filters? That is, suppose that the track 
sources use PHD filters rather than CPHD filters, and thus pass on PHDs rather than 
spatial distributions and cardinality distributions. Then what is the formula for the 
merged PHD? This turns out to be (see Section 8.7.2)
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This merging formula is potentially problematic because, in the single-target case, 
it does not reduce to the correct single-target formula. For example, suppose that 

D D Dk k k k
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Equation 8.105 should reduce to Bayes parallel combination, Equation 8.14. However, 
it does not. To see this, note that with the single-target Bayes recursive filter, there 
are (1) no missed detections or false alarms; (2) the integrals of Dk+1 | k(x) = fk+1 | k(x) 

and D f
i

k k
i

k k+ + + +=1 1 1 1| |( ) ( )x x  for all i should equal 1; and (3) the integral of Dk+1 | k+1(x) 
should equal 1.

By way of contrast, Equations 8.96 and 8.97 do reduce to the correct single-target 
formula in the single-target case. Thus one must conclude:

•	 Equation 8.104 is unlikely to provide an accurate approximate track-
merging formula when the number of targets in the scenario is small.

Remark 4: Let D L D
i

k k

i

Z

i

k k
i

k+ + += ⋅+1 1 11| |( ) ( ) ( )x x x  be the PHD filter measurement-
update formula for the ith source, as defined in Equation 8.67. Then Equation 8.105 
becomes
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This is the multisensor PHD measurement-update formula as described in Equation 
8.106 of reference [43]. It follows that this update formula is likely to be inaccurate 
when the number of targets is small.
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8.5.3  CPHD Filter T2F with Known Double-Counting

Suppose that the data sources share sensors, but that it is known which sensors 
are being shared by which sources. The sources use CPHD filters to process these 

measurements: As in Section 8.4.2, define Z Z Zk k

s
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1

1 1� . Let Z k

12

1+  be the 

measurements supplied to the second source that are not in Z k

1

1+ , Z k

13

1+  the measure-

ments supplied to the third source that are not in Z Zk k

1

1

12

1+ +∪ , Z k

14

1+  the measure-

ments supplied to the fourth source that are not in Z Z Zk k k

1

1

12

1

13

1+ + +∪ ∪ , and so on. Let 

Z Z Z
j

k

j

k

j

k

( )

+ + += −1 1

1

1.

At time-step k, the jth source provides spatial distributions s
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and cardinality distributions p n
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( | ). Then the CPHD filter version of 
Equation 8.92 is
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where
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8.5.4 PHD  Filter T2F with Known Double-Counting

The PHD filter version of these equations is
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This update formula is unlikely to offer good performance when the number of tar-
gets is small.
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8.5.5  CPHD Filter XM Fusion

Clark et al. have considered the special case of Equation 8.93 when the distributions 
are i.i.d. cluster processes—that is, when track fusion is based on CPHD or PHD 
filters [4–6]. Suppose that multiple targets are being observed by two track sources 
equipped with CPHD filters. At time-step k, the first source provides a spatial distri-
bution sk k

0
| ( )x  and cardinality distribution p nk k

0

| ( ); and the second source provides a 
spatial distribution sk k

1
| ( )x  and cardinality distribution p nk k

1

| ( ).
Given this, the CPHD filter approximation of the multitarget XM fusion formula, 

Equation 8.93, is (see Section 8.7.4)
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From a theoretical point of view, optimization of Equations 8.112 and 8.113 would 
be obtained via Equation 8.95:
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However, this formula will usually be computationally problematic, as will be the 
multitarget version of the Chernoff information, Equation 8.35. A very approximate 
approach would be to first apply Chernoff optimization to the spatial distributions:
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Then setting
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one could apply Chernoff optimization once again to the cardinality distributions:
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The final distributions would then be
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Clark et al. have implemented Equations 8.112 through 8.115 and have considered 
a broad range of optimization procedures [5,6,44]. They have further demonstrated 
that these equations lead to good distributed-fusion performance.

8.5.6 PHD  Filter XM Fusion

The PHD filter approximation of the multitarget XM fusion formula, Equation 8.93, 
can be shown to be (see Section 8.7.5)
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This formula is an equality, not a proportionality. Thus it does not reduce to the 
single-target XM fusion formula, Equation 8.34, in the single-target case. Thus it is 
unlikely to perform well when the number of targets is small.

How might we optimize Equation 8.121? Once again, Equation 8.116 will be com-
putationally problematic. One alternative is as follows. It can be shown (see Section 
8.7.6) that Chernoff information can be defined for PHDs and has the form
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is the expected number of targets corresponding to ω, and where
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is the weighted expected number of targets. Equation 8.122 is, at least in principle, 
potentially computationally tractable. Thus one would chose
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As an example, suppose that expected target numbers are identical: N k k
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As another example, let the spatial distributions be identical: sk k
0

1 1+ + =| ( )x

s sk k k k
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1 1 1 1+ + + +=| |( ) ( )x x . Then it is easily shown that
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8.6  COMPUTATIONAL ISSUES

In this section, I address the practical computability of the T2F CPHD/PHD filter 
formulas derived in the previous sections. There are two general fusion architectures 
that can be envisioned. In the first architecture, the track sources use GM-CPHD or 
GM-PHD filters, and transmit their Gaussian-mixture PHDs to the T2F site. In the 
second architecture, the track sources use particle-CPHD or particle-PHD filters, 
and transmit their particle-PHDs to the T2F site. In either case, the most serious 
obstacle to practical implementation is the following:

•	 The exact fusion formulas in Sections 8.5.1 through 8.5.3 involve division 
by PHDs.

•	 The XM fusion formulas in Sections 8.5.5 through 8.5.6 involve fractional 
powers of PHDs.

I deal with these two situations in the two sections that follow.

8.6.1 I mplementation: Exact T2F Formulas

In what follows, I consider implementation of the exact fusion formulas in Sections 
8.5.1 through 8.5.3. I consider two cases: the track sources employ GM-CPHD or 
GM-PHD filters; or the track sources employ particle-CPHD or particle-PHD filters.
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8.6.1.1  Case 1: GM-PHD Tracks
Suppose that the track sources send their PHDs to the T2F site in the form of Gaussian 
mixtures—or, more precisely, as finite sets of the form {(w1,x1,P1),…,(wn,xn,Pn)} 
where each triple (wi,xi,Pi) is a Gaussian component. Here I sketch the outlines of a 
possible implementation approach, using a hybridization of particle and Gaussian-
mixture techniques.

For the sake of clarity, consider the simplest CPHD/PHD filter track-merging 
formula, Equation 8.105:

	 D D D Dk k k k

s

k k k k
s

+ + + + + + +
−= ⋅1 1

1

1 1 1 1 1
1

| | | |( ) ( ) ( ) ( ) .x x x x� 	 (8.129)

If we can devise an implementation solution in this case, it should be possible to 
devise solutions for the more complex track-merging formulas in Sections 8.5.1 
through 8.5.3. Rewrite Equation 8.129 as
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where Dk+1 | k(x) and each D
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k k+ +1 1| ( )x  is a Gaussian mixture. Then:
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	 2.	Draw a statistical sample from the normalized predicted PHD:
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	 3.	Approximate Dk+1 | k(x) as the Dirac mixture
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	 4.	Determine the corresponding particle approximation of Dk+1 | k+1(x):
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For this formula to be effective, there have to be enough particles nearby the 

means of the Gaussian components of D
s
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…
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	 5.	Employ some particle-resampling technique to convert Equation 8.133 into 
distribution-sample form:
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where y yk k k k+ +…1
1

1| |, , ν  are the resampled particles and where
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	 6.	Use the EM algorithm, or some other particle-regularization procedure, to 
approximate D̆k + 1 | k + 1(x) as a Gaussian mixture.

	 7.	 Iterate.

8.6.1.2  Case 2: Particle-PHD Tracks
This approach can be modified to address the case in which the track sources send 
their PHDs to the T2F site in the form of Dirac mixtures:

	 1.	The D
i

k k+ +1 1| ( )x  are Dirac mixtures. Use the EM algorithm, or some other 
particle-regularization procedure, to approximate each of them as a 
Gaussian mixture.

	 2.	Apply steps 1, 4, and 5 from the previous implementation approach.

8.6.2 I mplementation: XM T2F Formulas

In what follows, I consider implementation of the XM fusion formulas in Sections 
8.5.5 through 8.5.6. I consider two cases: the track sources employ GM-CPHD or 
GM-PHD filters; or the track sources employ particle-CPHD or particle-PHD filters.

8.6.2.1  Case 1: GM-PHD Tracks
Suppose that the track sources send their PHDs to the T2F site in the form of Gaussian 
mixtures. For the sake of conceptual clarity, consider the simplest of the XM fusion 
formulas, Equation 8.121:
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If we can devise an implementation solution in this case, it should be possible to 
devise solutions for the more complex track-merging formulas in Section 8.5.5.

One approach is to adapt the approximation suggested by Julier, one that appears 
to be surprisingly effective [15]:
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Thus, if
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it can be shown (see Section 8.7.7) that the corresponding XM fusion formula is
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where for i = …1
0

, ,ν and j = …1
1

, ,ν,
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and where N is the dimension of the underlying Euclidean space.
As for optimization of ω, it follows that
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and thus from Equation 8.122 that the Chernoff information is, approximately, the 
supremum with respect to ω of the quantity
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8.6.2.2  Case 2: Particle-PHD Tracks
This approach can be modified to address the case in which the track sources send 
their PHDs to the T2F site in the form of Dirac mixtures. Use the EM algorithm, 
or another particle-regularization procedure, to approximate the particle-PHDs 

Dk k

0

1 1+ +| ( )x  and Dk k

1

1 1+ +| ( )x  as Gaussian mixtures. Then proceed as before.

8.7  MATHEMATICAL DERIVATIONS

8.7.1 P roof: CPHD T2F Fusion—Independent Sources

Suppose that the track distributions of the sources are i.i.d.c. processes, i.e.,
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Then I show that the multitarget track-merging distribution of Equation 8.89 is also 
that of an i.i.d.c. process:
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For, from Equation 8.89,
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where the probability distributions pk+1 | k+1(n) and sk+1 | k+1(x) are defined by
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Thus
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for some K which is independent of X. Integrating both sides, and making note of 
Equation 8.63, we get
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which completes the derivation.
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8.7.2 P roof: PHD T2F Fusion—Independent Sources

Suppose that the track distributions of the sources are Poisson processes, i.e.,
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Then I show that the XM fusion of the sources is also an i.i.d.c. process, where
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For, in this case
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as claimed.

8.7.3 P roof: CPHD Filter with Double-Counting

Suppose that the track distributions of the s track sources are i.i.d.c. processes, i.e.,

	 f X X p X sk k k k k k
X

+ + += ⋅ ⋅1 1 1| | |( ) | | ! (| |) 	 (8.173)



237Toward a Theoretical Foundation for Distributed Fusion

	 f X X p X s
j

k k

j

k k k k
X

j

+ + + + + += ⋅ ⋅1 1 1 1 1 1| | |( ) | | ! (| |) 	 (8.174)

	 f X Z X p X s
j

k k

j j

k k k k
X

j

+ + += ⋅ ⋅1 1 1|

( )

| |( | ) | | ! (| |) 	 (8.175)

where

	 p n p n Z
j

k k

j

k k

j

+ +=1 1| |

( )

( ) ( | )
abbr.

	 (8.176)

	 s s Z
j

k k

j

k k

j

+ +=1 1| |

( )

( ) ( | )x x
abbr.

	 (8.177)

Then I show that the multitarget track-merging distribution of Equation 8.92 is also 
that of an i.i.d.c. process:
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and where
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The derivation is essentially identical to that in Section 8.7.1.

8.7.4 P roof: CPHD Filter XM Fusion

We are to prove the CPHD filter version of XM fusion as defined in Equations 8.112 
and 8.113. Thus assume that the original multitarget distributions redistributions of 
i.i.d.c. processes:
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Then Equation 8.93 becomes
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This concludes the proof.

8.7.5 P roof: PHD Filter XM Fusion

We are to prove the PHD filter version of XM fusion as defined in Equation 8.121. Thus 
assume that the original multitarget distributions are distributions of Poisson processes:
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Then from Equation 8.93, we get
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8.7.6 P roof: PHD Filter Chernoff Information

We are to show that Chernoff information directly generalizes as follows:
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where
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According to Equation 8.61,
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Thus we can define Equation 8.212 to be the “Chernoff information” of the PHDs 

Dk k
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8.7.7 P roof: XM Implementation

We are to establish Equations 8.141 through 8.143. Substituting Equations 8.138 and 
8.139 into Equation 8.136 we get
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This establishes the result.

8.8  CONCLUSIONS

In this chapter, I have proposed the elements of a general theoretical foundation for 
multisource-multitarget track-to-track fusion (T2F). After summarizing three major 
single-target T2F situations and approaches—exact T2F without double-counting, 
exact T2F with double-counting, and approximate T2F in the manner of Clark et al.—I 
showed how to directly generalize them to the multisource-multitarget case. Since 
the resulting algorithms are computationally intractable in general, I showed how to 
derive approximate versions of them using CPHD and PHD filter-based approaches. 
I also suggested notional implementation techniques for these approaches.

The ideas proposed in this chapter are, of course, just a beginning. Further research 
into practical implementation is necessary. Also, since the XM fusion approach is 
a generalization of the CI approach, it is necessarily also an overly conservative 
approach. More work needs to be conducted on modifications of single-target XM 
fusion that model different assumptions about the degree of correlations between the 
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original distributions. If such modifications can be devised, then it should be pos-
sible to generalize them to the multitarget case using the methodology advocated in 
this chapter.
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9 Object Classification in a 
Distributed Environment

James Llinas and Chee-Yee Chong

9.1  INTRODUCTION

Object classification is the process of providing some level of identification of an 
object, whether it is at a very specific level or at a general level. In a defense or secu-
rity environment, such classes can range from distinguishing people from vehicles, 
a type of vehicle, or in more specific cases a particular object or entity, even to the 
“serial number.” Of course, another fundamental classification for such purposes is 
the traditional friend-foe-neutral-unknown class categories that are used in develop-
ing action-taking policies and decisions. The concept of identity is an interesting 
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one and is nonmetric in that there is no generalized or unified scale of units by 
which we “measure” the identity of an object. The nonmetric nature of the identity 
of an object has motivated the formation of several alternative approaches to the 
representation, quantification, and manipulation of uncertainty in identity. Statistical 
methods, fuzzy set (possibilistic), and neural network methods are some of the popu-
lar methods that have been applied to this problem but two statistically based tech-
niques remain the most popular: Bayesian methods and Dempster–Shafer methods. 
For decentralized/distributed applications, these two approaches have the attractive 
features that they are both commutative and associative; so results are independent 
of the order in which data are received and processed.

Dempster–Shafer methods (Al-Ani and Deriche 2002) were largely developed 
to overcome the apparent inability of the Bayesian formalism to adequately deal 
with “unknown” classes, as opposed to an estimated degree of ignorance attempted 
in Dempster–Shafer. However, achieving this feature is usually at the expense of 
computationally more intensive algorithms. The distributed classification problem 
raises a number of architectural problems, and two key challenges are (1) how to 
connect all the sensors and processing nodes together (these are organizational and 
architecture issues) and (2) how to fuse the data for estimates generated by the nodal 
operations (this is a data fusion algorithm design issue).

By and large, an object’s class is discerned by an examination of its features 
or attributes where we distinguish a feature as an observed characteristic of an 
object and an attribute as an inherent characteristic. As regards information fusion 
processing, automated classification techniques are placed in the “Level 1” category 
of the JDL data fusion process model where, in conjunction with tracking and 
kinematic estimation operations, they help to answer two fundamental questions 
“Where is it?” and “What is it?” One can quickly get philosophical about the 
concept of class and identity, and there are various works the reader can examine 
to explore these viewpoints, such as Zalta (2012) and Hartshorne et al. (1931–1958). 
As just mentioned, identity and/or class membership is determined from features 
and attributes (F&A henceforth) by some type of pattern recognition process that 
is able to assign a label to the object according to the F&A estimates and perhaps 
some ontology or taxonomy of object types and classes. Assigning an identity label 
is not an absolute process; classification of an object may, for example, be context-
dependent (e.g., whether an object is in the class “large” or not may be dependent on 
its surroundings).

The structure of this chapter is as follows: in Section 9.2 we provide a limited 
overview of object classification approaches, in Section 9.3 a summary of classifica-
tion architectures is provided. Section 9.4 addresses distributed object classification 
issues, Section 9.5 discusses classifier fusion, and Section 9.6 provides an extended 
discussion on distributed Bayesian classification and performance evaluation, as the 
Bayes formalism remains a central methodology for many classification problems.

9.2  OVERVIEW OF OBJECT CLASSIFICATION APPROACHES

The data and information fusion community, as well as the remote sensing com-
munity, have a long history of research in exploring and developing automated 
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methods for estimating an object’s class from available observational data on F&A, 
which is the fundamental goal of object/entity classification. In a broad sense, the 
basic processing steps for classification involve sensor-dependent preprocessing 
that in the multisensor fusion case includes common referencing or alignment (for 
imaging sensors often used for classification operations, this is typically called 
co-registration), F&A extraction, F&A association, and class-estimation. There 
are many complexities in attempting to automate this process since the mapping 
between F&A and the ability to assign an object label is a very complex relation-
ship, which is complicated by the usual observation errors and, in the military 
domain, by efforts of the adversary to incorporate decoys and deception techniques 
to create ambiguous F&A characteristics. In the military domain, these works 
have usually come under the labels of “automated” or “assisted” or “aided” target 
recognition or “ATR” methods, also non-cooperative target recognition (NCTR) 
methods, and there have been many conferences and published works on these 
topics. We find no very recent open-source publications explicitly directed to state-
of-the-art assessments of ATR/NCTR technology but some state-of-the-art and 
survey literature does exist, such as those by Bhanu (1986), Roth (1990), Cohen 
(1991), Novak (2000), and Murphy and Taylor (2002), but nothing very recent in the 
timeframe of this book. The most central source for publications on ATR and the 
broader topic of object classification are the SPIE defense conferences held annu-
ally for a number of years, and the interested reader is referred to this source for 
additional information. On the other hand, there are some more recent works that 
review the broader domain of classification methods as a general problem. Still, 
no overarching state-of-the-art work has been done, but there are various survey 
papers directed to certain classes of methods.

One way to summarize alternative approaches to classification is provided by 
bisecting the methods into the “discriminative” and “generative” types; a number 
of recent references address this topic, such as Ng and Jordan (2002). Generative 
classification methods assume some functional form for the conditional relation 
between the F&A data and the class labeling, and estimate the parameters of these 
functions directly from truthed training data. An example is Naïve Bayes where the 
generative approach takes the form of the relation as P(Features|Class Label), and 
the model of the prior existence of a class label as P(Class Label); in typical notation 
these are P(X|Y) and P(Y). Additional generative techniques include model-based 
recognition, Gaussian mixture densities, and Bayesian networks. Discriminative 
classifiers are methods constructed to directly learn the relation P(Class Label|F&A 
Data), or directly learn P(Y|X). An example often cited in the literature is logistic 
regression but other methods include neural networks, various discriminant 
classifiers, and support vector machines.

Montillo (2010) asserts the advantages and disadvantages of the generative 
approach in Table 9.1. And similarly, the trade-offs are also asserted by Montillo for 
the discriminative approaches in Table 9.2.

The interested reader is also directed to the various citations for both the ATR/
NCTR literature that, while somewhat dated, still gives some valuable insight, and 
into the generative, discriminative comparative literature for a somewhat more 
modern view.
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It is beyond the scope of this chapter to provide further detail on these state-of-
the-art and survey remarks, nor a tutorial-type overview of this extensive field; for 
the most up-to-date open-source information, we again suggest the SPIE conference 
literature, the IEEE Pattern Analysis and Machine Intelligence Transactions, and 
for tutorials the interested reader is referred to such books as those by Tait (2005), 
Sadjadi and Javidi (2007), or Nebabin (1994).

9.3  ARCHITECTURAL OPTIONS FOR OBJECT CLASSIFICATION

To better understand the content of this chapter, we offer some perspectives on 
the structural design of an object classification process as determined by multiple 
observational data. A notional set of architectural configurations for object 
classification processing is shown in Figure 9.1.

In a distributed context, it could be for example that each sensor-specific process-
ing thread is a node in a network, and the Declaration Fusion process is occurring 
at a receiving node that collects each sensor-specific declaration of class. There are 
many possible variations of the different ways a distributed classification process 
may operate but this figure should be adequate for our purpose. We characterize the 
process as involving multiple sensor systems (S1, S2) that each generates (imperfect) 

TABLE 9.2
Features of Discriminative Approaches to Classification

Advantages Disadvantages

Fast prediction speed Task specific

Potentially more accurate prediction Long training time

Do not easily handle compositionality

Source:	 Adapted from Montillo, A., Generative versus discriminative modeling 
frameworks, Lecture at Temple University, http://www.albertmontillo.com/
lectures,presentations/Generative%20vs%20Discriminative.pdf, 2010.

TABLE 9.1
Features of Generative Approaches to Classification

Advantages Disadvantages

Ability to introduce prior knowledge Marred by generic optimization criteria

Do not require large training sets Potentially wasteful modeling

Generation of synthetic inputs Reliant on domain expertise

Do not scale well to large number of classes

Source:	 Adapted from Montillo, A., Generative versus discriminative modeling 
frameworks, Lecture at Temple University, http://www.albertmontillo.com/
lectures,presentations/Generative%20vs%20Discriminative.pdf, 2010.
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observational data. Three alternative processing schemes are shown: a measurement-
based approach, a feature-based approach, and a decision-based approach. As men-
tioned earlier, the processes shown can happen within a node in a network (local/
single-node-multisensor fusion) or they can represent internodal, distributed opera-
tions where sensor-specific operations at one node are then sent, via the network, to 
another (receiving node) where the multisensor fusion would take place. In either 
case, these are the following characteristics of each operation:

•	 The measurement-based approach ideally would use combined raw sensor 
data at the measurement (pre-feature) level to form information-rich fea-
tures and attributes that would then provide the evidential foundation for a 
classification/recognition/identification algorithm. Note that in the distrib-
uted case this involves sending raw measurement data across the network, 
often considered prohibitive due to bandwidth limitations.

•	 The feature-based approach involves sensor-specific computation of avail-
able features, then a combining/fusing of the features as the evidential basis 
for classification. In the distributed case, the features would be communi-
cated to other nodes.

•	 The decision-based approach has the sensor-specific processing proceed-
ing to the declaration/decision level, after which the decisions are fused. 
Decisions can be sent over the network using lower bandwidth links or by 
consuming small amounts of any given bandwidth.

Note too that for measurement- and feature-based approaches, there is a requirement 
to co-register or align the data (in the “common referencing” function of a fusion 
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process) before the combining operations take place. Registration requirements are 
most stringent for the most detailed type of data, so that the highest precision in 
registration is needed for the measurement-based operations.

In the case of distributed object classification, clearly what happens regarding 
fusion operations at any receiving node is dependent on what has been transmitted; 
of course, it is possible that mixtures of types of data may also arrive at the receiving 
node. For any distributed environment, it should be noted that any node can only fuse 
two things: those data that it “owns” (typically called “organic” data), and data that 
come to it somehow over the network. Thus, in the distributed case, a crucial design 
issue is the specification of what we call here “information-sharing strategies” that 
govern who sends what to whom, how often, in what format, etc.; this issue is crucial 
but outside the scope of this chapter.

9.4  ISSUES IN DISTRIBUTED OBJECT CLASSIFICATION

Distributed target tracking and classification have become a popular area of 
research because of the proliferation of sensors (Brooks et al. 2003, Kotecha et al. 
2005). The issues related to distributed object classification are analogous to the 
issues associated with distributed tracking (Liggins et al. 1997), which include 
the issue of correlated data and decisions and the associated effects on the fused 
result. As in any fusion process, consideration of the common referencing, data 
association, and state estimation functions and how they might be affected by the 
peculiarities of the distributed environment needs to be carried out. In large net-
works, it is typical that any given node has limited knowledge of the functions and 
capabilities of the other nodes in the network; it is often assumed that any given 
node only knows specific information about its neighboring nodes but not distant 
nodes. This situation imputes the requirement for sending/transmitting nodes to 
append metadata to their messages to provide adequate information to receiving 
nodes such as to allow proper processing of the information in the received mes-
sages. This metadata has come to be called “pedigree” information by the fusion 
community, and one definition of pedigree is that it is information needed by a 
receiving node such as to assure the mathematical or formal integrity of whatever 
operation it applies to the received data, although the extent of the pedigree content 
may include yet other information.

Later we provide a brief description and a simple diagrammatic summary of 
some typical issues in distributed classification operations. Four cases will be 
described: “explicit” double-counting, “implicit” double-counting (statistically 
dependent case), hard declarations resulting from legacy systems, and mixed uncer-
tainty representations; many other issues are possible in the distributed object ID 
case but these are some typical examples. It should also be noted that combinations 
of these cases could arise in any practical environment. Note also that none of 
these case models depict the further ramifications of feedback from fusion nodes 
to sender/contributor nodes; such feedback adds another layer of complexity to the 
pedigree operations. The later sections of this chapter address some of the issues 
raised herein in some detail.
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9.4.1 E xplicit Double-Counting

One concern in such environments, if the connectivity structure and message-
handling protocols are not specified in a very detailed way, is about the problem 
of “double-counting,” wherein information in sent-messages appear to return to the 
original sending node as newly received messages with seemingly new, complemen-
tary information. If such messages had a “lineage” or “pedigree” tag describing their 
processing history, the recipient could understand that the message was indeed the 
same as what it had sent out earlier. This type of double-counting (also known as 
“data incest,” “rumor propagation,” and “self-intoxication”) can be called “explicit,” 
in that it is literally the result of reception of a previously sent and processed message, 
simply returning to the sender. This process is shown in Figure 9.2.

9.4.2 I mplicit Double-Counting (Statistically Dependent)

A fundamental concern, due to the nature of the statistical mathematics often 
involved in classifier or ID fusion operations, is the issue of statistical independence 
(or dependence) of the communicated or shared information. The major issue here 
revolves about the complexity of the required modeling and mathematics if the infor-
mation to be fused is statistically dependent, and the resulting errors in processing if 
independence assumptions are violated. This problem can be called one of “implicit” 
double-counting, in that the redundant portion of the fused information is an idio-
syncrasy of the sensing and classification operations involved and are hidden, in 
effect. Figure 9.3 shows the idea.

In this case, the local/sending node uses two sensor-specific classifiers, and the 
performance of the individual classifiers is quantified using confusion matrices, 
resulting in the statistical quantification as shown (Prob(ID|Features)), which is 
sent to the fusion node along with the declarations. Note that the sensors pro-
vide a common feature/attribute F1 that is used by both sensor-specific classifiers, 
resulting in the individual classifier outputs being correlated. The receiving fusion 
node operates on the probabilities in a Bayesian way to develop the fused esti-
mate but may erroneously assume independence of the received soft declarations, 
and thereby double-count the effects of Feature F1, upon which both individual 
declarations are based. Pedigree tags would signify the features upon which the 
decisions are based.

Received from network:
sent class decision

To network:
sent class decision

Node X

Organic
Sensor 1 Classifier 1

Other processing,
fusion nodes

FIGURE 9.2  Explicit double-counting.
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9.4.3 L egacy Systems with Hard Declarations

Further, if the distributed network includes nodes that are “legacy” systems (i.e., 
previously built components constructed without forethought of embedding them 
in a fusion network), it is likely that either (1) ID classifiers will be “hard” classi-
fiers, producing ID declarations without confidence measures (“votes” in essence) 
or (2) the confidence measures employed will not be consistent with other confi-
dence measures employed by other network classifiers. In the first case, fusion can 
only occur with a type of voting strategy and likely without formal consideration of 
statistical independence aspects and any pedigree-related processing regarding this 
issue. Improvements can be made to this fusion approach if the rank-order of the 
ID declarations is also available (see Figure 9.4). In the second case, some type of 
uncertainty-measure-transformations need to be made to normalize the uncertainty 
representation into some common framework for a fusion operation.

In this representative situation, existing legacy sensor-classifier systems 
produce “hard” ID declarations, i.e., without qualification—these are “votes” 
in effect. Fusion methods can include simple voting-based strategies (majority, 
plurality, etc.), which may overtly ignore possible correlations as shown (common 
ID feature F1 as in the previous example). However, it is possible to develop 
voting schemes that derive from trained data, which, if the training data are truly 
representative, may empirically account for the effects of correlated parameters 
to some degree. Here again the pedigree tag would include the parameters upon 
which the local-node/sent IDs are based.

Sending node 1

Sending node 2

Sensor 1 Classifier 1

Network
Receiving node

classifier/decision fusion;
voting-based fusion scheme

ID decision 1,
Unqualified

ID decision 2,
Unqualified

F1, F2

F1, F3
Classifier 2Sensor 2

FIGURE 9.4  Legacy systems with hard decisions.
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FIGURE 9.3  Implicit double-counting.
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9.4.4 M ixed Uncertainty Representations

In this case, we have classifiers whose performance is quantified using different 
uncertainty types, e.g., probabilistic and evidential (Figure 9.5 just shows uncer-
tainty types 1 and 2). The confounding effects of correlated observations may still 
exist. The fusion process is dependent on which uncertainty form is normalized, 
e.g., if the evidential form is transformed to the probabilistic form, then a Bayesian 
fusion process could be employed. Here, the pedigree tag must also include the type 
of uncertainty employed by each classifier evaluation scheme. As will be discussed 
later, it is also very important that the nature of such statistical or other transforma-
tions is well-understood and properly included in the fusion scheme.

As noted earlier, it is possible that real-world systems and networks may employ 
several sensor-classifier systems as input or in some shared/distributed framework, 
and combinations of the aforementioned cases could result, adding to the overall 
complexity of the fusion operations at some receiving node. Depending on how the 
overall system is architected, it may be necessary to have the pedigree tags include 
all possible effects, even if some particular tag elements are null.

9.5  CLASSIFIER FUSION

Here, we provide a brief overview of classifier combining methods drawn from some 
often-cited works that contain most of the details (e.g., Ho et al. 1994, Kittler et al. 
1998, Kuncheva 2002). We begin with a taxonomic categorization as asserted in Ruta 
and Gabrys (2000), and then provide a point-by-point commentary on the most tradi-
tional classifier combining techniques. There are two main motivations for combining 
classifier results: efficiency and accuracy. Efficiencies can be achieved in multiclassi-
fier systems by tuning the system to use the most appropriate, least computationally 
intensive classifier at any given moment in an application. Accuracy improvements 
can be realized in multiclassifier systems by combining methods that employ differ-
ent sensor data and/or features, or have nuanced algorithmic features that offer some 
special benefit; the broad idea here is exploitation of diversity although diversity in 
classification can be a controversial topic. In a distributed object classification sys-
tem, the classifier results from multiple nodes also have to be combined.
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Sensor 1 Classifier 1
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Classifier/decision fusion
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Qualified with
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FIGURE 9.5  Classifiers with mixed uncertainty representations.
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9.5.1 T axonomy of Classifier Fusion Methods

One taxonomy of classifier fusion methods is offered in Ruta and Gabrys (2000) and 
is shown in Figure 9.6.

As noted earlier, the choice of fusion approach (also often called “classifier com-
bining” in the literature) is dependent on the type of information being shared. Here, 
when only hard (unqualified) labels or decisions are provided, a typical approach 
to fusion is via voting methods. (It should be noted that there are many different 
strategies for voting, well beyond the usual plurality, majority-based techniques [see 
Llinas et al. 1998].) Much of the fusion literature has addressed the cases involving 
soft or fuzzy outputs as shown in Figure 9.6, where the class labels provided by any 
classifier are quantitatively qualified, for example with the conditional probabilities 
that come from the testing/calibration of that classifier, as just described. When such 
information is available, the fusion or combining processes can exploit the qualifier 
(probabilistic) information in statistical-type operations.

9.5.2  Combining Classifiers

The options available for classifier combining are influenced by various factors. 
If, for example, only “labels” are available,* various voting techniques can be 
employed; see Llinas et al. (1998) for an overview of voting-based combining 

*	The term “labels” is generally used in the pattern recognition community to mean an object-class or 
class-type declaration; it could be considered a “vote” by a classifier in the context of an object-class 
label. If that vote or label is declared without an accompanying level of uncertainty, then such declara-
tion is also called a “hard” declaration.
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FIGURE 9.6  A taxonomy of classifier fusion techniques. (Adapted from Ruta, D. and 
Gabrys, B., Comput. Inf. Syst., 7, 1, 2000.)
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methods for either label declarations or hard declarations. If continuous outputs 
like posterior probabilities are supplied (these are called “soft” declarations), then 
a variety of combining strategies are possible, again assuming a consistent, prob-
abilistically based uncertainty representational form is used by all contributing 
classifiers (recall Section 9.4.4). For other than probabilistic but consistent repre-
sentational forms of uncertainty such as fuzzy membership values, possibilistic 
forms, and evidential forms, the algebra of each method can be used in the classi-
fier combining process (e.g., the Dempster Rule of Combination in the evidential 
case). Of course, all of these comments presume that the class-context of each 
contributing classifier is semantically consistent, otherwise some type of semantic, 
and associated mathematical transforms would need to be made. For example, it 
makes no sense to combine posterior probabilities if they are probabilities about 
inconsistent classes or class-types.

Kittler et al. (1998) describes what he says are two basic classifier-combining 
scenarios: one in which all classifiers are provided a common data set (one could 
call this an “algorithm-combining” approach, since the effects on the combined 
result are the consequence of distinctions in the various classifier algorithms), and 
an approach where each classifier is receiving unique data from disparate sources (as 
in a distributed system); Kittler’s often-cited paper focuses on the latter. This paper 
describes the commonly used classifier combination schemes such as the product 
rule, sum rule, min rule, max rule, median rule, and majority voting, and conducts 
comparative experiments that show the sum rule to outperform the others in these 
particular tests.

To show the flavor of these combining rules, we follow Kittler’s development for 
the product rule as one example; interested readers should refer to the original paper 
and yet other references for additional detail (e.g., Duda et al. 2001). Consider sev-
eral classifier algorithms that are each provided with specific sensor measurement 
data and feature/attribute set. Using Kittler’s notation, let the measurement vector 
used by the ith classifier denoted as xi, and each class or class-type denoted as ωi, 
with prior probability given by P(ωi). The Bayesian (the only paradigm addressed in 
this chapter) classification problem is to determine the class, given a measurement 
vector Z, which is the concatenation of the xi, as follows:

	

         assign ifZ
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f

f R k R
k

→

=

ω

ω ω
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That is, the fused class label ωf is the maximum posterior probability (MAP) solu-
tion. It should be noted that the inherent calculation of the posterior does not, in 
and of itself, yield a class declaration; deciding a class estimate from the posteriors 
is a separate, decision-making step. Strictly speaking, these calculations ideally 
require knowledge about the conditional probability P(x1, …, xR | ωk) which would 
reveal the insights about inter-source dependence in (x1, …, xR). If we allow, as is 
very often done, the assumption that the sources are conditionally independent 
given each class, i.e.,
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Or, in terms of the individual posteriors declared by each contributing classifier,
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Equation 9.4 is called the “Product Rule” for combining classifiers. It removes 
double-counting due to the common prior P(ωi) but assumes conditional indepen-
dence of the supporting evidence for each of the contributing Bayes classifiers. This 
rule is called “naïve” Bayes combination rule because in many cases there may be 
unmodeled statistical dependence in (x1, …, xR), as was discussed in Section 9.4. 
While strictly correct in a Bayesian sense, this rule has the vulnerability that a 
single bad classifier declaration having a very small posterior can inhibit an oth-
erwise correct or appealing declaration. Other rules such as the sum rule follow 
similar developments but involve different assumptions (e.g., equal priors). Each of 
these strategies has trade-off factors regarding performance and accuracy; Kittler 
et al. (1998) developed an interesting analysis that explains why the sum rule seems 
to perform best in their experiments. Similar research is shown in the work of 
Kuncheva (2002) in which some six different classifier fusion strategies were exam-
ined for a simplified, two-class problem, and for which the individual-classifier error 
distributions were defined as either normal or uniform, and for which the individual 
classifiers were assumed independent. The particular fusion strategies examined 
were similar to some of those asserted in Kittler et al. (1998): minimum, maximum, 
average, median, majority vote.

9.6  OPTIMAL DISTRIBUTED BAYESIAN OBJECT CLASSIFICATION

The naïve classifier fusion approach described in Section 9.5 is easy to implement. 
However, it does not address the “double-counting” issues discussed in Section 9.4. 
This section presents an optimal distributed Bayesian object classification approach 
and compares its performance to the naïve fusion approach. Most of this section is 
from Chong and Mori (2005).
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Bayesian object classification uses the generative approach discussed in 
Section 9.2. We use the Bayesian network formalism to represent the model relating 
the object class to the sensor measurements. A Bayesian network (Jensen 2001, Pearl 
1988) is a graphical representation of a probabilistic model. It is a directed graph 
where the nodes represent random variables or random vectors of interest and the 
directed links represent probabilistic relationships between the variables. A dynamic 
Bayesian network is one in which some of the nodes are indexed by time. A key fea-
ture of Bayesian networks is the explicit representation of conditional independence 
needed for optimal distributed object classification.

Figure 9.7 is the dynamic Bayesian network for object classification using two 
sensors. The variables in this network are the object class xT, static feature xS such 
as object size, dynamic feature xD(t) (e.g., viewing angle) that varies with time, and 
sensor measurement yi(t) for each sensor i.

The graph of the Bayesian network displays structural information such as the 
dependence among the random variables. The quantitative information for the model is 
represented by conditional probabilities of the random variables at the nodes given their 
predecessor nodes. For the network of Figure 9.7, these probabilities are as follows:

•	 P(xT): prior probability of the object class.
•	 P(xS|xT): conditional probability of the static feature given the object class.
•	 P(xD(tk)|xD(tk−1), xS): conditional probability of the dynamic feature xD(tk) at 

time tk given the dynamic feature xD(tk−1) at time tk−1 and the static feature 
xS. If the evolution of the dynamic state does not depend on the static fea-
ture, then the conditional probability becomes P(xD(tk)|xD(tk−1)).

•	 P(yi(tk)|xD(tk), xS): conditional probability of the measurement yi(tk) of 
sensor i at time tk given the dynamic feature xD(tk) and the static feature 
xS. This probability captures the effect of the dynamic feature on the mea-
surement, e.g., measured size as a function of viewing angle as well as 
measurement error.

Object class xT

xS

xD(t1)

y1(t1)

y2(t1)

y2(t2)

y2(t2)

y1(tk)

xD(tk)

y2(tk)

xD(t2)

Static feature

Dynamic feature
(viewing angle)

Sensor 1
measurements

Sensor 2
measurements

FIGURE 9.7  Bayesian network model for object classification.
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9.6.1  Centralized Object Classification Algorithm

Suppose Y(tk) = (y(t1), y(t2), …, y(tk)) are the cumulative measurements from one or 
more sensors. The objective of object classification is to compute P(xT|Y(tk)), the 
probability of the object class given Y(tk). It can be shown (see Chong and Mori 
[2005] for details) that this probability can be computed by the following steps:

	 1.	Estimating dynamic and static features (xS, xD(tk))
Prediction:
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	 2.	Estimating static feature xS

	
P x Y t P x x t Y t dx tS k S D k k D k( | ( )) ( , ( ) | ( )) ( )= ∫ 	 (9.7)

	 3.	Estimating object class xT

	
P x Y t P x Y t P x x dxT k S k T S S( | ( )) ( | ( )) ( | )= ∫ 	 (9.8)

Note that the joint estimation of the dynamic and state features is crucial since the 
sensor measurements depend on both features. The posterior probability of these 
features is updated whenever a new measurement is received. Object classification 
is basically a decoupled problem, with the posterior-type probability updated only 
when this information is needed.

Equations 9.5 through 9.8 can be used by a local fusion agent processing the 
measurements from a single sensor or a central fusion agent processing all sensor 
measurements by incorporating the appropriate sensor models. The prediction 
Equation 9.5 is independent of the sensor, except when different sensors observe 
different static features. In that case, Equation 9.5 predicts only the part of the static 
feature xSi that is relevant to that sensor i.

9.6.2 D istributed Object Classification

The distributed object classification problem is combining estimates from the local 
classification agents to obtain an improved estimate of the object class. There are 
two tightly coupled parts of this problem. This first is determining the information 
sent from the local agent to the fusion agent. The second is combining the received 
information.
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It is well known that combining the local object declarations, i.e., tank or truck, 
is suboptimal since the confidence in the declaration is not used. A common and 
better approach is to communicate the posterior-type probabilities P(xT|Yi) given the 
measurements for each sensor i and then combine the probabilities by the product rule

	 P x Y Y C P x Y P x YT T T( | , ) ( | ) ( | )1 2
1

1 2= − 	 (9.9)

However, this rule is still suboptimal because the measurement sets Y1 and Y2 are 
in general not conditionally independent given the object class. This section applies 
the general approach for distributed estimation (Chong et al. 2012) to the distributed 
object classification algorithm.

9.6.2.1  Bayesian Distributed Fusion Algorithm
Let x be the state of interest, which may include the object class, as well as the static 
or dynamic features. Let Y1 and Y2 be the measurements collected by two sensors 
1 and 2. Suppose the local measurement sets are conditionally independent given the 
state, i.e., P(Y1, Y2|x) = P(Y1|x)P(Y2|x). Then the global posterior probability can be 
reconstructed from the local posterior probabilities by (Chong et al. 1990)

	
P x Y Y C

P x Y P x Y

P x
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1 2
1 1 2= − 	 (9.10)

where C is a normalization constant. Note that the prior probability P(x) appears in 
the denominator since this common information is used to compute each local pos-
terior probability. Equation 9.10 can also written as
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or

	 P x Y Y C P Y x P x Y( | , ) ( | ) ( | )1 2
1

2 1= −

by recognizing that P x Y C P Y x P xi i i( | ) ( | ) ( )= −1  where Ci is a normalization constant.
For the hierarchical classification architecture, let YF be the set of cumulative mea-

surements at the fusion agent F, and Yi be the new measurements from the agent i send-
ing the estimate. The measurement sets of the two agents are disjoint, i.e., YF ∩ Yi = ϕ. 
Suppose the state x is chosen such that YF and Yi are conditionally independent given x. 
Then Equations 9.10 and 9.11 imply the fusion equations

	
P x Y Y C

P x Y P x Y
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i F
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or

	 P x Y Y C P Y x P x Yi F i F( | , ) ( | ) ( | )= −1 	 (9.13)
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Equations 9.12 and 9.13 represent two different but equivalent approaches of com-
munication and fusion. The first is for the local agent to send the local posterior 
probability P(x|Yi) given the new measurements Yi. The fusion agent then combines 
it with its posterior probability P(x|YF) using Equation 9.12. The second is for the 
local agent to send the local likelihood P(Yi|x), which is then combined with the 
probability P(x|YF) using Equation 9.13.

A necessary condition for Equations 9.10 through 9.13 to be optimal is the con-
ditional independence assumption of Y1 and Y2. From Figure 9.7, it can be seen that 
choosing object class as the state will not satisfy the conditional independence 
condition. Thus, fusing the object class probability may be suboptimal.

9.6.2.2  Optimal Distributed Object Classification
Consider the model of Figure 9.7 and the hierarchical without feedback fusion archi-
tecture. Each local classification agent processes its sensor measurements to generate 
the posterior probability of a “state.” Periodically, it sends the local probability based 
upon the measurements received since the last communication to the high-level 
fusion agent. The high-level fusion agent then combines the received probabilities 
with its current posterior probability.

Figure 9.8 is the network of Figure 9.7 redrawn to show the measurement sets 
without displaying the high-level nodes xT and xS. At the current fusion time tF + k, the 
local fusion agent i sends the conditional probability given Yi(tF + 1, tF + k) ≜ (yi(tF + 1),…, 
yi(tF + k)), the measurements collected since the last fusion time tF. The fusion agent 
then fuses this probability with its probability based upon the measurements 
YF(t1, tF) = ((yi(t1), …, yi(tF)); i = 1, 2).

A key problem is determining the random variable or state that satisfies the condi-
tional independence assumption for the measurement sets so that the fusion equation 
can be used. The Bayesian network (Chong and Mori 2004) provides an easy way of 
determining this conditional independence. From Figures 9.7 and 9.8, the measure-
ment sets Yi(tF + 1, tF + k) and YF(t1, tF) are conditionally independent given xS and the 
dynamic features xD(tF + 1, tF + k) ≜ (xD(tF + 1), xD(tF + 2), …, xD(tF + k)). However, they are 
not conditionally independent given xS and the dynamic feature xD(tk) at a single 
time. Thus the state to be used for fusion is (xS, xD(tF + 1, tF + k)) and the fusion process 
consists of the following steps:

YF(t1,tF)

Y1(tF+1,tF+k)

Y2(tF+1,tF+k)

xD(tF+1,tF+k)

y2(tF) y2(tF+1) y2(tF+k)

tF tF+1 tF+k

xD(tF) xD(tF+1) xD(tF+k)

Y1(t1)

xD(t1)

y2(t1)

y1(tF) y1(tF+1) y1(tF+k)

FIGURE 9.8  Conditionally independent measurements.
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	 1.	Communication by local agent. At time tF + k, the local agent i sends to the high-
level fusion agent the probability distribution P(xS, xD(tF + 1, tF + k)|Yi(tF + 1, tF + k)), 
which can be computed by the following recursive algorithm. Let m = F + 1, 
n = F + 1, …, F + k − 1, xD(tF + 1, tF + 1) = xD(tF + 1), and Yi(tF + 1, tF + 1) = yi(tF+1). Then
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(9.14)

Alternatively, the local agent sends the likelihood P(Yi(tF + 1, tF + k)|xS, 
xD(tF + 1, tF + k)) to the high-level fusion agent. This likelihood is computed 
directly from the probability model
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m F
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(9.15)

The prior probability P(xS, xD(tF + 1, tF + k)) is given by the recursion
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	 2.	Extrapolation by high-level agent. The high-level fusion agent computes the 
probability P(xS, xD(tF + 1, tF + k)|YF(t1, tF)) by extrapolating P(xS, xD(tF)|YF(t1, tF)) 
to obtain
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and then using the recursion
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		  If the high-level fusion agent has fused the probability from another sensor 
j, then its current posterior probability P(xS, xD(tF + 1, tF + k)|YF(tF + 1, tF + k)) is 
already computed for xD(tF + 1, tF + k). In this case, extrapolation is not needed.

	 3.	Fusion by high-level agent. The high-level fusion agent computes the fused 
posterior probability by Equation 9.12
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		  or Equation 9.13
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These three steps are repeated when information is received from another local 
fusion agent. The high-level fusion agent does not have to extrapolate the probability 
if the received probability corresponds to observation times already included in the 
current fused probability.

9.6.3  Communication Strategies

One advantage of distributed object classification over the centralized architecture 
is reduced communication bandwidth if the local agents do not have to communi-
cate the measurements to a central location. This advantage may not be realized 
if the local agents have to communicate their sufficient statistics at each sensor 
observation time since sensor measurements are vectors while sufficient statistics 
are probability distributions. However, a local agent does not have to communicate 
its fusion results after receiving every new measurement since the new measure-
ment may not contain enough new information. Thus, communication should take 
place when it is needed, and not because a sensor receives new measurements. In 
particular, whether a local agent should communicate or not should depend on the 
increase in information resulting from communication.

With an information push strategy, a local agent monitors the local fusion results 
and determines whether enough new information has been acquired since the last 
communication. This determination is based on its local information and does not 
require knowledge (although it will be useful) of the fusion agent.

Let tF be the last time that the local agent i communicates to the fusion agent 
and tk > tF be the current time. Let P(x|Yi(tF)) be the probability distribution of the 
sufficient state x at the last fusion time, and P(x|Yi(tk)) be that at the current time 
given the cumulative measurements Yi(tk). This sufficient state x may be exact in the 
sense that it allows optimal distributed fusion or it may be approximate to reduce 
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communication bandwidth. It may also be extrapolated from the fusion time tF to 
the current time tk. With the information push strategy, the local agent determines 
whether there is enough difference between the two probability distributions, i.e., 
D(P(x|Yi(tF)), P(x|Yi(tk)) > d, where D(·,·) is an appropriate distance measure and d is a 
threshold on the distance.

A number of probability distance measures are available with different properties 
and degrees of complexity. A popular one is the Kullback–Leibler (KL) divergence 

(Kullback and Leibler 1951), which is D P P P x P x P x dx
x

( , ) ( ) log( ( ) ( ))2 1 2 2 1= ∫ /  for two
 

continuous distributions P1 and P2, and D P P P x P x P x
x

( , ) ( ) log( ( ) ( ))2 1 2 2 1= ∑ /  for 
two discrete distributions.

We will use the KL divergence as the measure to develop communication man-
agement strategies because of its information theoretic-interpretation.

9.6.4 P erformance Evaluation

This section presents simulation results to evaluate the performance of various 
distributed object classification approaches.

9.6.4.1  Simulation Scenario and Data Generation
The scenario assumes two sensors with the object and sensor models given by Figure 9.7. 
There are three object classes with uniform prior probabilities equal to 1/3. The single 
static feature xS is observed by both sensors and is a Gaussian random variable with 
unit variance σi

2 1=  and nominal mean mj = 3, 0, and 3 for object class j = 1, 2, 3. The 
separation between the feature distributions for different object classes represents the 
difficulty of classification and is captured by D m mij j k i� ( )− 2 2/σ . The measurements 
are generated by two sensors viewing the object with complementary geometry,

	 y t x x t v tk S D k k1 1( ) sin ( ) ( )= + 	 (9.21)

	 y t x x t v tk S D k k2 2( ) cos ( ) ( )= + 	 (9.22)

where the measurement noise variance is σv
2 0 04= . .

The dynamic feature xD(tk) represents the viewing angle with values between 0 
and π, and evolves according to Markov transition probability P(xD(tk+1)|xD(tk)) with 
nominal transition value 0.2 from one cell to an adjacent cell.

9.6.4.2  Performance Evaluation Approach
We use the classification algorithms described in Section 9.6.2. Since the equations 
cannot be evaluated analytically, we discretize the static and dynamic features xS 
and xD, and convert Equation 9.5 from an integral to a sum. We retain the continuous 
values of the measurements in evaluating Equation 9.6.

We consider two communication strategies: fixed and adaptive. For the fixed 
schedule strategy, communication takes place at fixed intervals that are multiples of 
the observation intervals. The adaptive communication strategy uses the information 
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push algorithm discussed in Section 9.6.3. At each communication time, the local 
agent sends the likelihood P(Yi(tFi+1, tk)|xS, xD(tk)) for the static feature based upon the 
information received since the last fusion time tFi. Using only the dynamic feature 
at a single time is an approximation and may reduce fusion performance unless 
communication takes place after every measurement. However, communicating a 
high-dimensional dynamic feature vector is not practical.

In addition to fusing the probabilities of features and then computing the object 
class probability, we also fuse the object class probabilities from each sensor directly 
using the product rule. This approach is suboptimal since the measurements from the 
two sensors are not conditionally independent given the object class. However, it is 
used as a reference to compare with the other algorithms.

Object classification performance is evaluated by two metrics. The first is the 
expected posterior probability (EPP) of correct object classification defined as

	
EPP( | ) ( | ) |T T E P x T Y x Tj j T j T j= = =  	 (9.23)

where
Tj is the true object class
Y is the data used in computing the posterior probability

The second performance metric is the root mean square (RMS) object classification 
probability error defined as

	

RMS( ) ( ( | ) ( ; ))T P x Y x Tj T T j

xT

= −∑ δ 2 	 (9.24)

where δ(xT;Tj) is the delta function that is 1 at xT = Tj and 0 elsewhere.

9.6.4.3  Comparison of Fusion Algorithms
Monte Carlo simulations are used to compare the performance of five algorithms: 
sensor 1 only, sensor 2 only, centralized fusion, fusing object class probabilities by 
product rule, and (approximate) distributed object classification using features. All 
the results assume that the true object class is 2 since it is more difficult to discrimi-
nate due to possible confusion with class 1 and class 3.

Figures 9.9 and 9.10 compare the object classification performance as measured 
by EPP of true object class and RMS error. The results are as expected. Centralized 
object classification performs best, followed by distributed classification. Even though 
an approximate algorithm is used to reduce bandwidth, distributed object classification 
actually approaches the performance of centralized fusion with increasing number of 
measurements. Fusing object class probabilities seems to perform well if we consider 
only the EPP, but the RMS error shows that it is inferior to distributed classification. 
The classification performance using single sensors is always the worst as expected.

Figures 9.11 and 9.12 show classification performance as a function of the separa-
tion between the object feature probability distributions. As expected, classification 
performance increases with larger separations. The baseline separation Dij used in 
the simulations is 3.
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FIGURE 9.10  RMS object classification probability error versus time.
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Figures 9.13 and 9.14 show how the transition probability of the dynamic fea-
ture affects classification performance. Note that single sensor performance benefits 
more from increasing the transition probability than those of two sensors. This is 
probably due to better observability of the static feature from varying the dynamic 
feature. Larger transition probability implies more movement in viewing angles and 
better average observability.
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FIGURE 9.12  RMS object classification probability error versus object class separation.
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Figures 9.15 and 9.16 compare the performance of distributed classification using 
the adaptive and fixed schedule communication strategies. The results of centralized 
fusion, fusing object class probabilities, and single sensor classification are plotted 
for reference.

The adaptive communication strategy performs much better than the fixed sched-
ule strategy, and achieves the performance of centralized fusion when the average 
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FIGURE 9.14  RMS classification probability error versus transition probability.
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number of communications is about 5. Fixed schedule communication does not 
achieve this level of performance with twice that number.

9.7  CONCLUSIONS

Distributed object classification is an important problem in distributed data fusion 
and has been extensively studied by the fusion community. Technical issues are 
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similar to those in distributed tracking and include choice of appropriate architec-
ture, addressing dependent information in the data to be fused, design of optimal 
algorithms, etc. For the important cases involving imaging techniques, there are a 
number of additional issues not covered in this chapter that should be considered 
if imaging sensors are employed; there is an extensive body of literature on these 
problems. Here, we have discussed a range of foundational, architectural, and algo-
rithmic issues that in fact can also be employed with imaging sensors but have not 
been explicitly framed in a sensor-specific way. We also present an approach for 
the important case of optimal distributed Bayesian classification and compare its 
performance with simpler fusion rules.
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10 A Framework 
for Distributed 
High-Level Fusion

Subrata Das

10.1  INTRODUCTION

This chapter presents distributed fusion from the situation assessment (SA) (a.k.a. 
Level 2 fusion [Das 2008b, Steinberg 2008]) perspective. It also describes the rel-
evance of distributed fusion to network-centric warfare (NCW) environments and 
the role of intelligent agents in that context.

For SA in a distributed NCW environment, each node represents a sensor, software 
program, machine, human operator, warfighter, or a unit. A fusion node maintains 
the joint state of the set of variables modeling a local SA task at hand. Informally, 
the set of variables maintained by a fusion node is a clique (maximal sets of vari-
ables that are all pairwise linked), and the set of cliques in the environment together 
form a clique network to be transformed into a junction tree, where the nodes are 
the cliques. Thus, the cliques of a junction tree are maintained by local fusion nodes 
within the environment. Local fusion nodes communicate and coordinate with each 
other to improve their local estimates of the situation, avoiding the repeated use of 
identical information.

A junction tree can also be obtained by transforming (Jensen 2001) a Bayesian 
belief network (BN) (Pearl 1988, Jensen 2001, Das 2008b) model representing a 
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global SA model in the context of a mission, thereby contributing to the develop-
ment of a common tactical picture (CTP) of the mission via shared awareness. Each 
clique is maintained by a local fusion node. Inference on such a BN model for SA 
relies on evidence from individual local fusion nodes. We make use of the message-
passing inference algorithm for junction trees that naturally fits within distributed 
NCW environments. A BN structure with nodes and links is a natural fit for distrib-
uting tasks in an NCW environment at various levels of abstraction and hierarchy. 
BNs have been applied extensively for centralized fusion (e.g., Jones et al. 1998, Das 
et al. 2002a, Wright et al. 2002, Mirmoeini and Krishnamurthy 2005, Su et al. 2011) 
where domain variables are represented by nodes.

A major source of evidence for SA is target tracks. We briefly describe distributed 
target tracking in an NCW environment for the sake of completeness of the chapter. 
We produce an overall estimate of a target at a fusion center that combines estimates 
from distributed sensors located at different fusion nodes which are all tracking 
the same target. We make use of the Kalman filter (KF) algorithm for estimating 
targets at local fusion nodes from sensor observations. Individual estimates from 
local fusion nodes are then combined at a fusion center, thereby generating evidence 
to be propagated into a BN model for SA.

The objective of the survey-type penultimate section on intelligent agents is to 
provide readers with a background on the capabilities of intelligent agents in the 
context of fusion, and how these intelligent agents are being exploited by fusion 
researchers and developers. It is clear that the agent technology is ideal for SA 
in a distributed NCW environment. In fact, each node in the environment can be 
implemented as or represented by an intelligent agent.

Readers who need supplementary background information on BN models, 
algorithms, and distributed fusion are recommended to consult the concluding 
section’s list of relevant references.

10.2  CONCEPT AND APPROACH

Some sensor networks consist of a large number of nodes of sensing devices, densely 
distributed over the operational environment of interest. Nodes have wired or wireless 
connectivity tied into one or more backbone networks, such as the Internet, SIPRNET 
(secret Internet protocol router network), or NIPRNET (nonclassified [unclassi-
fied but sensitive] Internet protocol router network). Each sensor node has its own 
measurements-collection and processing facility to estimate and understand its envi-
ronment. A sensor is thus “situationally aware” in terms of position and movement 
of targets and the threats they pose. This awareness must be shared among all other 
nodes to generate an assessment of the environmental situation as a whole (sometimes 
called the common tactical picture [CTP]) for effective coordinated action.

Sensor nodes can be conceptualized as intelligent autonomous agents that 
communicate, coordinate, and cooperate with each other in order to improve their 
local situational awareness and to assess the situation of the operational environment 
as a whole. The concept of distributed fusion refers to decentralized processing 
environments, consisting of autonomous sensor nodes, and additional processing 
nodes without sensors, if necessary, to facilitate message communication, data 



273A Framework for Distributed High-Level Fusion

storage, relaying, information aggregation, and assets scheduling. Some of the 
advantages of distributed fusion are reduced communication bandwidth, distribution 
of processing load, and improved system survivability from a single point failure. 
The distributed fusion concept naturally fits within the upcoming NCW paradigm 
and its backbone command network, the global information grid (GIG).

As a concrete example of distributed fusion, consider the decentralized process-
ing environment as shown in Figure 10.1.

In this example, we assume there is a high-value target (top right of the figure) 
within a region of interest and that the designated areas A and B surrounding the 
target are considered to be the most vulnerable. These two areas must be under 
surveillance in order to detect any probing activities that indicate a possible attack 
threat. The sensor coverage in areas A and B, shown in grey, is by an infrared sen-
sor (MASINT) and a video camera (IMINT), respectively. In addition, a human 
observer (HUMINT) is watching the area in common between A and B. There are 
two local fusion centers for the two areas to detect any probing activity. The infrared 
sensor has wireless connectivity with the local fusion center for area A, whereas 
the video camera has wired connectivity with the local fusion center for area B for 
streaming video. Moreover, the human observer communicates wirelessly with both 
local fusion centers. Each of the two local centers fuses the sensor data it receives 
in order to identify any possible probing activity. The centers then pass their assess-
ments (i.e., higher-level abstraction, rather than raw sensor information, thus saving 
bandwidth) to another fusion center that assesses the overall threat level, based on 
the reports of probing activities and other relevant prior contextual information.

In a centralized fusion environment, where observations from IMINT, HUMINT, 
and MASINT are gathered in one place and fused, a BN model, such as the one in 
Figure 10.2, can be used for an overall SA. This model handles dependence among 
sensors and fusion centers via their representation in nodes and interrelationships.

Local fusion
center  A 

Infrared
sensor

Local fusion
center B  

Human
observer 

Video 

Global fusion
center 

Area A  

Area B 

High-value
target (T)

FIGURE 10.1  An example of distributed fusion environment.
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A probing activity at an area will be observed by those sensors covering the area, 
and the lower half of the BN models this. For example, MASINT and HUMINT 
reports will be generated due to a probing activity at area A. Similarly, IMINT and 
HUMINT reports will be generated due to a probing activity at area B. The upper 
half of the BN models the threat of an attack based on the probing activities at areas 
A and B, together with other contextual information.

In a decentralized environment, as illustrated in Figure 10.1, each of the three fusion 
centers contains only a fragment of the above BN model as shown in Figure 10.3.

Local fusion centers A and B assess probing activities based on their local model 
fragments, and send their assessments to the global fusion center via messages. The 
global fusion center then uses its own models to determine the overall attack threat. 
If the same HUMINT report is received by both local fusion centers, the process 
has to ensure that this common information is used only once; otherwise, there will 
be a higher-than-actual level of support for a threat to be determined by the global 
fusion model. This is called the data incest problem in a distributed fusion environ-
ment, which is the result of repeated use of identical information. Pedigree needs to 
be traced, not only to identify common information but also to assign appropriate 
trust and confidence to data sources. An information graph (Liggins et al. 1997), for 
example, allows common prior information to be found.

10.3  DISTRIBUTED FUSION ENVIRONMENTS

As shown in Figure 10.4, a typical distributed fusion environment is likely to contain 
a variety of fusion nodes that do a variety of tasks:

•	 Process observations generated from a cluster of heterogeneous sensors 
(e.g., the local fusion centers A and B in Figure 10.1, and nodes labeled 5 
and 9 in Figure 10.4).

•	 Process observations generated from a single sensor (e.g., nodes labeled 11, 
12, and 13 in Figure 10.4).

Attack
threat

Probe at
area A

Probe at
area B

HUMINTMASINT IMINT

Context

FIGURE 10.2  A centralized BN model for situation assessment.
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FIGURE 10.3  Distributed parts of the BN models.
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•	 Perform a task (e.g., situation assessment [SA] and threat assessment [TA], 
course of action [COA] generation, planning and scheduling, CTP genera-
tion, collection management) based on information received from other 
sensors in the environment and from other information stored in databases 
(e.g., nodes labeled 1, 2, 3, 4, 6, 7, and 10 in Figure 10.4).

•	 Relay observations generated from sensors to other nodes (e.g., the node 
labeled 8 in Figure 10.4).

As shown in Figure 10.4, a fusion node receives values of some variables obtained 
either from sensor observations (X variables) or via information aggregation by other 
nodes (A variables). Such values can also be obtained from databases. For example, 
the fusion center labeled 6 receives values of the variables A2, X5, and X6 from the 
cluster fusion node labeled 9 and values of the variable X3 from a database. Note 
that an arrow between two nodes indicates the flow of information in the direction of 
the arrow as opposed to a communication link. The existence of an arrow indicates 
the presence of at least a one-way communication link, though not necessarily a 
direct link, via some communication network route. For example, there is a one-way 
communication link from node 3 to node 1. A reverse communication link between 
these two nodes will be necessary in implementing our message-passing distributed 
fusion algorithm to be presented later.

Each node (fusion center, cluster fusion, relay switch, or local fusion) in a 
distributed fusion environment has knowledge of the states of some variables, called 
local variables, as shown in Figure 10.5. For example, the fusion node labeled 6 
has knowledge of the X variables X3, X5, and X6, and A variables A2 and A3. The 
node receives values of the variables A2, X5, and X6 from the node labeled 9 and 
the variable X3 from a database. The node generates values of the variable A3 via 
some information aggregation operation. On the other hand, fusion node 9 receives 
measurements X4, X5, and X6 from a cluster of sensors and generates A2; fusion 
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FIGURE 10.5  Network of distributed fusion nodes.
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node 8 relays values of the variables X10, X1, and X12 to other nodes; and fusion 
node 12 obtains measurements of X8 from a single sensor.

Figure 10.6 shows four possible distributed fusion environments: centralized, 
hierarchical, peer-to-peer, and grid-based. Note that the direction of an arrow indi-
cates both information flow and the existence of a communication link along the 
direction of an arrow.

In a centralized environment, only the sensors are distributed, sending their obser-
vations to a centralized fusion node. The centralized node combines the sensor infor-
mation to perform tracking or SA. In a hierarchical environment, the fusion nodes 
are arranged in a hierarchy, with the higher-level nodes processing results from the 
lower-level nodes and possibly providing some feedback. The hierarchical architecture 
will be natural for applications where situations are assessed with an increasing level of 
abstraction along a command hierarchy, starting with the tracking of targets at the bot-
tom level. Considerable savings in communication effort can be achieved in a hierarchi-
cal fusion environment. In both peer-to-peer and grid-based distributed environments, 
every node is capable of communicating with every other node. This internode commu-
nication is direct in the case of a peer-to-peer environment, but some form of “publish 
and subscribe” communication mechanism is required in a grid-based environment.

10.4  ALGORITHM FOR DISTRIBUTED SITUATION ASSESSMENT

As mentioned in Section 10.1, there are two ways in which we can accomplish SA in 
a distributed environment: (1) each local fusion node maintains the state of a set of 
variables and (2) there is a BN model for global SA.
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FIGURE 10.6  Possible distributed fusion environments: (a) centralized; (b) hierarchical; 
(c) peer-to-peer; and (d) grid-based.
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In the first case, we start with a distributed fusion environment such as the one 
shown in Figure 10.4. Our distributed SA framework in this case has four steps:

•	 Network formation
•	 Spanning tree formation
•	 Junction tree formation
•	 Message passing

The nodes of the sensor network first organize themselves into a network of fusion 
nodes, similar to the one shown in Figure 10.5. Each fusion node has partial knowl-
edge of the whole environment. This network is then transformed into a spanning 
tree (a spanning tree of a connected, undirected graph, such as the one in Figure 10.5, 
is a tree composed of all the vertices and some or all of the edges of the graph), so 
that neighbor nodes establish high-quality connections. In addition, the spanning 
tree formation algorithm optimizes the communication required by inference in 
junction trees. The algorithm can recover from communication and node failures 
by regenerating the spanning tree. Figure 10.7 describes a spanning tree obtained 
from the network in Figure 10.5. The decision to sever the link between nodes 4 and 
6, as opposed to between nodes 3 and 6, can be mitigated using the communication 
bandwidth and reliability information in the cycle of nodes 1, 3, 6, and 4.

Using pairwise communication-link information sent between neighbors in 
a spanning tree, the nodes compute the information necessary to transform the 
spanning tree into a junction tree for the inference problem. Finally, the inference 
problem is solved via message-passing on the junction tree.

During the formation of a spanning tree, each node chooses a set of neighbors, 
so that the nodes form a spanning tree where adjacent nodes have high-quality 
communication links. Each node’s clique is then determined as follows. If i is a 
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node and j is a neighbor of i, then the variables reachable to j from i, Rij, are defined 
recursively as

	

R D Rij i ki

k nbr i j

=
∈ ( )−{ }
∪ 	 (10.1)

where Di is the set of local variables of node i. A base case corresponds to a leaf 
node, which is simply a collection of a node’s local variables. If a node has two sets 
of reachable variables to two of its neighbors that both include some variable V, then 
the node must also carry V to satisfy the running intersection property of a junction 
tree. Formally, node i computes its clique Ci as

	

C D R Ri i ji ki

j k nbr i
j k

= ∩
∈ ( )

≠
,
∪ 	 (10.2)

A node i can also compute its separator set Sij = Ci ∩ Cj with its neighbor j using 
reachable variables as

	
S C Rij i ji= ∩ 	 (10.3)

Figure 10.8 shows the junction tree obtained from the spanning tree in Figure 10.7.
The variables reachable to a leaf node, for example, fusion node 9, are its local 

variables A2, X4, X5, X6. The variables reachable to an intermediate node, for exam-
ple, fusion node 1, from its neighboring nodes 3 and 4 are
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FIGURE 10.8  A junction tree from the distributed fusion environment.
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The local variable of the fusion node 1 is D1 = {A1, A2, A4, A7}. Therefore, its clique is

	
C A A A A A1 1 2 3 4 7= { }, , , ,

The formation of a suitable junction tree from a BN model for SA is the only part of 
our distributed fusion approach that is global in nature.

Now we focus on the second case of a distributed SA where we have a BN model 
for global SA such as the one shown in Figure 10.2. We first apply an algorithm 
(Jensen 2001) that systematically transforms a BN to a junction tree in four steps: 
moralization, triangulation, clique identification, and junction tree formation.

10.4.1 J unction Tree Construction and Inference

The moral graph of a BN is obtained by adding a link between any pair of variables 
with a common “child” and dropping the directions of the original links in the BN. 
An undirected graph is triangulated if any cycle of length greater than 3 has a chord, 
that is, an edge joining two nonconsecutive nodes along the cycle. The nodes of a 
junction tree for a graph are the cliques in the graph (maximal sets of variables that 
are all pairwise linked).

Once we have formed a junction tree from either of the aforementioned two 
cases, such as the one in Figure 10.8, a message-passing algorithm then computes 
prior beliefs of the variables in the network via an initialization of the junction tree 
structure, followed by evidence propagation and marginalization. The algorithm can 
be run asynchronously on each node responding to changes in other nodes’ states. 
Each time a node i receives a new separator variables message from a neighbor j, it 
recomputes its own clique and separator variables messages to all neighbors except j 
and transmits them if they have changed from their previous values. Here we briefly 
discuss the algorithm and how to handle evidence by computing the posterior beliefs 
of the variables in the network.

A junction tree maintains a joint probability distribution at each node, cluster, or 
separator set in terms of a belief potential, which is a function that maps each instan-
tiation of the set of variables in the node into a real number. The belief potential of 
a set of variables X will be denoted as φX, and φX(x) is the number onto which the 
belief potential maps x. The probability distribution of a set of variables X is just the 
special case of a potential whose elements add up to 1. In other words,

	

ϕX x p x
x x

( ) = ( ) =
∈ ∈
∑ ∑

X X

1 	 (10.4)

The marginalization and multiplication operations on potentials are defined in a 
manner similar to the same operations on probability distributions.
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Belief potentials encode the joint distribution p(X) of the BN according to the 
following:

	

p
i

j

i

j

X( ) =
∏
∏

φ

φ

C

S

	 (10.5)

where ϕCi and ϕS j are the cluster and separator set potentials, respectively. We have 
the following joint distribution for the junction tree in Figure 10.8:
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where
Ci represents the variable in clique i
Sij = Ci ∪ Cj represents the separator set between nodes i and j

It is imperative that a cluster potential agrees with its neighboring separator sets on 
the variables in common, up to marginalization. This imperative is formalized by the 
concept of local consistency. A junction tree is locally consistent if, for each cluster 
C and neighboring separator set S, the following holds:

	

φ φC

C\S

S∑ = 	 (10.7)

To start initialization, for each cluster C and separator set S, set the following:

	 φ φC S← ←1 1, 	 (10.8)

Then assign each variable X to a cluster C that contains X and its parents pa(X). Then 
set the following:

	
φ φC C← ( )( )p X pa X| 	 (10.9)

When new evidence on a variable is entered into the tree, it becomes inconsistent and 
requires a global propagation to make it consistent. The posterior probabilities can 
be computed via marginalization and normalization from the global propagation. If 
evidence on a variable is updated, the tree requires re-initialization. Next, we present 
initialization, normalization, and marginalization procedures for handling evidence.

As before, to start initialization, for each cluster C and separator set S, set the 
following:

	 φ φC S← ←1 1, 	 (10.10)
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Then assign each variable X to a cluster C that contains X and its parents pa(X), and 
then set the following:

	

φ φ

λ

C C← ( )( )
←

p X pa X

X

|

1
	 (10.11)

where λX is the likelihood vector for the variable X. Now, perform the following steps 
for each piece of evidence on a variable X:

•	 Encode the evidence on the variable as a likelihood λX
new.

•	 Identify a cluster C that contains X (e.g., one containing the variable and 
its parents).

•	 Update as follows:

	

φ φ λ
λ

λ λ

C C
X
new

X

X X
new

←

←
	 (10.12)

Now perform a global propagation using the two recursive procedures: collect evi-
dence and distribute evidence. Note that if the belief potential of one cluster C is mod-
ified, then it is sufficient to unmark all clusters and call only distribute evidence (C).

The potential φC for each cluster C is now p(C, e), where e denotes evidence incor-
porated into the tree. Now marginalize C into the variable as

	

p X e
X
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C

	 (10.13)

Compute posterior p(X|e) as follows:

	

p X e
p X e

p e

p X e

p X e
X

|
, ,

,
( ) =

( )
( ) =

( )
( )∑

	 (10.14)

To update evidence for each variable X on which evidence has been obtained, first 
update its likelihood vector. Then initialize the junction tree by incorporating the 
observations. Finally, perform global propagation, marginalization, etc.

10.5  DISTRIBUTED KALMAN FILTER

As shown in Figure 10.9, we assume that a distributed KF environment consists 
of N local fusion nodes, producing track estimates based on a single sensor or 
multiple local sensors, and a fusion center, combining these local estimates into a 
global one. An example distributed environment for tracking a ground vehicle on 
a road consists of (1) a group of ground acoustic sensors laid on the road, which 
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are coordinated by a local fusion node, (2) an aerial video feed provided by an 
unmanned aerial vehicle (UAV), and (3) ground moving target indicator (GMTI) 
data generated by joint surveillance target attack radar system (JSTARS). A local 
fusion node requires feedback from the global estimate to achieve the best per-
formance. Moreover, the global estimation has to cope with sensors running at 
different observation rates.

The target’s dynamic is modeled in a transition model as

	 X FX Wk k k= + −−1 1 	 (10.15)

where
the state vector Xk is the estimate of the target at time-instant k
F is the transition mode matrix invariant of k
Wk is the “white and Gaussian process” noise with zero-mean

The measurement models are given by

	 Z H X Vik i k ik= + 	 (10.16)

where
Zik is the measurement or observed output state at time step k from the ith sensor 

(i = 1,2,…, N)
Hi is the corresponding observation matrix invariant of k
Vik is the corresponding white and Gaussian noise with zero-mean

The centralized KF algorithm for estimating the target’s state and error covariance 
matrix has the following two recursive steps:

Prediction:
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FIGURE 10.9  Distributed Kalman filter.
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Update:

	

P P H R H

X P P X H

k k k k i
T

ik

i

N

i

k k k k k k k k

| |

| | | |

−
−

− −

=

−
−

−

= +

= +

∑1
1

1 1

1

1
1

1
ˆ ˆ

ii
T

ik

i

N

ikR Z−

=
∑













1

1

	 (10.18)

where
X̂k|k is the state estimate at time step k
Pk|k is the error covariance matrix
Qk and Rik are covariance matrices of the process and measurement noises, 

respectively

The inverse P−1 of the covariance matrix P is a measure of the information contained 
in the corresponding state estimate.

In a distributed KF environment, each local fusion node i produces its own esti-
mate X̂i(k|k) based on the information available from its sensors, using the standard KF 
technique. These individual estimates are then fused together at the fusion center to 
produce the overall estimate X̂k|k.

As shown in Figure 10.10, there are two ways to carry out distributed KF (Liggins 
et al. 1997):

•	 Without feedback, meaning an individual fusion node performs target track-
ing based on its own local sensor measurements and sends its estimation 
of the target state and error covariance matrix to the fusion center at every 
time step.

•	 With feedback, meaning an individual fusion node sends its estimation to 
the fusion center as before but obtains feedback from the fusion center in 
terms of the center’s overall estimation, using combined results from indi-
vidual local fusion nodes.
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FIGURE 10.10  Distributed target tracking with and without feedback.
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Without feedback:
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With feedback:
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Note in the above two cases of estimation that the fusion center fuses only the incre-
mental information when there is no feedback. The new information is the difference 
between the current and previous estimates from the local fusion nodes. When there 
is feedback, the fusion node must remove its own previously sent information before 
combining the local estimates. In other words, the new information to be sent to the 
fusion center is the difference between the new estimate and the last feedback from 
the fusion center. The process of removing an estimate is to make sure that the local 
estimates that are combined are independent.

10.6  RELEVANCE TO NETWORK-CENTRIC WARFARE

The NCW concept (Cebrowski and Garstka 1998, Cebrowski 2001) is a part of the 
DoD’s effort to create a twenty-first-century military by transforming its primarily 
platform-centric force to a network-centric force through the use of modern informa-
tion technologies. NCW is predicated upon dramatically improved capabilities for 
information sharing via an Internet-like infrastructure. When paired with enhanced 
capabilities for sensing, information sharing can enable a force to realize the full 
potential of dominant maneuver, precision engagement, full-dimensional protection, 
and focused logistics.

As shown in Figure 10.11, NCW involves working in the intersection of three 
interconnected domains, namely, physical, information, and cognitive.

The physical domain is where the situation the military seeks to influence exists. 
It is the domain where strikes, protections, and maneuverings take place across the 
environments of ground, sea, air, and space. It is the domain where physical plat-
forms and the communications networks that connect them reside.

The information domain is where information is created, manipulated, and 
shared. It is the domain that facilitates the communication of information among 
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warfighters. It is the domain where the command and control of modern military 
forces is communicated and where the commander’s intent is conveyed.

The cognitive domain is in the minds of the participants. It is the domain where 
perceptions, awareness, understanding, beliefs, and values reside and where, as a 
result of sense-making, decisions are made.

From the perspective of distributed fusion presented in the earlier sections, it is the 
cognitive domain that provides warfighters with the capability to develop and share 
high-quality situational awareness. Fusion nodes representing warfighters commu-
nicate their assessments of situations via appropriate coordination and negotiation.

The GIG is a globally interconnected, end-to-end set of information capabilities, 
associated processes, and personnel for collecting, processing, storing, disseminat-
ing, and managing information-on-demand for warfighters, defense policymakers, 
and support personnel. The GIG will operate within the information domain to 
enable the creation of a fusion network consisting of fusion nodes and any needed 
interconnections.

10.7  ROLE OF INTELLIGENT AGENTS

Recent advances in intelligent agent research (AGENTS 1997–2001, AAMAS 
2002–2010) have culminated in various agent-based applications that autonomously 
perform a range of tasks on behalf of human operators. Examples of the kinds of 
tasks these applications perform include information filtering and retrieval, situation 
assessment and decision support, and interface personalization. Each of these tasks 
requires some form of human-like intelligence that must be simulated and embedded 
within the implemented agent-based application.
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Department of Defense, Report to Congress, 2001.)
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Expectations are high that agent technologies can provide insights into and 
solutions for complex problems in the industrial, military, and business fusion 
communities. Such expectations are due to the agents’ inherent capability for 
operating autonomously while communicating and coordinating with other agents 
in the environment. This makes them suitable for embedding in entities operating 
in hazardous and high-risk operational environments, including robots, UAVs, 
unattended ground sensors, etc. A recent DoD-wide thrust on NCW is by definition 
distributed in nature, where agents can play a vital role in the areas of cooperation, 
coordination, brokering, negotiation, and filtering. As shown in Figure 10.12, 
autonomous intelligent agents can act on behalf of warfighters (Lichtblau 2004) 
within an NCW environment to reduce their cognitive workload.

10.7.1 W hat Is an Agent?

An agent is a computational entity with intentionality that performs user-delegated 
tasks autonomously (Guilfoyle and Warner 1994, Caglayan and Harrison 1997). 
Some of the most important properties of software agents (Wooldridge and Jennings 
1995), namely, autonomy, monitoring, and communication skills, are desirable 
features for building an ideal information fusion system. Table 10.1 summarizes the 
key properties of agents and agent-based fusion systems.

Intelligent agents can also be viewed as traditional artificial intelligence (AI) 
systems simulating human behavior. Rich AI technologies can therefore be 
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leveraged to build intelligent agents that learn from the environment, make plans 
and decisions, react to the environment with appropriate actions, express emotions, 
or revise beliefs. Intelligent agents typically represent human cognitive states using 
underlying knowledge and beliefs modeled in a knowledge representation language. 
The term “epistemic state” is used to refer to an actual or possible cognitive state 
that drives human behavior at a given point in time; the accurate determination 
(or estimation) of these epistemic states is crucial to an agent’s ability to correctly 
simulate human behavior (Das 2008a).

10.7.2 U se of Agents in Distributed Fusion

Using agent technologies, experiments in building fusion systems (Das 2010) are 
being conducted at all levels (in the sense of JDL [Liggins et al. 2008, Steinberg 
et  al. 1998, White 1988]). The communication ability of agents naturally lends 
itself to performing fusion tasks in a decentralized manner, where the cooperation 
among a set of spatially distributed agents is vital. Many important fusion problems 
(e.g., target tracking) are inherently decentralized.

A decentralized data fusion system, according to Durrant-Whyte and Stevens (2006),

consists of a network of sensor nodes, each with its own processing facility, which 
together do not require any central fusion or central communication facility. In such 
a system, fusion occurs locally at each node on the basis of local observations and the 
information communicated from neighboring nodes.

Such decentralized systems rely on communication among nearby platforms, and 
therefore the number of messages that each platform sends or receives is independent 

TABLE 10.1
Agent Properties and Data Fusion

Property Definition Agent-Based Fusion System

Autonomy Operates without the direct 
intervention of humans or others

Autonomously executes tasks—target 
tracking and identification, situation and 
threat assessment, sensor management and 
decision support

Sociability Interacts with other agents Communicates with external environment 
such as sensors, fusion systems, and human 
operators

Reactivity Perceives its environment and 
responds in a timely fashion

Perceives the environment and adjusts 
response accordingly

Pro-activity Exhibits goal-directed behavior by 
taking the initiative

Goal of delivery of situation and threat 
assessment in time

Learnability Learns from the environment to 
adjust knowledge and beliefs

Dynamic capabilities and behavior learned 
over time by observing areas of operations

Mobility Moves with code to a node where 
data resides

Execute code at local sensor nodes 
accumulating observations
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of the total number of platforms in the system. This property ensures scalability to 
distributed systems with (almost) any number of platforms (Rosencrantz et al. 2003).

In contrast to a decentralized system, all platforms in centralized architectures 
communicate all sensor data to a single special agent, which processes it centrally 
and broadcasts the resulting state estimate back to the individual platforms. Such an 
approach suffers from single-point-of-failure and communication and computational 
bottlenecks.

There is an abundance of work in the area of distributed agent–based target track-
ing and in the area of distributed fusion. In general, a distributed processing archi-
tecture for estimation and fusion consists of multiple processing agents. Here we 
mention only some of them.

Horling et al. (2001) developed an approach to real-time distributed tracking, 
wherein the environment is partitioned into sectors to reduce the level of potential 
interaction between agents. Within each sector, agents dynamically specialize to 
address scanning, tracking, or other goals by taking into account resource and com-
munication constraints. See also (Waldock and Micholson, 2007) for an approach to 
distributed agent-based tracking.

Hughes and Lewis (2009) investigated the track-before-detect (a method that 
identifies tracks before applying thresholds) problem using multiple intelligent soft-
ware agents. The developed system is based on a hierarchical population of agents, 
with each agent representing an individual radar cell that is allowed to self-organize 
into target tracks.

Martin and Chang (2005) developed a tree-based distributed data fusion method 
for ad hoc networks, where a collection of agents share and fuse data in an ad hoc 
manner for estimation and decision making.

Chong and Mori (2004) highlighted the advantage of distributed estimation over 
centralized estimation, due to reduced communication, computation, and vulner-
ability to system failure, but expressed the need to address the dependence in the 
information. The authors developed an information graph approach to systematically 
represent this dependence due to communication among processing agents.

Graphical Bayesian belief networks have been applied extensively by the fusion 
community to perform situation assessment (Das 2008b). A network structure with 
nodes and links, modeling a situation assessment problem, is a natural fit for dis-
tributing tasks at various levels of abstraction and hierarchy, where nodes represent 
agents and messages flow between agents along the links. An approach along these 
lines has been adopted by Pavlin et al. (2006).

Mastrogiovanni et al. (2007) developed a framework for collaborating agents for 
distributed knowledge representation and data fusion based on the idea of an ecosys-
tem of interacting artificial entities.

Rosencrantz et al. (2003) developed a decentralized technique for state estimation 
from multiple platforms in dynamic environments. The approach utilizes particle fil-
ters and deploys a selective communication scheme that enables individual platforms 
to communicate only the most informative pieces of information to other entities, 
thus avoiding communication overhead.

Mobile agents have also been employed for distributed fusion. Mobile agents are 
able to travel between the nodes of a network in order to make use of resources that 
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are not locally available. Mobile agents enable the execution code to be moved to the 
data sites, thus saving network bandwidth and providing an effective way to over-
come network latency.

Qi et al. (2001) developed an infrastructure for mobile agent–based distributed 
sensor networks (MADSNs) for multisensor data fusion. Bai et al. (2005) developed 
a mobile agent–based distributed fusion (MADFUSION) system for decision mak-
ing in Level 2 fusion. The system environment consists of a peer-to-peer ad hoc 
network in which information may be dynamically distributed and collected via a 
publish/subscribe functionality. The software agents travel deterministically from 
node to node, carrying a data payload of information, which may be subscribed to by 
users within the network.

Focusing on fusion tasks beyond tracking and situation assessment, Nunnink and 
Pavlin (2005) proposed an algorithm that, based on the expected change in entropy, 
determines the optimal sensing resource to devote to fusion task assignment.

Jameson’s (2001) Grapevine architecture for data fusion integrates intelligent 
agent technology, where an agent generates the information needs of the peer plat-
form it represents.

Gerken et al. (2003) embedded intelligent agents into the mobile commander’s 
associate (MCA) decision-aiding system to improve the situational awareness of the 
commander by monitoring and alerting based on the information gathered.

Das (2008a) provided three fundamental and generic approaches (logical, prob-
abilistic, and modal) for representing and reasoning with agent epistemic states, 
specifically in the context of decision making. In addition, an introduction is given 
to the formal integration of these three approaches into a single unified approach 
called P3 (propositional, probabilistic, and possible world), which combines the 
advantages of the other approaches. The P3 approach is useful in implementing a 
knowledge-based intelligent agent specifically designed to perform situation assess-
ment and decision-making tasks. Modeling an agent epistemic state (Das et al. 1997, 
Das and Grecu 2000, Das 2007) in such a way is analogous to modeling via the BDI 
(belief, desire, and intention) architecture (Rao and Georgeff 1991).

10.8  CONCLUSIONS AND FURTHER READING

In this chapter, we have presented distributed fusion from the SA and target tracking 
perspectives and its relevance to NCW environments. The approach to distributed 
fusion via message passing is a natural fit to distributed NCW environments, as it 
maintains the autonomy and privacy of individual agents and data sources. There 
are approaches along these lines, namely, distributed perception networks (DPN) 
(Pavlin et al. 2006) and multiply section Bayesian networks (MSBN) (Xiang et al. 
1993), but the proposed approach leverages existing algorithms and reduces the over-
all message flow to save bandwidth.

Readers are recommended to consult Liggins et al. (1997) and Durrant-Whyte 
(2000) for an overall discussion on distributed fusion from the target tracking per-
spective. Liggins et al. (1997) also discuss an approach to address the data incest 
problem via information graphs. There are alternative approaches to a distributed KF 
algorithm, for example, that presented by Rao and Durrant-Whyte (1991). Schlosser 
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and Kroschel (2004) present some experimental results from their study of the effect 
of communication rate among fusion nodes on the performance of a decentralized 
KF algorithm.

The book by Pearl (1988) is still the most comprehensive account of BNs, and 
more generally on using probabilistic reasoning to handle uncertainty. The junc-
tion tree algorithm of Lauritzen and Spiegelhalter (1988), as refined by Jensen et al. 
(1990) in HUGIN, is the most popular inference algorithm for general BNs. A good 
comprehensive procedural account of the algorithm can be found in Huang and 
Darwiche (1996). Jensen’s books (1996, 2001) are also useful guides in this field. 
(See Das et al. [2002] for an application of BNs for conventional battlefield SA.)

The reader can also refer to Paskin and Guestrin (2004) for a more detailed account 
of a junction tree–based distributed fusion algorithm along the lines of the one pre-
sented here. The algorithm in the paper, in addition, optimizes the choice of junction 
tree to minimize the communication and computation required by inference. (See 
Das et al. [2002] for distributing components of a BN for battlefield SA across a set 
of networked computers to enhance inferencing efficiency and to allow computation 
at various levels of abstraction suitable for military hierarchical organizations.)

There is an abundance of open source literature on NCW. A “must read” on 
NCW is Cebrowski and Garstka (1998), and also NCW (2001) and Cebrowski 
(2001). Further reading of topics related to NCW are on effect-based operations 
(EBO) (Smith 2002) and sense and respond logistics (S&RL) (OFT 2003). The 
NCW vision is being realized within the DoD branches, including in the Army via 
its FCS (future combat systems) program, in the Navy (Antanitus 2003), and in the 
Air Force (Sweet 2004).

Section 10.7 on intelligent agents is nontechnical in nature; a multitude of refer-
ences on intelligent agents in the fusion context are embedded within the section 
itself.
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11.1  INTRODUCTION

A threat to a given subject (a “subject” being a person, a vehicle, a building, a 
psychological state, a nation, the economy, the peace, etc.) is an individual, entity, 
or event that can potentially hurt, damage, kill, harm, disrupt, etc., this subject 
itself, or some other subjects (assets) for which this particular subject has concern. 
Recent years have seen a wide range of threats requiring surveillance, mitigation, 
and reaction in domains as diverse as military operations, cyberspace, and public 
security. Although each context has its own particularities, in all cases, one 
attempts to determine the nature of the threat and its potential to cause some form 
of damage.

Threat analysis consists in establishing the intent, capabilities, and opportuni-
ties of individuals, and entities that can potentially put a subject or a subject’s 
assets in danger. Based on a priori knowledge and dynamically inferred or acquired 
information, threat analysis takes place in situations where there is indication of 
the occurrence of an event that can possibly harm a given (or set of) subject(s)/
asset(s) of value.

Threat analysis involves the integration of numerous variables and calls upon 
several reasoning processes such as data fusion, intent, capability, opportunity esti-
mation, goal and/or plan recognition, active observation, etc. Often performed in 
time-constrained and stressful conditions, the cognitive complexity of the threat 
analysis task can seriously challenge an individual, hence the automation of certain 
aspects of threat analysis in the operational domains.

The process of threat analysis can be performed by a single agent (human or 
software), but it can also be carried out by a team of agents, distributed over a geo-
graphic area, observing a situation from different perspectives, and attempting to 
merge their interpretations. This situation, while enabling information superiority, 
introduces a new set of challenges related to interoperability and inter-agent infor-
mation sharing and collaboration. Similarly, the threat may also be comprised of 
multiple agents acting in coordination, which can significantly increase the difficulty 
of recognizing their common intent or plan. Thus, the challenges of threat analysis 
are multiplied significantly, as one moves from a one-on-one to a many-on-many 
configuration.

In the following sections, the problem of threat analysis is discussed from a 
theoretical perspective, while illustrating the observations by examples from the 
military domain.

The primary concepts of threat analysis, such as actions, goals, intentionality, 
consequences, reference point, are first discussed. Threat analysis is then addressed 
as an interference management problem where agents have to assess situations 
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considering the intent, capabilities, and opportunities of their adversaries. By 
extending the scope of threat analysis to goal and then to plan recognition, it is 
shown that threat analysis can be viewed as an abduction problem where the 
observing agent is engaged in an evidence gathering—best-explaining hypotheses 
formulation cycle. This conceptual characterization of threat analysis enables the 
reader to measure the inherent difficulty of threat analysis regardless of the context 
of operations. The modeling frameworks and algorithmic techniques relative to 
different approaches, and plan recognition in particular, are extensively discussed, 
which shows the challenges for the automation of the threat analysis task. Next, 
threat analysis is presented in the context of military operations. The tasks to be 
performed and their complexity are discussed relatively to time, uncertainty, nature 
of threat, and other contextual factors.

After having grounded the problem in a military operational setting, the 
complexity of threat analysis in distributed environments is described, introducing 
the challenges of multi-threat environments and collaborative threat evaluation. 
The latter are analyzed both from situation analysis and collaboration perspectives. 
Finally, the operational challenges of threat analysis in network-centric operations 
are evaluated. Thus, through the document, the threat analysis problem is described 
in multiple contexts and at an increasing level of complexity.

11.2  SOME DEFINITIONS

A threat can be an individual, a physical entity, or an event that can potentially harm 
some asset of value, which is of concern to one or several agents.

It is generally accepted by the community working on the threat analysis problem 
(Paradis et al. 2005, Roy 2012, Steinberg 2005) that three concepts are central to the 
notion of threat. To constitute a threat, an entity must possess the intent or be intended 
to cause harm, as well as the capability and opportunity to achieve this intent.

•	 Intent is defined as the goal of the threat. Intent assessment determines 
(using all available pieces of evidence) whether the threatening entity 
intends to cause harm.

•	 Capability is defined as the ability of the threatening entity to achieve its 
goal and/or plan (or part thereof) as determined by the intent.

•	 Opportunity is defined as the existence in the environment of the required 
preconditions for the threat’s goal/plan to succeed.

It is our contention that a threat can be defined along five dimensions, which capture 
these key concepts. These are

	 1.	Negativity: the notion of a threat evokes and involves only negative conno-
tations such as danger, harm, evil, injury, damage, hazard, destruction, loss, 
fear, dread, etc.

	 2.	 Intentionality: a threat can only be considered as such if it is intended so by 
a given goal-oriented and rational agent. Otherwise, there is danger and not 
threat.
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	 3.	Potential: to be a threat, an agent or entity must have the capability and 
opportunity to inflict the negative effect it intends to.

	 4.	 Imminence: a threat is always perceived as being in progress to achieve its 
goal by the agent expecting or observing it. Once the harmful event has 
occurred, it is no longer a threat.

	 5.	Relativity to a point of reference: a threat is always considered as such 
relatively to its target(s), and the level of harm it can inflict can only be mea-
sured relatively to that point of reference and not in absolute terms. Threats 
are modeled in terms of potential and actualized relationships between 
threatening entities and threatened entities, or targets (Steinberg 2005).

Concerning the concepts 1 and 5, it must be added that causing harm includes caus-
ing distraction or negatively interfering with the goal or the objectives of an agent. 
Yet, negative interference must always be measured relatively to the value given by 
a given agent to its goal. In a situation of threat, what is threatened is a crucial goal 
of some agent, whether that goal is to change or preserve a certain state of affairs. 
Indeed, one cannot talk of threat for negative events that do not destroy, harm, or 
damage assets that are of utmost importance to one or more agents. Therefore, the 
expression negative impact must be interpreted relatively to a crucial goal.

Threat analysis has been defined in Roy (2012) as

The analysis of the past, present and expected actions of external agents, covering 
the overall behaviour process of these agents from desires to effects/consequences, to 
identify menacing situations and quantitatively establish the degree of negativeness of 
their impact on the state and/or behaviour process of some agent of concern, and/or on 
some valuable human/material assets to be protected, taking into account the defensive 
actions that could be performed to reduce, avoid or eliminate the identified menace.

In operational environments, threat analysis is defined as the problem of determin-
ing the level of threat and the level of priority associated to it in a given situation. The 
level of threat indicates to what extent an entity is threatening. The level of priority 
indicates how much attention an observer should devote to that entity.

One should note that there are also the debatable notions of “inherent threat 
value” and “actual threat value” (also called actual risk value in Roy et al. [2002], 
Roy [2012]). The former is determined without consideration of a countermeasure/
defensive action, whereas the latter is established with consideration of defensive 
actions. In the latter case, one could also talk of “residual” threat value to refer to the 
threat (or risk) that remains even after a defensive action.

11.3  THREAT ANALYSIS: PRIMARY CONCEPTS

This section revisits some of the basic notions that underlie the threat analysis problem.

11.3.1 A ction, Event, and Reference Point

The process of threat analysis may implicate the observation of an action or 
event, which in turn involves one or several state changes in the environment. 



299Threat Analysis in Distributed Environments

The consequences of such action/event impact in different ways the entities and 
individuals concerned by the event. Thus, a given action may constitute a threat 
for one agent, be indifferent to another, and be an opportunity for still another. 
Consequences of actions are therefore positive or negative depending on the 
reference point (agent/entity) being considered. Moreover, the agents and entities 
concerned may be impacted by the change at different points in time. One agent 
may be threatened by an action instantaneously, as it occurs, while another may be 
affected by it only after a more or less long period of time. The effect of a negative 
action on different reference points varies in time and space. Often, the nature and 
magnitude of some state changes and/or consequences depend on the geometry (e.g., 
the proximity) between the “effector” (e.g., an agent performing some action) and the 
“affected” (e.g., a particular asset). As an example, consider the degree of severity 
of the explosion of a bomb as a function of the target proximity. Finally, actions can 
be viewed at different levels of granularity. An action can be perceived as being part 
of a more global action or event, which could be considered as a plan, or it can be a 
punctual and bounded occurrence.

11.3.2 I ntentionality

Actions or events can be intentional or unintentional (e.g., potential natural 
disasters, accidents, or human errors). While unintentional actions can pose a 
danger to an agent or entity, only intentional actions can be considered as threats. 
Thus, threat analysis is concerned with characterizing, recognizing, and predicting 
situations in which a willful agent intends to do harm to some subject. However, 
actions intended for one reference point can also impact other agents and entities. 
Collateral damages and fratricides are examples of such unintended and unfortunate 
side effects.

The “belief–desire–intent” (BDI) model (Bratman 1987) used by a part of the 
intelligent agent community is a useful paradigm/model for a practical approach 
to the problem of intentionality or intent assessment. Roughly speaking, beliefs 
represent an agent’s knowledge. Desires express what the agent views as an ideal 
state of the environment. These provide the agent with motivations to act. Intention 
lends deliberation to the agent’s desires. Thus, intentions are viewed as something 
the agent has dedicated itself to trying to fulfill. They are those desires to which the 
agent has committed itself.

Bratman (1987) argues that unlike mere desires, intentions play the following 
three functional roles. Intentions normally pose problems for the agent; the agent 
needs to determine a way to achieve them. Intentions also provide a “screen of 
admissibility” for adopting other intentions. Whereas desires can be inconsistent, 
agents do not normally adopt intentions that they believe conflict with their present 
and future-directed intentions. Agents “track” the success of their attempts to 
achieve their intentions. Not only do agents care whether their attempts succeed but 
they are disposed to replan to achieve the intended effects if earlier attempts fail.

Castelfranchi (1998) defines goal-oriented or intentional agents or systems along 
the same lines. A goal is a mental representation of a world state or process that is 
candidate for (1) controlling and guiding action by means of repeated tests of the 
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action’s expected or actual results against the representation itself, (2) determining 
the action search and selection, and (3) qualifying its success or failure.

Intentionality is one of the core concepts used to analyze the notion of coop-
eration (Bratman 1987). An agent cannot be considered as cooperative if it is not 
intended to be, even if its actions incidentally further the goals of another agent. 
Likewise, a threatening agent cannot be considered as such without intention, even if 
its actions compromise the goals of another agent.

11.3.3 I mpacts and Consequences

All actions performed by an agent perturb the environment, i.e., they produce some 
alterations of the state of the environment (including the state of other agents). 
Actions and the state changes resulting from their execution play a key role in any 
discussion on impact assessment and threat analysis.

The impact of an action is always relative to the perspective from which it is 
viewed. However, all targets do not have the same value for the adversary and the 
latter’s intent, capability, and opportunity depend on the type of target being consid-
ered. Actions can be planned and executed to produce an overall broad effect, e.g., 
to demoralize the enemy, or they can be designed to produce a very specific effect, 
e.g., a high precision lethal attack. As the “vulnerability” of the target decreases, the 
required capabilities to affect it increase. As the “importance” of the target increases, 
so does the adversarial intent to affect it. Opportunities may also be dependent on 
the nature of the target. In an adversarial context, the subjects of threat will pri-
marily protect their high-value assets. For example, in a naval task force, the oil 
tanker would be such an asset. All the other platforms would consider this particular 
platform to be the asset to protect when acting as an operational unit. However, it 
becomes very difficult to determine such assets or vulnerabilities in more complex 
systems. As a matter of fact, the impact of a threat instantiated as an attack can 
be physical (destruction, injury, death, etc.), psychological (instability, fear, distress, 
etc.), social (chaos), economical (crash, cost, etc.) etc., with one level affecting the 
other through complex interdependencies, leading to unpredictable consequences.

11.4 � THREAT ANALYSIS AS AN INTERFERENCE 
ASSESSMENT PROBLEM

Let us consider two agents R and B, by reference to Red (enemy) and Blue (own or 
friendly) forces in the military domain. The term “agent” is used to refer to active, 
autonomous, goal-oriented entities.

In a world where agents co-exist, their actions, driven by inner or contingent 
goals, can accidentally or purposefully interfere with the actions of other agents. 
Therefore, in any situation, an agent needs to monitor its environment, and to assess 
and manage interferences with the surrounding agents and entities.

The reasoning an Agent B performs in a situation of possible negative impact 
is dependent on its knowledge of the type of situation and the time available for 
reasoning. In a situation of immediate danger, where Agent B observes Agent R’s 
capability and opportunity to harm, Agent B’s priority will be to avoid that situation. 
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Whether it is a car, out of control, heading toward us or a missile launched at our 
own ship, the first reaction would be to respond to that situation as to avoid it. The 
problem of the intent or the goal of the source of danger becomes irrelevant during 
that time frame.

In a less time-pressured environment and generally more complex situation, the 
negative interference of Agent R’s action has to be evaluated in the light of a higher-
level goal, so that Agent B can assess the scope of that action and possibly anticipate 
its consequences.

Similarly, in cases of positive interference, depending on the situation, an agent 
could simply enjoy the fortunate circumstances or in order to benefit on a larger scale 
or in the long term, attempt to establish the goal of the other agent(s) and assess the 
possibility of cooperation (mutual benefit), or exploitation (unilateral benefit).

Within this larger context, threat analysis, concerned with purposeful actions 
endangering crucial goals, involves reasoning on Agent R’s capability/opportunity, 
intent/goal, and/or plan.

11.4.1 I ntent–Capability–Opportunity Triad

Essentially, it is sufficient to determine the intent, capability, and opportunity of 
Agent R to deliver damage to Agent B to establish its level of threat, if in fact a threat 
exists. Intent is an element of the agent’s will to act. Capability is the availability of 
resources (e.g., physical and informational means) sufficient to undertake an action 
of interest. Opportunity is the presence of an operating environment in which poten-
tial targets of an action are present and are susceptible to being acted upon.

A threat can be viewed as an integral whole constituted of intent, capability, 
and opportunity, the disruption of any of the constituents involving the disruption 
of the whole (Little and Rogova 2006). From this perspective, viable threats exist 
when all three essential threat elements (intent, capability, opportunity) are pres-
ent and form a tri-partite whole via relations of foundational dependence. Potential 
threats exist when at least one essential part (intent, capability, or opportunity) 
exists, but its corresponding relations are not established. In this sense, potential 
threats are threats that are not in a state of being, rather they are in a state of 
becoming, where portions of the item are constantly unfolding and are yet to be 
actualized at a given place or time.

In a military operational setting, collated information from all available sources 
is interpreted as part of the overall analysis of threat information in an attempt to 
discern patterns which may provide evidence as to the hostile entity’s intent, capabil-
ity, and opportunity. The threat will only have the opportunity to deliver its damage 
provided that it can both detect and track its target and can reach it (Paradis et al. 
2005). Here, evidence consists in indicators of the presence of intent, of capability, 
and/or of opportunity of Agent R to harm Agent B.

Let us take the example of an air threat. Note that some of the threat indicators 
can be directly observed (e.g., bearing, range, speed, etc.), while others need simple 
calculations (e.g., Closest Point of Approach—CPA, flight profile) or advanced cal-
culations (e.g., third party targeting), and still others could require knowledge-based 
inference. Indicators are derived from track characteristics, tactical data, background 
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geopolitical situation, geography, intelligence reports, and other data. The indicators 
observed may be relative to any of the three key ingredients.

11.4.1.1  Intent Indicators
Within the intent–capability–opportunity triad, intent and its relationship to actions 
is the most complex one to assess. Intent assessment can involve both data-driven 
methods (i.e., explaining the purpose of observed activity) and goal-driven methods 
(i.e., seeking means to assumed ends) (Laird et al. 1991).

Intent can be derived based on the observation of current behavior, but also on 
the basis of information provided by other sources (e.g., intelligence). Also, it can be 
directed by a priori knowledge gained on an agent, or by own experience of its past 
actions.

To assess intent, one generally verifies if a certain number of criteria are satisfied, 
i.e., if a number of indicators are available. To do this, one has to create predictive 
models of behaviors that a purposeful agent might exhibit and determine the distinctive 
observable indicators of those behaviors (Steinberg 2007). In the military domain, 
while some indicators such as the track position, speed, identity, or responses (or 
the absence thereof) to Identification Friend or Foe (IFF) interrogations are readily 
available from the tactical picture, a priori databases, or from communications with 
other units in the force, others such as complex behaviors, e.g., threat maneuvers, 
tactics, group composition, and deception, can be very hard to analyze.

11.4.1.2  Capability Indicators
Capability determines the possibility for a given agent to carry out its intent. This 
concept refers to inherent or structural capability and can be measured indepen-
dently of any particular situation, such as the lethality of a missile. Opportunity, on 
the other hand, refers to situational contingencies.

Capability indicators are generally available from a priori data (e.g., intelli-
gence, database, etc.). Observations made during operations come to confirm the a 
priori information on the threat capability (e.g., characteristics of platforms, sen-
sors, and weapons). It must be noted that one of the challenges with capability 
evidence gathering and exploitation is when dealing with asymmetric threats (see 
Section 11.7.2.3.3).

11.4.1.3  Opportunity Indicators
Opportunity, which we also refer to as the “situational capability,” is the presence 
of favorable factors for actions to occur (Roy et al. 2002), and thus depends on the 
dynamics of the situation. Assuming that Agent R has the intent and the (structural) 
capability to inflict harm to Agent B, several conditions may be required in the envi-
ronment in order for Agent R to make the delivery of this harm possible.

Like intent indicators, some of opportunity indicators are readily available from 
the tactical picture or a priori data, some are easily calculated, and others are much 
more difficult to determine. Indeed, some instances of opportunity assessment 
require a more elaborate predictive analysis of the agent behavior, e.g., analyzing 
a trajectory taking into account the engagement geometry, dynamic models of the 
entities in the volume of interest, and potential obstructions.
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11.4.1.4  Dual Perspective
Both the capability and the opportunity of Agent R are directly related to the 
vulnerability of Agent B. This vulnerability can also be either structural or 
situational. Structural vulnerability is a function of the very nature of Agent B and 
directly determines, and is impacted by, the capability of Agent R. The situational 
vulnerability of Agent B offers opportunity to Agent R. It can be expressed in terms 
of its observability, i.e., the extent to which it can be seen/sensed by Agent R, and its 
reachability, which is the likelihood that it will be reached and affected by the action 
of Agent R. If these two conditions do not hold simultaneously, then Agent R will not 
be considered as having the opportunity to deliver harm.

Opportunities for action can be characterized by an evaluation of the constraints 
imposed by the accessibility or vulnerability of targets to such actions (Steinberg et al. 
1998). Agent R can acquire opportunities actively (e.g., through purposeful activities 
such as gaining knowledge of the plans of Agent B, gaining an advantageous spatial 
position, performing deception actions, etc.) or passively (e.g., through the presence 
of environmental factors such as weather, cover, the presence of noncombatants, the 
terrain, etc.).

Similarly, threat analysis can be carried out through passive observation, but 
also proactively. For example, one can generate information through stimulative 
intelligence (Steinberg 2006), which is the systematic stimulation of red agents or 
their environment to elicit information (Steinberg 2007). Such stimulation can be 
physical (e.g., imparting energy to stimulate a kinetic, thermal, or reflective response), 
informational (e.g., providing false or misleading information), or psychological 
(e.g., stimulating perceptions, emotions, or intentions).

It must be added that the risk assessment of Agent B, when threatened by Agent R, 
is not only a function of the intent, capability, and opportunity of the latter to harm 
it, but also of the feasibility of Agent B’s own options for defending itself. Thus, the 
risk would be low if these two balance out.

11.4.2 T hreat Analysis in the Data Fusion Model

According to the data fusion model maintained by the Joint Directors of Laboratories’ 
Data Fusion Group (JDL DFG), threat analysis comes under “impact assessment,” 
which has to do with the estimation and prediction of effects on situations of planned 
or estimated/predicted actions by the participants (Steinberg et al. 1998). Per the 
revised JDL data fusion model, the level-3 data fusion process, originally called 
“Threat Assessment” (White 1988), has been broadened to that of impact assess-
ment. Impact assessment, as formulated in the JDL DFG model, is the foundation of 
threat analysis (Roy et al. 2002).

Threat analysis in this framework involves assessing threat situations to deter-
mine whether adversarial events are either occurring or expected (Steinberg et al. 
1998). Threat situations and threat events are inferred on the basis of the attributes 
and relationships of the agents involved. Estimates of physical, informational, and 
perceptual states of such agents are fused to infer both actual and potential rela-
tionships among agents. By evaluating and selecting hypotheses concerning agents’ 
capability, intent, and opportunity to carry out an attack, the threat analysis system 
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will provide indications, warnings, and characterizations of possible, imminent, or 
occurring attacks.

11.5  GOAL AND PLAN RECOGNITION

The process of threat analysis can be carried out by an Agent B trying to infer 
the goal of an Agent R from a sequence of observations. This can be viewed as 
an ongoing dynamic process of evidence gathering and hypotheses formulation, as 
illustrated in Figure 11.1.

Agent B observes the environment and the actions of Agent R (both agents’ 
actions impact the environment) trying to infer its goals. It perceives evidences that 
confirm or contradict what he hypothesizes as being Agent R’s goals. Hypotheses 
are put forth, strengthened, or discarded, based on Agent B’s expectations regarding 
Agent R’s current goals and the new evidence that is observed/sensed. To generate 
hypotheses about Agent R’s goals (match expectations with observations), Agent B 
uses its model of the situation and its knowledge about the adversary. This model is 
fed by a priori knowledge (background knowledge on the potential behaviors and 
capabilities of Agent R, experience of past cases, high-level information, etc.). Agent 
B takes action on the basis of its hypotheses about the current situation, as generated 
by the use of the model and the observations. Solving the problem may involve not 
only reasoning about past behaviors, as indicated by the observations to date, but 
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FIGURE 11.1  Threat analysis: the blue perspective.
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also hypothesizing over likely future behaviors. Agent B’s actions affect, in turn, the 
environment and the future actions of Agent R.

Goal recognition, on the basis of action observation, is a very complex problem. 
First, it must be noted that agents generally pursue consistent goals at different levels 
of abstraction. In some contexts, such as military operations, high-level goals are 
easier to figure out than low-level goals that must be recognized for a particular 
situation. For example, while the strategic goals of a nonfriendly country may be 
widely known—hence the identification of its assets as “hostile” prior to any intent 
assessment—the tactical goals (and the plans) or punctual objectives of that agent 
may be very difficult to discern in the field.

In a threat analysis context, Agent B, using its model of the situation and based 
on its observations, attempts to determine the relationship between the actions 
and goals of Agent R. Goal and/or plan recognition in this context, where Agent 
B attempts to discern a sequence of goal-directed actions, can be problematic in 
several regards. In effect, several misconceptions regarding the actual goal of 
the adversary Agent R are possible, which may be due either to Agent B’s flawed 
perception of the situation or the reasoning it performs given its model of the 
situation (including its model of Agent R).

Various perception problems can arise. The action of interest may not be 
fully observed because of the imperfection that is inherent to the perception and 
identification of actions, whether by humans or nonhuman sensors. Agent B may 
fail to see some actions or may see arbitrary subsets of the actual actions (partial 
observability). It may not be able to distinguish actions of interest from clutter 
(activities of other agents or entities in the environment). It may also be reasoning on 
an action, a portion of which has not been observed yet.

Agent B can also make errors related to the use of the model (Figure 11.1):

	 1.	Missing goal: A goal pursued by Agent R may be completely unknown to 
Agent B (B has no representation of that goal in its model). Another situa-
tion is when the goal is represented in Agent B’s model but has been dis-
carded because B assumes that such goal cannot be pursued. This occurs, 
for example, when B makes an assumption of rationality. We generally con-
sider that other individuals follow the same line of reasoning as us and that 
agents behave based on decisions that are in accordance with their reason, 
i.e., their proper exercise of the mind. However, in the case of terrorism and 
asymmetric threats, one is often confronted with behavior that is based on 
decisions that can be qualified as irrational (Roy et al. 2002).

	 2.	Wrong inference on the structure of actions and goals: The establishment 
of an action–goal relationship can be very complex. Consider the following 
cases: (1) an action of Agent R can contribute to several goals; (2) the goal 
of the action is rightly identified, but that action is only the initial phase of 
a higher-order action, and thus contributing to another goal; (3) a goal is 
dismissed because the action’s conditions are not respected (duration, pre-
condition, etc.); (4) Agent R is performing interleaved actions, i.e., a set of 
actions observed sequentially by Agent B are performed by Agent R in the 
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execution of different plans while pursuing different goals. For example, 
consider observing a person moving in a house and performing bits of dif-
ferent plans one after the other (e.g., clean up, write down two or three items 
on the grocery list, do some cooking, write down another item on the list, 
go back to cooking, etc.).

	 3.	Model manipulation: Sometimes, agents whose plans and goals we attempt 
to identify may help us in our recognition process by making their goals 
as explicit as possible. However, in an adversarial context, deception is the 
rule. Agent R can attempt to dissemble, misdirect, or otherwise take actions 
to deliberately confuse Agent B. It does so by using its own model of Agent 
B’s beliefs and reasoning process.

The cases discussed in item 2 come under the problem of plan recognition. In adver-
sarial contexts, goal recognition generally implies some degree of plan recogni-
tion, as both parties achieve their goals through the accomplishment of a course of 
actions. If Agent B determines that the action of interest is not a single isolated action 
but is rather part of a plan, then it needs to organize the observed actions in a goal-
oriented sequence. At the same time, if several opponents are involved, i.e., Agent R 
is member of a team, then, the role of each team member in the higher-level action 
must be determined.

Problems of perception can also be particularly problematic for plan recognition, 
which is an incremental inference process where the validity of a hypothetical plan 
can only be confirmed by the observation of significant elements or actions, or at 
least portions of them.

One of the major difficulties in goal and plan recognition, excluding those already 
mentioned, is that every situation is dynamic and constantly changing, and even 
more so in a battlespace. This has important consequences on Agent R’s actions and 
on Agent B’s interpretation of those actions and selection of defensive actions. Thus, 
Agent R may abandon its plan, change its initial plan (e.g., change resources, course 
of actions, etc.) to adapt it to the new circumstances (which may be the outcome of 
Agent B’s actions), decide to act opportunistically, etc.

As previously discussed, Agent B has to assess the impact of Agent R’s actions 
and goals on its own goals, plans, and on the environment (including neutral actors), 
whether Agent R’s plan is recognized or not. More specifically, Agent B has to deter-
mine if Agent R’s goal can be achieved given Agent R’s capability and opportunity, 
and its own capability to defend itself.

11.6  THREAT ANALYSIS AS A PLAN RECOGNITION PROBLEM

Establishment of hostile intent may not be enough in the evaluation of a threat event, 
as the situation awareness needed for threat analysis requires that Agent B be able 
to organize the observed actions into a course of actions, and to some extent predict 
the evolution of the situation. This means that Agent B must engage in some kind of 
plan recognition. Note that recognizing the plan of a threat implies that, to a certain 
extent, its intent, capability, and opportunity have been recognized, but this implica-
tion is not true the other way around.
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Unlike threat analysis, the plan recognition field is concerned with plans car-
ried out by agents in general and not only non-friendly ones. Adversarial plan 
recognition can be brought close to threat analysis, although an adversary is not 
necessarily a threat. Also, while the plan recognition community is interested in 
the recognition of a plan as a process constituted of a sequence of goal-oriented 
actions (which can in certain cases be suspect or hostile), the threat analysis com-
munity is primarily concerned with the determination of what constitutes a threat 
and how to identify it.

11.6.1 P lan Recognition

The problem of plan recognition can be viewed as a case of abductive inference or of 
deductive explanation. This kind of explanation is concerned with the construction 
of theories or hypotheses to explain observable phenomena, thus requiring an abduc-
tive reasoning process. As Southwick (1991) observes, and this is the challenge of 
plan and/or goal recognition in general, “in order to arrive at a hypothesis, a person 
must first find some pre-existing model or schema, and try to interpret all data in 
terms of that model.” As mentioned before, this abductive leap from a small amount 
of data to a working hypothesis is risky because of the incompleteness or uncertainty 
of the data and/or the use of a model that may be defective or wrong.

Plan recognition is used by everyone in everyday life to be able to manage a 
conversation, to avoid bumping into people in the corridors, or to guess what people 
around us are up to. It is used in cooperative, neutral, and adversarial settings. Two 
types of plan recognition can be distinguished: one type in which Agent W (neu-
tral or cooperative) helps Agent B in its plan recognition (this is intended recogni-
tion), and another type where Agent R attempts to thwart recognition of its plan by 
Agent B (this is adversarial plan recognition). From the observer’s viewpoint, the 
distinction is made between “keyhole” and “intended” plan recognition (Cohen et al. 
1981). Keyhole means that the plan recognizer B is passively watching an Agent W 
execute its plans (W may not be aware of this observation) (e.g., story understanding). 
Intended means that the observed Agent W intends that the observing Agent B be 
able to infer its plan (e.g., tacit teamwork).

Plan recognition has long been established as one of the most fundamental and 
also challenging problems in human cognition. Through his psychological experi-
ments, Schmidt provided evidence that humans do infer hypotheses about the plans 
and goals of other agents and use these hypotheses in subsequent reasoning (Schmidt 
1976). Later, he positioned plan recognition as a central problem in the design of 
intelligent systems (Schmidt et al. 1978). Computational approaches to plan recogni-
tion have followed in various areas, such as story understanding (Bruce 1981) and 
natural language understanding (Allen 1983). The general problem can be described 
as the ability to infer, given fragmented description of the actions performed by one 
or more agents in a situation, a richer description relating the actions of the agents to 
their goals and future actions.

Automation of plan recognition means that the system contains a knowledge 
base, often called “plan libraries,” of actions and recipes for accomplishing them 
(i.e., models of situations). These recipes include actions’ preconditions, subgoals, 
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goals, and effects. To infer the agent’s goal from the observed actions, the plan infer-
ence system constructs a sequence of goals and actions that connect the observed 
actions to one of the possible domain goals. This is accomplished by chaining 
from actions to goals achieved by the actions, from these goals to other actions for 
which the goals are preconditions or subgoals, from these actions to their goals, etc. 
(Carberry 2001). Knowledge engineering and computational efficiency remain the 
main challenges of plan recognition automation.

Plan recognition works differ both in how the problem is framed, and how the 
problem, once framed, is solved. Differences between different frameworks concern

	 1.	Plan representation: Plans are commonly represented as straight line 
classical plans or Hierarchical Task Network (HTN) plans (see the example 
of Figure 11.2), which can capture complex, phased behaviors. The latter 
permit some partial ordering of actions, yet there is little extant work on 
temporal goals in plan recognition because there’s little sense of how they 
would fit into plan libraries.

	 2.	The observer/observed relationship: A distinction was made earlier 
between keyhole, intended, and adversarial plan recognition. The particu-
larity of the latter is that it can involve deception. In an adversarial setting, 
behaviors may segment into deceptive/nondeceptive, which significantly 
increases the complexity of plan recognition.

	 3.	Observability: Most plan recognition works assume full observation. This 
means that Agent B sees the full set of actions of Agent R or W. On the 
opposite, partial observability boils down to performing incremental plan 
recognition from some prefix of what Agent B expects to be a full plan.

There are ways of simplifying the plan recognition problem by performing only goal 
recognition (i.e., determine the “what” and not the “how” of what the agent is doing) 
or agent classification (do not figure out precise objectives, but only a category of 
goals or agents, such as hostile, friendly, etc.).

Attack

Track Go within range EngagePrepare

Load weapons Locate target

Locate visually Receive location

Go below radar Launch weapons Head away

FIGURE 11.2  Example of HTN plan representation.
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Activity modeling is another problem simplification approach, where instead of 
recognizing a particular plan, one recognizes an activity, i.e., a simple temporally 
extended behavior (Agent R is playing tennis is simpler to recognize than Agent R is 
preparing for an overhead smash).

11.6.2 P lan Recognition Approaches

Plan recognition approaches can be categorized into symbolic and probabilistic 
approaches. The latter treat uncertainty numerically, the former do not. Among 
probabilistic approaches, one can distinguish between temporal and nontemporal 
models.

11.6.2.1  Symbolic Approaches
One of the dilemmas of plan recognition is that of the Occam’s razor or minimization, 
i.e., the principle according to which, of all plans explaining given observations, 
the minimalist one is the best explanation. Circumscription techniques which 
keep a minimal true set prevail here as they minimize the hypothesized plans. In 
Generalized Plan Recognition, Kautz and Allen (1986) define the problem as that of 
identifying a minimal set of top-level actions sufficient to explain the set of observed 
actions, representing it as plan graphs with top-level actions as root nodes expanded 
into unordered sets of child actions. Although efficient, this approach assumes that 
agents attempt one top-level goal at a time. Moreover, these techniques fail when 
likelihood matters. For example, in a medical diagnostic problem, HIV disease can 
be an explanation for virtually any symptom (best minimal explanation), but this 
hypothesis is very unlikely compared to a combination of likely hypotheses such as 
head cold and sinus infection.

Another symbolic approach in plan recognition is parsing, which is using a 
grammar (showing the decomposition of actions) and a parser (an algorithm which 
“reads” a given plan using the grammar). Based on Kautz and Allen’s work, and 
taking advantage of the great amount of work in this area, Vilain (1991) investigates 
parsing as a way of exploring the computational complexity of plan recognition. The 
problem with this formalism is that the size of the grammar and the performance 
of the parser blow up in the presence of partially ordered grammars, where actions 
are represented as having a partial temporal order. Pynadath and Wellman (1995) 
first used probabilistic context-free grammars which suffer from the same problem. 
To overcome that, they proposed a probabilistic context-sensitive grammar. While 
handling state dependencies, this approach does not address the partial-ordering 
issues or the case of interleaved plans.

11.6.2.2  Nontemporal Probabilistic Approaches
Probability theory has imposed itself in plan recognition as it is the normative way 
of doing abductive reasoning. Probabilistic approaches include probabilistic deci-
sion trees, influence diagrams, and mainly Bayesian networks, which are directed 
graph models of probability distributions that explicitly represent conditional 
dependencies.
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In a Bayesian network, nodes represent random variables and arcs between nodes 
represent causal dependencies captured by conditional probability distributions. 
When used for plan recognition, the nodes are propositions, the root nodes represent 
hypotheses about the plan of Agent R, and the probability assigned to a node repre-
sents the likelihood of a proposition given some observed evidence. A link from a 
variable a to a variable b could be interpreted as a causing b. This way, in the plan 
library (which specifies the potential plans an agent may execute), subgoals would be 
connected to goals, preconditions to actions, and actions to effects.

Figure 11.3 illustrates a simple Bayesian network for goal recognition. The vari-
ables shown in black circles represent the goals that an entity in the environment 
might have (transiting, reconnaissance, or attacking). The variables in gray circles 
are subgoals. For example, to attack a target, an entity must approach it, detect it, 
and engage it. The goal decomposition conveys some kind of a hierarchical plan 
that describes how to achieve a given task (goal) by decomposing it into subtasks 
(subgoals). The variables in white circles represent observable facts about the entity 
being observed. There is a conditional probability distribution for each variable 
given its parents. Using Bayesian inference, one can calculate the probability that 
the entity is committed to some goals given the observations that have been made.

Bayesian inference supports the preference for minimal explanations in the case 
of equally likely hypotheses (minimum cost proofs in symbolic logical approaches 
are equivalent to maximum a posteriori estimation), but also correctly handles 
explanations of the same complexity but with different likelihoods. Bayesian 
networks provide computational efficiency (avoid joint probability tables) and 
assessment efficiency (reduce the number of causal links that have to be mod-
eled). However, like most diagrammatic schemes, Bayesian networks have only 
propositional expressive power (quantification and generalization are not possible). 
Another pitfall is that they do not explicitly model time, which is needed when it 
comes to reasoning about behaviors. However, it is possible to approximate the 
flow of time with causality.

Charniak and Goldman (1991) were among the first to use Bayesian inference for 
plan recognition. Their Bayesian network represented a hierarchical plan expressed 

a1

a2

a4

a3
a6

a5

FIGURE 11.3  Bayesian network.
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as a decomposition of goals into subgoals and actions. It used a marker passing a 
form of spreading activation in a network of nodes and links to identify potential 
explanations for observed actions and to identify nodes for insertion into a Bayesian 
belief network.

Other works include Elsaesser and Stech (2007) where a Bayesian network is 
used to perform sensitivity analysis on the hypotheses generated by a planner. In 
Santos and Zhao (2007), a network represents the threat’s beliefs on goals and high-
level actions for both itself and its opponent, and an action network represents the 
relationship between the threat’s goals and possible actions to realize them. Finally, 
Johansson and Falkman (2008) use a Bayesian network to calculate the probability 
of an asset being targeted by a threat.

Causality in Bayesian networks as exploited in these approaches is not enough 
to make inferences about complex behaviors. An explicit temporal model must be 
incorporated in order to make inferences on sequences of observations. Temporal 
dependencies between actions in plans must be modeled and related to goals. This 
is even truer for coordinated agents accomplishing arbitrary, temporally extended, 
complex goals.

11.6.2.3  Probabilistic Approaches with a Temporal Dimension
Temporal probabilistic models allow inferences over behaviors based on temporal 
sequences of observations. Different types of probabilistic queries can be made 
for threat analysis. A probabilistic explanation query would compute the posterior 
probability distribution of a given behavior (as a sequence of states) based on a 
sequence of observations. A probabilistic filtering query would compute the posterior 
probability distribution over the current goal or plan given the observations to date 
(e.g., the Kalman filter). This would require augmenting the state space with goals or 
plans that agents are pursuing. A probabilistic prediction query would compute the 
posterior probability over future goals given the observations to date.

Dynamic Bayesian networks (DBNs) are Bayesian networks where each “slice” 
represents a system state at a particular instant in time. Causal influences run 
from nodes in one time slice to the next (e.g., the state of Agent B at time t + 1 is a 
probabilistic function of its state at time t and whether Agent R attacked it at time t). 
On the one hand, DBNs have the virtue of explicitly modeling the probabilistic 
dependencies among the variables. On the other hand, inference in DBNs has more 
computational complexity.

In the example of the Bayesian network in Figure 11.3, if an entity is observed with 
a heading toward a ship, then it follows that it has a high probability of approaching 
its target, regardless of its previous headings. In other words, the inference does not 
take into account the history or the past behavior of the entity. After all, the track 
could very well be in the process of turning and this particular heading may only be 
coincidental and temporary. It is possible to remedy the Bayesian network by including 
mega-variables capturing the history of events. However, that would be very tedious 
and error prone. A better approach consists in using a DBN that naturally captures 
the flow of time. Figure 11.4 shows a DBN obtained from the Bayesian network in 
Figure 11.3 by adding the temporal extension. With this DBN, the calculation of the 
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probability of the subgoal Approach takes into account the previous heading, the 
previous distance, and the previous probability of the Approach subgoal. Using this 
approach, even if the probability for the subgoal Approach at time k − 1 was small, 
but the entity was/is heading toward the ship both at time k − 1 and k, the probability 
of Approach would nonetheless be higher at time k than at time k − 1.

An alternative to DBNs are hidden Markov models (HMMs). Actually, the latter 
are a particular form of DBNs in which the state of a process is described by a single 
discrete random variable. HMMs offer greater flexibility because one can specify 
the state transition and observation models using conditional probability tables. An 
HMM models the dynamics of only one variable and relates observations at time k 
only to the state of the variable at time k + 1. These approaches offer many of the effi-
ciency advantages of parsing approaches, with the additional advantages of incorpo-
rating likelihood information and of supporting machine learning to automatically 
acquire plan models. However, because of the weak expressiveness of models (even 
weaker than that of grammars), state spaces can explode if complex plans are to be 
represented. Similarly, training can become very difficult.

Figure 11.5 illustrates an HMM for plan recognition. The hidden state is the 
current plan of an observed entity, where a plan is represented as a hierarchical 
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FIGURE 11.4  Dynamic Bayesian network.
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FIGURE 11.5  Hidden Markov model.
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decomposition of goals (or tasks) into subgoals (or subtasks), which is more or less 
reminiscent of the causal structure underlying the Bayesian network in Figure 11.3. 
That is, a state is a graph in which the root node is a goal (task), the leaves are actions 
(primitive tasks), and the inner nodes are subgoals (subtasks). The observations are 
assumed to be caused by the actions of the observed entity while it executes the plan.

With HMMs, the dynamics related to the plan and plan execution can be mod-
eled using plan libraries, as opposed to DBNs where they are explicitly modeled as 
variables. This keeps the inference mechanism related to the evolution of plans over 
time (conveyed by the plan libraries and their simulation) separated from the infer-
ence mechanism related to the generation and evaluation of competing hypotheses 
about the current plan (conveyed by the inferences within the HMMs).

HMMs have been commonly used in “activity recognition,” specifically for 
recognizing behaviors of moving individuals for diverse purposes, such as elder-
care (Liao et al. 2007), detection of terrorist activity (Avrahami-Zilberbrand and 
Kaminka 2007), and teamwork in sports and in the military (Sukthankar and Sycara 
2006). An illustration of an HMM approach is the Probabilistic Hostile Agent Task 
Tracker (PHATT) introduced by Goldman et al. (1999) and later refined through 
successive improvements (Geib and Goldman 2003, 2005, Geib et al. 2008). A state 
of the HMM underlying PHATT is a set of concurrent plans the agent may be pursu-
ing and the current points in the execution of these plans. From these current points, 
the next potential actions are derived (called pending sets) thereby constraining the 
model of observation (observations are mapped to effects of the pending actions to 
infer the probability distribution for the observed action). The states of the HMM 
are generated on the fly by simulating the execution of the plans in the current state 
based on the current observed action. By hypothesizing goals and plans for the agent, 
and then stepping forward through the observation trace, a possible sequence of 
pending sets is generated. When the end of the set of observations is reached, each 
observed action will have been assigned to a hypothesized plan that achieves one of 
the agent’s hypothesized goals and a sequence of pending sets that is consistent with 
the observed actions. This collection of plan structures and pending sets is a single 
complete explanation for the observations.

A similar approach is taken by Avrahami-Zilberbrand and Kaminka (2005) who 
also maintain a set of hypotheses, but instead of using a model of plan execution and 
pending sets, they check the consistency of observed actions against previous hypoth-
eses. Although solving some of the problems addressed by PHATT, the approach 
does not allow them to recognize those tasks that depend on pending sets, includ-
ing negative evidence (actions not observed) (Geib and Goldman 2009). Kaminka 
et al.’s (2002) keyhole recognition for teams of agents considers the question of how 
to handle missing observations of state changes. However, it differs from PHATT 
significantly in using a different model of plan execution and by assuming that each 
agent is only pursuing a single plan at a time. On the other hand, it devotes a great 
deal of effort to using knowledge of the team and its social structures and conven-
tions to infer the overall team behavior.

Finally, some “hybrid” works have used the theoretical framework of Bayesian 
Networks and HMMs but exploited research on parsing while mitigating the problems 
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posed by partial orders. Such works include ELEXIR (Geib 2009) and YAPPR (Geib 
and Goldman 2009).

11.6.2.4  Mental State Modeling
Another way of approaching the problem of plan recognition is through adversary 
modeling. In domains where the tasks are radically unconstrained and it is too hard 
to build a database of possible plans, Agent B can simply invert the planning prob-
lem by putting itself in Agent R’s shoes. For instance, Agent B can speculate on 
what Agent R may consider as critical to its mission. For Whitehair (1996), intent 
assessment is a model of the (adversarial) agent’s internal utility/probability/cost 
assessment, by which the utility of particular states, the probability of attaining such 
states given various actions, and the cost of such actions are estimated.

In some areas, knowledge of Agent R’s plans observed in the past may poorly pre-
dict its later plans. The military domain is one of these areas. The opposing forces’ 
actions are nevertheless constrained by their doctrine and rules of engagement (at 
least in the case of conventional forces), their capabilities (weapons and resources), 
the environment in which they are operating, etc. All of these factors constrain what 
the opposing forces can do in practice.

In Glinton et al. (2005), field model prediction based on a priori knowledge 
is accomplished by the interpretation of opposing forces’ disposition, move-
ments, and actions within the context of their known doctrine and knowledge 
of the environment. Along the same reasoning line, TacAir-Soar, probably the 
most widely referenced expert system for tactical military operations (Jones et al. 
1998), uses its knowledge of aircraft, weapons, and tactics to create a speculation 
space in which it pretends to be the opponent by simulating what it would do in 
the current situation. Such a methodology is generally known as mental state 
modeling, given that it literally consists in modeling the mental state of the oppo-
nent. TacAir-Soar is a symbolic rule-based system based on the Soar architecture 
for cognition (Laird et al. 1991). Its functionalities cover not just threat analysis, 
but also other command and control processes, including planning, and action 
execution (Jones 2010).

Game-theoretic methods must also be mentioned in this category, although they 
typically do not involve very complex iterative opponent modeling. Chen et al. (2007) 
discuss a mathematical framework for determining rational behavior for agents when 
they interact in multi-agent environments. The framework offers a potential for situ-
ation prediction that takes real uncertainties in enemy plans and deception possibili-
ties into consideration. It can give an improved appreciation of the real uncertainty 
in the prediction of future development. However, prediction of the behavior of the 
other agents is based on an assumption of rationality.

11.6.3 I ssues in Threat Analysis

From a plan recognition perspective, threat analysis, or adversarial plan recognition, 
poses several challenges. Aside from the more general issues relative to the represen-
tation and interpretation of events and states, as discussed in Section 11.5, threat anal-
ysis can further complicate plan recognition frameworks because of the following:
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	 1.	Model manipulation: Generally, existing frameworks assume that the 
observed agent makes no use of deception.

	 2.	Plan revision: Plan revision on the part of the observed agent is a seri-
ous challenge to plan recognition. Plan revision can be a consequence of 
a change in the operational environment or caused by a change in agents’ 
inner motives. A particular case of plan revision is that of plan abandon-
ment where an initial plan is abandoned and a new one developed. This can 
cause further multiplication of hypotheses. Also, it is difficult to determine 
when and on what basis previous active hypotheses must be terminated.

	 a.	 Multiple interleaved plans: Where the observed agent attends to several 
tasks is another challenging area, as it can cause explosion of hypoth-
eses generation.

	 b.	 State representation: Systems typically observe actions rather than 
states of the world. Yet, states as much as actions are indicative of a 
threatening situation (e.g., a platform being in own forces’ volume of 
interest).

	 c.	 Models of opponent actions: It is very difficult to gather enough data 
to come up with concise and robust representations of the plans of the 
opponent.

	 d.	 Completeness of plan libraries: No set of opponent plans will account 
for all possible scenarios.

Plan recognition, however, remains a very promising paradigm for the problem of 
threat analysis as it subsumes many of the elements necessary for the determination 
of the existence of threat and its evolution in time.

11.7  THREAT ANALYSIS IN MILITARY OPERATIONS

In this section, threat analysis is discussed from the perspective of the Command 
and Control (C2) process in an operational environment. This process can be decom-
posed into a set of generally recognized, accepted functions that must be executed 
within some reasonable delays to ensure mission success: picture compilation, threat 
analysis, engageability assessment, and combat power management (also referred to 
as weapons assignment).

The process of all actions and activities aimed at maintaining tracks on all 
surface, air, and subsurface entities within a certain volume of interest is referred 
to as picture compilation. It includes several subprocesses, the most important 
being object localization (or tracking), and object recognition, and identification. 
Threat analysis establishes the likelihood that certain entities within that volume 
of interest will cause harm to a defending force or its interests. The output of 
threat analysis, along with that of the engageability assessment process, which 
determines the defending force options against the threat, is used by the combat 
power management function to generate and optimize a response plan (Irandoust 
et al. 2010).

Threat analysis in an operational context such as the military setting is conducted 
based on a priori knowledge (e.g., intelligence, operational constraints and restraints, 
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evaluation criteria, etc.), dynamically acquired and inferred information (e.g., kine-
matics and identification of entities in a given volume of interest, as well as various 
indicators), and data received from complementary sources in relation to the mission 
objectives. Threat indicators are derived from the entity characteristics, tactical data, 
background geopolitical situation, geography, intelligence reports, and other data.

11.7.1 T ask Complexity

Threat analysis is a highly demanding cognitive task for human analysts mainly 
because of the (typically) huge amount of data to be analyzed, the level of uncer-
tainty characterizing these data, and the short time available for the task (Irandoust 
2010).

The staff in charge of threat analysis must often process an important amount 
of data, of which only a small fraction is relevant to the current situation. The data 
come in multiple forms and from multiple sources. Analysts have to make difficult 
inferences from this large amount of noisy, uncertain, and incomplete data.

In a series of studies conducted by Liebhaber and his colleagues (Liebhaber and 
Feher 2002), it is shown that due to the multi-tasking, tempo, integration demands, 
and short-term memory requirements, threat analysis is cognitively challenging, 
even under normal conditions. It requires the mental integration and fusion of data 
from many sources. This integration/fusion requires a high level of expertise, includ-
ing knowledge of the types of threats, the own force’s mission, own and adversary 
doctrines, and assessment heuristics built from experience. The cognitive overload 
in a time-constrained environment puts the operators under a great amount of stress.

11.7.2  Contextual Factors

Threat analysis, like any other task, cannot be decoupled from the context in which 
it occurs. The context of operations greatly impacts the effective conduct of threat 
analysis through a set of fundamental factors that characterize any (tactical) military 
operation: the nature of the threat, the operational environment, uncertainty, and 
time. Moreover, these factors are inter-related and impact each other in many ways. 
For instance, the operational environment highly influences the nature of the threat, 
while both the former and the latter impact uncertainty and time.

11.7.2.1  Uncertainty
Uncertainty in the representation of the situation is mainly due to sensor limitations, 
the limited reliability of intelligence information, and the limited accuracy of 
inferences (by humans or systems) used to derive knowledge from this data. The 
individuals performing threat analysis have to deal with the unpredictability of 
(adversary) human behavior and the imperfection of the information sources on 
which they rely to observe the environment (including the adversary).

11.7.2.2  Time
Time is another key factor in threat analysis for three main reasons. Firstly, the 
information gathered and compiled during the picture compilation process, as well 
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as the knowledge derived by the threat analysis process, remain valid for only a 
finite period of time. Secondly, time is a resource, both for own forces and the 
adversary, which is consumed as information is being gathered and processed. 
Thirdly, in an adversarial context, the high tempo of operations often limits the 
time available to understand the impact of the events on the situation at hand and 
to react to them. The high tempo imposes a requirement on responsiveness, i.e., 
critical agents (potentially red or harmful) must be assessed as early as possible so 
as to provide more reaction time to human decision makers. The responsiveness 
requirement involves reducing the decision process timeline while maintaining or 
increasing response quality.

Furthermore, time is also consumed by coordination requirements, including the 
requirement to liaise with a higher-echelon staff that may or may not possess the 
same appreciation of the situation, which is being driven by the dynamic actions of 
own force and the opposing force.

11.7.2.3  Nature of the Threat
Threats can be categorized along several dimensions such as predictability of the 
behavior, susceptibility to coercion, and symmetry. They can also be distinguished 
using the single/multiple dichotomy. The problem of multiple coordinated threats is 
addressed in Section 11.8.4.

11.7.2.3.1  Predictability of the Behavior
One possible classification is based on the predictability of the behavior. 
Deterministic threats are those which, once detected, can have their behavior 
determined without uncertainty on their intent, capability, future course of action, 
or trajectory (e.g., projectiles). Adaptive threats have the capability to adapt 
their behavior, making their evolution difficult to predict. In simple cases, this 
consists in the threat altering its trajectory, such as a cruise missile that adapts 
to the landscape features or follows waypoints. In more complex cases, threats 
can adopt various elaborate tactics. This is particularly obvious with manned or 
man-controlled threats, such as aircraft or seacraft, but is not exclusive to them. 
Unmanned vehicles (aerial, surface, or submarine) equipped with advanced 
technology can also exhibit sophisticated adaptive behaviors, involving a dynamic 
generation of goals and plans in reaction to changes in the environment. The 
capability of a threat to adapt its behavior is an important factor for the assessment 
of the threat opportunity, and even more so for the assessment of its intent. This 
factor increases the difficulty for these assessments.

11.7.2.3.2  Susceptibility to Coercion
Coercible threats, as opposed to unyielding threats, are threats which are equipped to 
potentially respond to deterrence. These are, in principle, manned or man-controlled 
threats which can respond to warnings, requests, and other deterrence actions, i.e., 
they have the capability to communicate, to reason, and to act. The capability of a 
threat to respond to deterrence is a factor in threat analysis as it provides options for 
assessing the intent of this threat through the observation of its reactions to its own 
force actions.
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11.7.2.3.3  Symmetry
Symmetric versus asymmetric threats is another categorization that is very relevant 
to today’s reality of conflicts. By asymmetric threats, we mean threats that adopt 
unconventional warfare strategies and tactics (e.g., conduct attacks using recognized 
civilian vehicles, such as boats, light aircraft, or cars). A wide disparity in military 
power between the parties leads the opponents to adopt strategies and tactics of 
unconventional warfare, the weaker combatants attempting to use strategies to offset 
deficiencies in quantity or quality (Stepanova 2008).

The potential presence of asymmetric threats imposes a nonuniform environment 
that cannot be pictured as a confrontation between friendly (blue) agents and enemy/
undesirable (red) agents. Threat analysis, particularly intent and capability assess-
ments, becomes even more challenging, as it is extremely difficult to anticipate the 
moves of an opponent who is no longer a crisp, well-defined entity and is determined 
to use unconventional means. Another challenge is about the sparse and ambiguous 
indicators of potential or actualized threat activity being buried in massive back-
ground data.

11.7.2.4  Operational Environment
A good example of the effects of changes in the environment on C2 operations and 
threat analysis in particular is the recent shift of emphasis toward congested environ-
ments such as urban and littoral areas. Contrary to the traditional maneuver space, 
urban and littoral areas are characterized by significant congestion due to the exis-
tence of nonmilitary activity. This activity complicates the process of picture com-
pilation, and thereby necessitates increased efforts on the part of the analysts to 
generate and maintain a complete and clean operating picture.

In addition to the high number of background objects, modern warfare spaces 
impose nonuniform environments where blue and red, as well as neutral (white) 
agents are interspersed and overlapping, presenting a highly complex challenge with 
respect to discerning one type of agents from another.

The shift from open battlespaces to congested areas also increases the exposure 
of the forces to an adversary provided with the terrain advantage. Such environments 
are also very conducive to attacks from asymmetric threats. For example, modern 
navies face asymmetric threats such as suicide attacks from explosive-laden small 
boats, small and medium caliber weapons on small boats (individually or in swarms 
of many boats), low and slow flyers (civilian aircraft), and a wide range of underwa-
ter mines or improvised explosive devices (IEDs). While the ships are alongside, the 
threat may even be initiated by a dockside terrorist or a small boat. Increased traffic 
within the littoral environment can make discerning these threats from other traffic 
exceptionally complicated. These types of threats can also be more difficult to detect 
with sensors due to their reduced signatures.

11.8  THREAT ANALYSIS IN DISTRIBUTED ENVIRONMENTS

In distributed environments, entities, both red and blue agents, are physically dis-
persed over a wide geographic area. Own and friendly units operate conjointly to 
achieve mission objectives as a task force or task group. This configuration involves 
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distributed teams on air, surface, and subsurface units cooperatively interacting to 
perform C2 activities. It also means that a global task must be decomposed into sub-
components and communication channels and coordination mechanisms established 
so that these subcomponents can work together effectively, synergistically, and har-
moniously. In such a configuration, information is shared and the threat analysis task 
is conducted collaboratively, in a distributed manner. The capability of the system as 
a whole becomes much greater than the sum of its subcomponents.

The geographical dispersal in a force operation offsets the vulnerability of indi-
vidual units and improves the overall survivability of the force; however, distribution 
introduces additional C2 challenges. In the following, the problems of coordination 
inherent to distributed forces, as well as the cost and advantages of distribution are 
discussed. In a threat analysis context in particular, the complexity augments both 
from the blue and the red perspective with the multiplicity of agents.

11.8.1  Centralized and Decentralized Control

In force operations, C2 may be centralized or decentralized. This refers to the 
level of involvement, control, and responsibility exercised by the higher echelons 
and the subordinates during the conduct of operations. In decentralized C2, it is 
conceivable that the output of the C2 functions (picture compilation, threat anal-
ysis, engageability assessment, and combat power management) emerges from 
distributed cooperative interactions among the units rather than being directly 
consolidated by a central decision maker. This means that those units must develop 
shared situation awareness and coordinate their actions.

The concept of a decentralized C2 approach involves transferring the coordina-
tion function from the small hub of key decision makers to a larger group. In this 
situation, distributed units independently decide upon required actions based upon a 
shared tactical picture and common doctrine which sets the boundaries on approved 
behavior and in turn provides a coordination mechanism. A key to the decentralized 
approach is achieving shared situation awareness through the creation of a conflict-
free force-level picture on all units and the development of a coherent understanding 
across the force by sharing information.

As part of the C2 process in a distributed environment, threat analysis can be 
carried out in a centralized or a decentralized manner. Centralized threat analysis 
implies that threats to the task force are identified, assessed, and prioritized by a cen-
tral authority that uses the threat lists of individual units to derive a force-level threat 
evaluation. This includes the consolidation of the intent, capability, and opportunity 
assessments of each threat to the force, and the prioritization of all threats in terms 
of their relative threat ranking in order to generate a consistent force-level threat list.

Consistency in decentralized threat analysis is accomplished through a consolida-
tion process of all the unit-level evaluations through a series of collaboration, infor-
mation sharing, and communication mechanisms. Information is passed between 
units whereby the units converge to a conflict-free evaluation for the entire force. 
This is in stark contrast to the centralized approach whereby the force-level threat 
list is constructed by the central decision makers based on information from the 
individual units.
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11.8.2 A dvantages of Distribution

Distributed threat analysis inherently offers the following advantages of distributed 
systems:

•	 Functional separation: Distributed threat analysis spatially distributes 
entities that perform different tasks based on their capability and purpose. 
This function specialization simplifies the design of the system, as the latter 
is split into entities, each of which implementing part of the global function-
ality and communicating with the other entities.

•	 Information superiority: The main advantage of a distributed system is 
its ability to allow the sharing of information and resources. Information 
and knowledge provided by other sources and their fusion into a common 
picture enhances the quality of the assessment and supports informed 
decision making.

•	 Enhanced real-time response: Increased responsiveness is one of the major 
requirements of threat analysis. This can be achieved through distribution 
by deploying observers and processors close to the threat. In a networked 
environment, this has the potential of improving the flow of real-time infor-
mation directly to decision makers, providing means of assessing rapidly 
changing situations and making informed decisions.

•	 Robustness and resilience: Distributed threat analysis has a partial-failure 
property since even if some blue agents fail, others can still achieve the task 
(at least partly). Such failure would only degrade, not disable, the whole 
evaluation outcome. If the blue multi-agent system has self-organization 
capabilities, it can also dynamically re-organize the way in which the indi-
vidual agents are deployed. This feature makes the system highly tolerant 
to the failure and bias of individual agents.

11.8.3 O perational Challenges

The aforementioned advantages require that the components of the system 
performing threat analysis (including software and hardware agents) be able to 
exchange information clearly and in a timely manner. The lack of the following 
requirements can sometimes be an impediment to effective communication in a 
distributed context:

•	 Interoperability: This is the ability of two or more agents, systems or 
components to exchange information and to use the information that has 
been exchanged. Distributed threat analysis can encompass different 
autonomous, heterogeneous, distributed computational entities that must be 
able to communicate and cooperate among themselves despite differences 
in language, context, format, or content.

•	 Connectivity: Establishment of communications can be troublesome by 
itself. Provision of remote connectivity between the nodes in distributed 
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threat analysis is a major technical challenge which cannot be understated. 
Maintaining a communication channel is not guaranteed and, when it 
is, its quality can be degraded due to multiple environmental factors. 
Communications can also be hampered in an attempt by different units 
to use certain communication frequencies while remaining covert to 
minimize the detection, localization, and recognition by the opposing 
forces through the electromagnetic emissions (Athans 1987). Kopp 
(2009) listed security of transmission, robustness of transmission, 
transmission capacity, message, and signal routing and signal format 
and communications protocol compatibility as the main challenges of 
communication media in the military domain, although most of them 
apply also to nonmilitary domains.

•	 Security: Threat analysis represents a specific domain of interest that highly 
correlates with information system security. Although the use of multiple 
distributed sources of information can improve situational awareness, it can 
make the system more vulnerable to unauthorized access, use, disclosure, 
disruption, modification, or destruction.

Additional communication problems may arise in combined operations (Irandoust 
and Benaskeur [in press]), where the force units belong to different allied nations. 
Communication processes, technologies, codes, and procedures may be very 
different from one contingent to another. Moreover, the participating units may be 
reluctant to share sensitive information.

11.8.4 A nalytical Challenges

Threat analysis poses several challenges relatively to the analysis of the situation by 
blue agents. These may be relative to the multiplicity of threats to analyze, or the 
change of perspective required by collaborative threat analysis (multiplicity of own 
force units). The following are some examples:

•	 Multiplication of reference points: When operating as a force, one should 
not only consider the own unit/platform as a potential target of the threat, 
but also the other units/platforms that are part of the force. Impact 
assessment must therefore be performed with regard to several reference 
points. This situation analysis issue entails a response planning problem, 
which is at the heart of the self-defense versus force-defense dilemma. 
It is quite conceivable that the highest priority threat from the unit’s 
perspective does not equate to the highest priority threat for the force. As 
such, conflicts may arise with respect to applying defensive measures in 
response to the threat.

•	 Recognition of coordinated plans: In a distributed environment, a blue 
or defending force may have to deal with single or coordinated threats. 
Obviously, a group of threats acting in coordination is harder to compre-
hend in terms of its tactical capability. Moreover, it is not sufficient in this 
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case to determine the intent, capability, and possibly the plan of the adver-
sary. One must also comprehend the spatial configuration of the different 
units (i.e., which unit is operating in which zone) and the temporal order of 
the actions carried out by each unit. One has to integrate the actions of dif-
ferent agents into a global plan.

•	 Team recognition: The identification of the structure (members, possibly 
subteams) and roles in the adversarial team is a difficult issue. A functional 
analysis of the different entities needs to be conducted to establish their 
respective roles in a coordinated action.

•	 Spatial reasoning: One must reason upon the operation of blue and red 
forces within a larger spatial environment.

•	 Collaborative plan recognition: In this configuration, different pieces of 
information are created and maintained by different agents. This informa-
tion could be stored, routed through the network to be fused, analyzed, 
and used by other agents, which may or may not be aware of the existence 
of the agent(s) generating the information. Analysts must make sense out 
of this large amount of raw data that has been taken out of its context of 
observation.

11.8.5  Collaboration Challenges

Remote collaboration is another challenging area for force-level threat analysis. In 
force operations, data and message sharing across several units is completed via 
networks. In turn, this information exchange is used to establish a common under-
standing of the task at hand. Yet, the inherent richness that accompanies face-to-face 
collaboration is not supported. As such, it is harder to effectively perform conten-
tious discussions. A coalition context will further introduce miscommunications that 
can affect force-level threat analysis at different degrees (Irandoust and Benaskeur 
[in press]).

Furthermore, remote collaboration entails an additional coordination overhead. 
Within a dispersed force, there is a need for both inter-unit and intra-unit coordi-
nation. The task also becomes more complicated since there are numerous sys-
tem interactions which may be dependent on the current disposition of the forces. 
Concurrency, whereby multiple units may be simultaneously performing similar and 
complementary activities, can result in conflicting conclusions. Moreover, delays in 
communication caused by limited bandwidth, interferences, and breakdowns can 
hamper force-level threat analysis.

Overall, the dependence on electronic communications, geographical distances, 
multiplication of parameters, and the impossibility of having direct face-to-face 
interactions on a regular basis are all obstacles to cohesion and effective collabora-
tion in force threat analysis.

11.8.6 T hreat Analysis and Network-Centric Operations

Teamwork and collaborative decision making are critical elements of the military’s 
vision of network–centric operations (Alberts et al. 1999). The main principle 
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underlying the concept of a networked force is to allow individuals and/or groups the 
ability to leverage information both locally and globally to reach effective decisions 
quickly. Access to different perspectives and the widespread and timely collection 
and distribution of information around the battlefield will, it is anticipated, allow 
the more accurate and timely application of military force necessary to react to the 
ongoing situation. Advances in network technologies are augmenting the connectivity 
of military units, and automated sensors, and intelligence feeds provide an increased 
access to previously unavailable information. However, the electronic linkage of 
multiple units does not necessarily bring about automatic improvement in situation 
understanding, including threat analysis, collaboration, and the synchronization of 
defensive actions. While technology can offer C2 organizations a great information-
processing capability, the need to consider and reconcile the variety and complexity 
of interpretations of information outputs generated by humans and computer systems 
remains. It is indeed incorrect to automatically assume that fusing information into 
a common operating picture will result in uniform interpretation of the information 
by the various users.

This is why great emphasis is put by the promoters of the network-centric 
approach on the social dimension of distributed operations. According to the con-
ceptual framework of network-centric operations (Garstka and Alberts 2004), raw 
information must be transformed into actionable knowledge through collaborative 
sensemaking among the stakeholders. However, common understanding of a given 
situation requires that all participants use a common reference frame, i.e., use the 
same models, physical or mental, for interpreting the situation elements and “cre-
ating mutually intelligible representations” (Shum and Selvin 2000), which is the 
essence of collaborative sensemaking. Yet,

there are not only gaps in the languages, frames of reference, and belief systems 
that people in the different communities of practice have, but gaps between their 
respective sensemaking efforts—their concepts in the representational situation are 
different. In many cases, different communities have mutually unintelligible sense-
making efforts, leading to mutually unintelligible representational effort (Shum and 
Selvin 2000).

Furthermore, it has been observed that a likely cause of failure for overall mission 
success is that the abilities of humans to access, filter, and understand information, to 
share it between groups, and to concur on their assessment of the situation are clearly 
limited, especially under stress and time-pressure (Scott et al. 2006).

Finally, Kolenda (2003) argues that shared situational awareness does not inevi-
tably lead to “shared appreciation on how to act on the information” as different 
people, based on their experience, education, culture, and personalities will assess 
threat/risk and how to best “maximize the effectiveness of themselves and their orga-
nizations” differently. Simply providing people with access to the same information 
does not necessarily create a common understanding. The issue of how “common 
intent” can actually be promoted among network players, often from diverse back-
grounds and cultures (both national and organizational) represents a major challenge 
for future operations.
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11.9  DISCUSSION

In the preceding, the problem of threat analysis was addressed from different angles 
and at different levels of complexity. The use of primary concepts and defining 
features such as negativity, intentionality, potential, imminence, and relativity to a 
reference point allowed us to provide a framework in which the concept of threat is 
elucidated and distinguished from other goal conflict situations.

Threat analysis is a very challenging cognitive task that can involve different 
layers of reasoning when time allows it. Interference management, goal recogni-
tion, and plan recognition were extensively discussed, showing the complexity of the 
inferences which have to be made by an observing agent performing threat analysis. 
This provided a theoretical basis as the question of the automation of threat analysis 
was investigated.

By illustrating the problem in a military context, it was shown that threat analysis can 
be further complicated through contextual factors that characterize the warfare environ-
ment. These problems, described from a single unit perspective, remain valid at the 
force level, where new challenges are introduced. Collaborative threat analysis, while 
providing information superiority, was shown to impact situation analysis by multiply-
ing the operational parameters and creating coordination overhead. Finally, distributed 
multi-threat scenarios were shown to significantly complicate the determination of 
intent, capability, opportunity, and the higher-level plan of adversary elements.
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12 Ontological Structures 
for Higher Levels of 
Distributed Fusion

Mieczyslaw M. Kokar, Brian E. 
Ulicny, and Jakub J. Moskal

12.1  INTRODUCTION

Today most, if not all, online information is either stored in various data stores 
(databases) or available in streaming form from either sensors or other sequential 
information providers. Both types of information sources can be termed infor-
mation producers. On the other hand, this information is utilized by the various 
information consumers who require the information to achieve their informational 
goals or to support their decision processes. The producers and the consumers are 
all interconnected, resulting in what is called a net-centric environment, often 
referred to as Net-centric Enterprise Architecture in the business domain (cf. 
Network Centric Operations Industry Consortium n.d.) or as Net-centric opera-
tions in the military domain (cf. Cebrowski and Garstka 1998). Some of them 
play both roles at the same time. Information consumers have on-demand access 
to information producers. The ultimate goal is to have a user-defined operational 
picture on each consumer’s screen.

A representation of the information producers and consumers nodes is shown in 
Figure 12.1. Here both information producers and consumers are viewed as services. 
Since our intent is to associate semantic descriptions with each such service, we call 
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those Semantic Information Services (SIS). All of the services are described using 
terms from an ontology. Here we use the term “ontology” as defined by Gruber 
(2009): “an ontology defines a set of representational primitives with which to model 
a domain of knowledge or discourse.” Some representative ontologies are shown at 
the bottom of the figure.

In this chapter, we present some results of an effort to achieve the goals of net-
centric operations, displaying necessary (and only necessary) information on the 
consumer’s display when they need it and in a form that they can understand and act 
upon. In this approach, the consumer can query the network for information relevant 
to the consumer’s current need. To explain how this goal can be achieved, we show a 
step-by-step process that starts with issuing a query to viewing a reply to the query. 
Each of the steps involves some ontological reasoning. To illustrate the approach, we 
provide fragments of ontologies that are necessary to derive the inference results.

This chapter is organized as follows. First, we provide a short explanation of 
ontologies. Then we show the particular activities of the whole process:

	 1.	Annotation of information sources
	 2.	Query formulation
	 3.	 Inferring the relevance of the particular information sources
	 4.	 Inferring the relevance of information based on the location of the objects 

being queried about
	 5.	 Inferring whether the particular objects are relevant to the queried situation

12.2  ONTOLOGIES

One of the basic principles of the approach to information integration described in 
this chapter is the representation of all the information in a common vocabulary. For 
the approach to be flexible, the vocabulary needs to be extensible and have formal, 

Consumer SIS Producer SIS

Application Information
resource

Translator Translator

Agent Agent

Semantic information bus

Ontology sever
Core

Pedigree Sensor
Future..

FIGURE 12.1  Information producers and consumers—Semantic Information Services (SIS).
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computer-processable semantics. This kind of vocabulary is known as ontology. As 
used in the knowledge representation domain, the term “ontology” stands for an 
explicit, formal, machine-readable semantic model that defines the classes, instances 
of the classes, interclass relations, and data properties relevant to a problem domain 
(Gruber 2009).

To introduce the basic concepts of ontology, we use a simple example 
in which we demonstrate how to represent those basic ideas for the computer 
domain. A very simple ontology for this domain is shown graphically in Figure 
12.2. In this ontology, computers are represented as a class (a rectangle-labeled 
Computer in Figure 12.2). A specific computer, the one I bought 3 years ago 
(which we call here My3YrMac), is an instance of the class Computer. It is rep-
resented as dashed line rectangle. However, the computer I bought was a laptop. 
Laptop can be another class, which is subclass of Computer. My laptop thus is 
an instance of the class Laptop. This fact is shown by a dashed line connecting 
My3YrMac to MacOSLaptop. As we can see, Laptop is subclassified further so 
that MacOSLaptop and WindowsLaptop are subclasses of Laptop. Classes are 
interrelated. For instance, another class, Keyboard, is related by the partOf rela-
tion to Computer. The partOf relation may be used to capture the fact that a 
specific instance of Keyboard is part of a specific computer. In this example, 
DeskTopKeyboard1 is part of Desktop1. Instances of particular classes can have 
various data properties. For example, every laptop has the data property of 
weight. Thus weight may be a data property of the class Computer (as well as of 
any class of physical objects). It can then be used to state the fact that the weight 
of my laptop is 2.8 lb.

The choice of the classes, relations and properties is obviously domain-
dependent—if one wants to describe things in the domain of computers, one does 
not introduce classes like Politician or Horse. But the ontologist (the person who 
develops an ontology) has flexibility in terms of both the selection of terminology 
and the selection of concepts. For instance, the ontologist might want to classify 
laptops by the manufacturer, or by the price range. It all is a matter of what is more 
useful in the application that uses such an ontology.

Keyboard

Computer

Laptop

WindowsLaptop MacOSLaptop

partOf

DeskTopKeyboard1

DeskTop1

My3YrMac

partOf

FIGURE 12.2  A simple ontology for the computer domain.
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Since the intent of having formal ontologies is to be able to process them by 
computers, ontologies need to be represented in a formal language. There are vari-
ous approaches to representing formal ontologies including OWL (W3C 2009), con-
ceptual graphs (Sowa 1992), topic maps (Pepper and Moore 2001), KIF (Knowledge 
Interchange Format 1992), and others. Our choice of language is OWL, a W3C 
standard. However, whenever OWL is not expressive enough to capture the meaning 
of a concept or a relationship, we will supplement it with rules and possibly some 
procedures (e.g., calls to a procedural language like Java).

Ontologies do not need to be developed from scratch. Recently, significant 
efforts went into the development of “data models” and “markup languages.” Data 
models are represented either in a database schema description language, or in the 
Universal Modeling Language (UML). Markup languages are essentially vocab-
ularies represented in XML. In some cases, data models are also represented in 
XML. For instance, the widely known data model JC3IEDM (the Joint Consultation, 
Command and Control Information Exchange Data Model 3.1) (2005), developed 
by the Multilateral Interoperability Programme (MIP), is a long-standing, NATO-
supported model intended to foster international interoperability of command and 
control information systems through the development of a standard data model 
and exchange mechanism. The data model was first released in the mid-1990s as 
the Generic Hub (GH) Data Model. It captures information about 271 entities, 372 
relationships between entities, 753 entity attributes, and over 10,000 value codes. 
Representations of this model in both ERwin and XML exist. In the past, we have 
developed an automatic translator for JC3IEDM (Matheus and Ulicny 2007), which 
takes an XML representation of JC3IEDM and converts it to OWL.

12.3  QUERYING THE NET

Now we will show how we make use of ontologies for the purpose of querying 
for information that is of interest to the user, finding out which of the information 
sources are relevant to the query, retrieving the information and integrating it into a 
homogeneous representation. We first start with the querying.

While it would be highly desirable to be able to express queries in natural lan-
guage, because this would be the easiest way of formulating queries by humans, 
this option is both not quite achievable with the currently available technology and 
also not particularly advisable since it may cause all kinds of misinterpretation 
errors. In particular, it is very likely that the natural language expression presented 
by the user to the computer system may be either vague or imprecise. The com-
puter’s interpretation of such a query may be quite different than the user’s intent. 
So from this point of view, providing a more structured language in which the user 
can formulate queries and interpret the results returned by the computer may be a 
better option.

Current querying technology provides a number of options for formulating que-
ries. For instance, everybody uses search engines, like Google, to find information 
on the web. In doing so, the user typically provides a number of keywords, which are 
then used by the search engine to find documents that contain at least some of the 
provided keywords. Note, however, that the search engine returns a ranked list of tens 
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of thousands of documents, but not the answers to a query. The users still need to 
open some of the documents found and figure out the answer to a query on their own.

Flexible querying, which is of interest here, can be viewed as a case of the activity 
known in the literature as “question answering.” An overview and a comparison of 
a number of approaches and systems for question answering can be found in Ulicny 
et al. (2010). Since in this chapter we are interested in the methods that may be part 
of a number of different systems, rather than in the systems themselves, we provide 
just a short description of those approaches.

The vast majority of systems that store and retrieve data are based on representing 
the data in structured database formats, in which the structure of the tables, and the 
significance of each column, is specified in advance. Structured Query Language 
(SQL) commands and queries are then used to insert and retrieve data elements in 
tabular form. While it has become increasingly sophisticated over the years, SQL 
was initially envisioned as a natural language interface to databases. In web-enabled 
database applications, the SQL queries and commands are mostly hidden from the 
user and are dynamically constructed and executed when a user fills out and submits 
a form on a web page.

Wolfram Alpha represents a more sophisticated version of structured data query-
ing. Wolfram Research is the producer of the major symbolic mathematical compu-
tation engine Mathematica. The Wolfram Alpha engine sits on top of quantitative 
data and other reference works that have been “curated” from authoritative sources 
(Talbot 2009). When a user queries Wolfram Alpha, the engine attempts to interpret 
the query’s intent so as to produce an output format that is the most likely to satisfy 
that query intention (sometimes providing both a geospatial overlay and timeline as 
output), without requiring the user to formulate the underlying Mathematica query 
him- or herself. While the curation process insures the trust relationship between 
the consumer and the producer, the recall of the retrieval process is still far from 
satisfactory.

Information producers may provide metadata for their data. For instance, a 
document might have metadata about the date when it was created, the author of 
the document, the location of the event described in the document, and such. This 
kind of metadata may be used in answering questions. MetaCarta’s technology is 
an example of system that uses this approach. MetaCarta (2010) processes docu-
ments in order to identify any expressions indicating locations (e.g., location name, 
postal code, telephone area codes), and marks up a representation of the document 
with geo-coordinates corresponding to those locations. The system can then be que-
ried for documents that contain some combination of keywords and that have some 
geo-coordinates within a specified bounding box or radius. While this technology 
is pointing in the direction we are discussing in this chapter, it still does not go far 
enough to provide the flexibility of querying that is needed by today’s users.

Logic-based systems, such as Powerset, recently acquired by Microsoft and 
incorporated into its Bing search engine, parse texts into a logical representation, 
using sophisticated natural language processing. After analyzing free text and con-
verting it into a logic-based representation, questions can be formulated as queries 
over these logical clauses and returned as answers. While this is the direction we are 
interested in, we are not discussing this solution here for two reasons: first, because it 
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still includes natural language processing, and second, because these are proprietary 
solutions to which we do not have access.

In the following, we show how a query is represented in the query language 
for the Semantic Web–SPARQL. As an example, we have selected the maritime 
domain, although most of the terminology and content is only loosely related to the 
terminology used in the U.S. Navy.

We are assuming that the user (an information consumer) would like to issue a 
query that in natural language could be expressed as follows:
Show me all watercraft located in Region1 that may be involved in a suspicious 
activity.

Such a query could be expressed in SPARQL as

Select ?vessel
where

{?vessel rdf:type :Watercraft.
?vessel :locatedIn Region1.
?vessel :involvedIn ?Event.
?Event rdf:type :SuspiciousActivity

}

To be interpretable by a SPARQL query engine, the terms in this query would need 
to be either SPARQL’s keywords or be terms of a specific ontology. While this query 
will be the guide for the remaining discussion within this chapter, we will address 
various issues with this problem specification in small incremental steps. So, we 
begin by discussing the simpler query:

	 “Show me all watercraft.” 	 (1)

The main purpose of this exercise with such a simple query is to expose the issue 
of determining the relevance of particular repositories to a query. In other words, 
assuming that all the accessible repositories are described in terms of an ontology, 
the issue is to identify which of the repositories contain some information that is 
relevant to the query.

An example of a partial view of an ontology (we call it the Query Ontology) that 
would be needed to represent such a query is shown in Figure 12.3.

This ontology includes eight classes organized in a hierarchy. The top-level class 
Object represents anything that might be of interest to us. Query is a class of all 
possible queries. Whenever a query is generated, it is assumed that an instance of this 
class would be created. For this particular example, we are assuming that the earlier 
mentioned query is represented by an instance called “CurrentQuery” (shown in the 
next view of this ontology—Figure 12.4). Repository is a class whose instances are 
specific repositories available on the network. The Vehicle class has a subclass called 
Watercraft, which in turn has a subclass called Boat. The main reason for having 
this classification is to see whether the execution of query (1) distinguishes between 
repositories that contain information about boats, watercraft, and vehicles in general 
(e.g., automobiles).
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The Query Ontology includes two relations (in OWL, relations are called 
properties). The property inQuery has Query as its domain and Object as its 
range. This implies that the relation inQuery will include pairs of instances—the 
first element being an instance of Query and the second an instance of Object. The 
second property is contains, with domain Repository and range Object. This property 
represents that a repository contains (a class of) objects.

Since in this chapter we use RDF and OWL for representing knowledge, we will 
also use the RDF notion of triple for representing instances of properties. A triple 
consists of three parts, called predicate, subject, and object. The predicate is the 
identifier of a property, the subject is the identifier of an element from the domain of 
the property, and the object is the identifier of element from the range of the property.

To complete the description of the Query Ontology, we need to describe the 
classes RelevantThing and RelevantRepository. So first of all, the intent of having 
the RelevantThing class is to capture those objects that may be relevant to a given 

Query

inQueryObject

Vehicle Relevant�ingRepository

contains

Watercraft

Boat

RelevantRepository

FIGURE 12.3  A Query Ontology.
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FIGURE 12.4  Query Ontology and some of the class instances.
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query. This class would be populated dynamically, based on a specific query. 
We will provide the mechanics of this dynamic construction after we discuss the 
instances of the ontology. Similarly, the class RelevantRepository is for capturing 
those repositories that are relevant to a given query. Again, this class is populated 
dynamically by the system since the designer of the ontology cannot be aware of 
every query the user might want to issue.

Figure 12.4 shows a view of the Query Ontology after some of the classes have been 
instantiated. The instances are represented as dashed line rectangles and connected to 
their classes by dashed line arrows annotated with an “io” (for instance of). As we can 
see from this figure, there are four repositories on the network: Repo1, Repo2, Repo3, 
and Repo4. Additionally, there are three instances of Vehicle. TheGeneralLee is an 
instance of the top class Vehicle (it’s a car, but this is not inferable from this ontology). 
Domino is an instance of Watercraft, and MonkeyBusiness is an instance of Boat.

Although this is not visible in the graphical representation of the Query Ontology, 
this ontology also contains information about the properties inQuery and contains. 
Since query (1), represented in the ontology as CurrentQuery, mentions only 
Watercraft, the ontological description of the inQuery property also includes only 
one triple (predicate, subject, object):

	 ⟨inQuery CurrentQuery Watercraft⟩	 (2)

We can also show the property information in tabular form. For example, Table 12.1 
shows the property contains. Note that the repositories are described at two different 
levels of abstraction. Repo1 and Repo3 specify what classes of objects they contain 
(both Watercraft and Boat are classes). Repo2 and Repo3, on the other hand, specify 
what instances they contain (Domino and TheGeneralLee are not classes, but rather 
instances of other classes—Watercraft and Vehicle, respectively).

12.4  INTEROPERABILITY AND INFERENCE

The two main advantages of using ontological representation are the interoperability 
and the ability of inferring facts that are only implicit in the representation. 
Interoperability is demonstrated when one network node sends information to 
another, and the other node “understands” the information. For instance, when 
a node sends information to a querying node that Repo2 has information about 
MonkeyBusiness, which is a Boat, the querying node can take advantage of this 

TABLE 12.1
Tabular Representation of the 
Property Contains
contains Repo1 Watercraft

contains Repo2 Domino

contains Repo3 Boat

contains Repo4 TheGeneralLee
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information by inferring that MonkeyBusiness is a Watercraft, and thus is relevant 
to CurrentQuery. Thus interoperability is intimately related to inference. Without 
inference the information that MonkeyBusiness is a Boat might be useful to the 
querying node, but not to the specific query at hand. For instance, the query might 
actually ask explicitly about watercraft and boats. With the inference capability, 
however, the queries do not need to be that specific.

The term “inference” is often used in many different meanings. For instance, 
the running of an algorithm that computes the value of a function, given the values 
of the function’s parameters, is often termed automatic inference. Note, however, 
that for such an inference to be possible, two conditions must be satisfied: (1) an 
algorithm for the function must be implemented and (2) the only query that this 
algorithm can execute is the query for the value of this function, given the values of 
the function’s parameters. Obviously, one could implement a number of functions 
and then allow each of the algorithms to be queried by providing a function’s name 
and the list of parameter values in a prespecified order. One can do this kind of thing 
in MATLAB®, or in any other function library.

Here, however, we are interested in the capability of formulating new queries 
expressible in a query language and deriving answers to such queries using logical 
inference. A full explanation of this kind of inference is beyond the scope of this 
chapter, so we only provide a simplified view of this kind of inference and then show 
examples of inferences throughout the rest of this chapter.

Logical inference is possible within a formal system, i.e., a system that includes 
a formal language, a theory (or axioms), and inference rules. Formal language is a 
language that has formal syntax and formal semantics. Formal syntax means rules for 
determining whether a given expression is in the language or not (sometimes referred to 
as legal sentences or well-formed formulas). Formal semantics refers to interpretations, 
which are mappings from the language to a mathematical domain (a set of individuals) 
and from sentences to truth values. Theories are then represented by axioms—sets of 
sentences in the language. Inference rules are rules that can be applied to the axioms 
of a theory to derive new sentences, which then become part of the theory. A formal 
system should be sound, i.e., given a consistent set of true sentences, it derives only true 
sentences, i.e., sentences that map to the value “true” by the interpretation function. 
Another desirable, but unachievable, feature of a formal system is completeness, i.e., 
the ability to infer all possible true sentences using the rules of inference.

An inference engine can then take a set of sentences in a formal language and 
apply the inference rules of the formal system to derive new sentences. The most 
important aspect of this process is that the inference engine is generic, i.e., it can be 
applied to any set of axioms expressed in the given language. Thus, referring back 
to the example of the calculation of the value of a function, the queries sent to the 
inference engine can be anything expressible in the formal language, rather than a 
predefined set. Thus the limit of inference is bound by the language, and not by a 
predefined set of functions and queries. While this discussion was abstract, we hope 
the reader will appreciate the value of logical inference from the rest of this chapter.

In this chapter, all of the examples are expressed in the Web Ontology Language 
(OWL) (W3C 2009a,b). OWL is a formal language with model theoretic semantics. 
A number of generic inference engines for this language exist. In our work, we use the 
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BaseVISor inference engine (Matheus et al. 2006). This engine is freely available for 
research purposes, as are some others. BaseVISor is implemented in Java. It supports 
the OWL 2 RL dialect of OWL. OWL 2 RL includes most of the constructs of OWL 
2, but additionally, it also supports the expression of user-defined policies (collections 
of rules). The importance of rules stems from the fact that rules allow to express some 
more complicated relationships than just pure OWL can. BaseVISor is an inference 
engine applicable to OWL axioms and user-defined policies represented as rules. It is 
a forward-chaining rule engine since the rules are executed in the “forward” direction. 
That is, rules are applied for as long as there is new information that can be derived 
by rule applications. Since at the low level all the axioms are represented as triples, 
BaseVISor has been optimized for processing RDF- and OWL-expressed information.

12.5  INFERRING RELEVANT REPOSITORIES

As was shown in the previous discussion, each of the repositories is annotated (see 
Table 12.1) in terms of the contains property. However, it is not known which of the 
repositories are relevant to a given query. These facts must be inferred using an infer-
ence engine. The inference process needs to rely on the facts stored in the ontolo-
gies. Thus, first, the query needs to be represented in ontological terms, and then the 
inference can be carried out. In this section, we are assuming that the query repre-
sentation has been done and that some initial inference on the query representation 
has been carried out. We assume that this inference process has populated the class 
RelevantThing (see Figure 12.3) with instances of the things that may be relevant to 
the query. The details of this inference will be presented in the next section.

In order to infer the relevant repositories, the ontology must contain some 
information about what it actually means for a repository to be relevant. In our 
example, we formulate the relevance as follows.

A repository is relevant if it contains information about relevant things.

To express this fact (axiom) in OWL, we need to use the concept of OWL Restriction. 
In short, an OWL Restriction is a class whose instances are defined based on the values 
of the properties for which this class is the domain. So in this example, the class in 
question is RelevantRepository (a subclass of Repository). The property we use here is 
the property of contains, whose range is RelevantThing (remember that we assume the 
instances of this class have already been inferred). So we define RelevantRepository as 
the class for which the property contains has some values in RelevantThing. A snippet 
of OWL code that captures the essence of this fact is as follows:

<owl:Class rdf:about = “#RelevantRepository”>
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource = “#contains”/>
<owl:someValuesFrom rdf:resource = “#RelevantThing”/>

</owl:Restriction>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource = “#Repository”/>

</owl:Class>
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The result of running BaseVISor is
RelevantRepo found three results.

Variables (X)
q:Repo1
q:Repo2
q:Repo3

This is obviously a correct result. BaseVISor was able to infer that Repo1 was relevant 
simply because Watercraft was explicitly in the query. It was also able to infer that 
Repo2 was relevant based on the fact that Domino is a Watercraft. Note that Repo2 
did not mention anything about Watercraft in its annotation (Table 12.1). Repo3 was 
inferred to be relevant because it contained information about Boat, and because 
Boat is a subclass of Watercraft. Repo4 was (correctly) not considered relevant to 
this query since TheGeneralLee is a Vehicle but not a Watercraft.

The earlier explanation of the BaseVISor inference is based on intuition and 
common sense. A more formal explanation will be provided after we discuss the 
inference of RelevantThing.

12.6  INFERRING RELEVANT THINGS

The definition of the class RelevantThing is a bit more involved; it includes OWL’s 
notion of inverse property. An inverse property is defined in OWL as the inversion 
of domain and range of the property. So in this case, while the property inQuery has 
domain Query and range Object, the inverse has domain Object and range Query. 
The use of the inverse property is needed here because, similarly as in the case of 
RelevantRepository, we want to define the class RelevantThing as those objects for 
which the property—the inverse of inQuery—has the value of CurrentQuery.

Unfortunately, when we do just this, the reasoner only returns Watercraft as the 
relevant thing and Repo1 as a relevant repository. Although this is a correct inference 
based on the restriction on the inverse property, this is not exactly what we want. 
We would also like to see that subclasses of Watercraft (in this case Boat) as well as 
all the instances of Watercraft (Domino) and of Boat (MonkeyBusiness) show up as 
relevant things. While some of this kind of inference could be achieved within OWL, 
here we use rules for this purpose. In particular, we add two rules—one for finding 
the instances of the classes that are already in RelevantThing and another for the sub-
classes of the classes that are in RelevantThing. These rules are expressed in English 
as shown in the following:

	 1.	 If C is an instance of RelevantThing and C is of type Class and I is an 
instance of C, then I is an instance of RelevantThing.
The OWL code for the definition of RelevantThing is shown as follows:

<owl:Class rdf:about = “#RelevantThing”>
<owl:equivalentClass>
<owl:Class>
<owl:unionOf rdf:parseType = “Collection”>
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<rdf:Description rdf:about = “#RelevantThing”/>
<owl:Restriction>
<owl:onProperty>
<rdf:Description>
<owl:inverseOf rdf:resource = “#inQuery”/>

</rdf:Description>
</owl:onProperty>
<owl:hasValue rdf:resource = “#CurrentQuery”/>
</owl:Restriction>

</owl:unionOf>
</owl:Class>

</owl:equivalentClass>
<rdfs:subClassOf rdf:resource = “&owl;Thing”/>

</owl:Class>

Note that we also used an additional OWL construct—unionOf. This construct 
is needed here so that the result of inference is complete. This construct puts 
together the already known instances of RelevantThing and those inferred.

With this rule, the reasoner can infer that also Domino and 
MonkeyBusiness are relevant things and that Repo2 is also a relevant repos-
itory. This inference still does not satisfy our expectation since it misses the 
fact that Boat is a relevant thing, too, and consequently Repo3 is a relevant 
repository. To achieve this result, we need to add one more rule so that sub-
classes of relevant classes are included in RelevantThing. In English, this 
rule can be expressed as follows:

	 2.	 If C is in RelevantThing and C is a class and S is a subclass of C then S is 
instance of RelevantThing.

The result of running BaseVISor on this ontology supplemented by the 
two rules is shown as follows:

ThingsOfRelevantThings found five results.

Variables (X)
owl:Nothing
q:Watercraft
q:Domino
q:MonkeyBusiness
q:Boat

This result captures our intent. One might wonder what owl:Nothing is 
doing in the answer, but the reader should not be too concerned with this 
result. Owl:Nothing is an instance of every class, just as the empty set is a 
subset of every set.

12.7  RESTRICTING QUERIES TO GEOGRAPHICAL REGIONS

To demonstrate the querying about objects located in particular geographical 
regions, we use an ontology shown in Figure 12.5. This ontology consists of two 
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parts—a sub-ontology for describing geographical features (on the right) and 
another sub-ontology for describing map objects. Each of these parts includes a 
top-level class—Object and MapObject, respectively.

GeoFeature is a subclass of Object; it has a subclass—Region. This part also 
includes the class Vessel, which is attached to this ontology just to indicate that the 
class of object we are interested in is Vessel, rather than, say, Person or School. The 
main property for this part is contains, as well as its inverse—locatedIn. These 
properties will be used to capture facts about which regions contain particular 
objects.

The sub-ontology on the left is essentially an ontology for describing maps, which 
are two-dimensional surfaces with some objects attached to particular locations. The 
top-level object, MapObject, has two subclasses—Rectangle and Point. This part 
also includes four properties. The properties covers and inside are inverses of each 
other. Both of them are transitive properties. This means that whenever two facts 
hold—⟨inside A B⟩ and ⟨inside B C⟩, this implies that the fact ⟨inside A C⟩ also holds. 
In other words, whenever the first two facts are known, an inference engine can infer 
the third fact.

Rectangle has two properties—SW and NE. As the reader may guess, these are 
the properties that allow one to uniquely locate a rectangle on a map by showing 
two points (instances of class Point) that represent two corners of the rectangle—
the South-West corner and the North-East corner, respectively. The SW and NE 
properties are declared (in the OWL code, not shown in the figure) to be functional. 
This means that for each rectangle there may be declared at most one value of the 
SW and NE properties, which is equivalent to saying that each rectangle has unique 
corner points on the map.

The two parts of the ontology are linked by the map property. In a sense, this 
property relates two vocabularies—the vocabulary of geographical features and the 
vocabulary of geometry.

To demonstrate the use of the geographical feature ontology, we first show an 
example of an ontological representation of a geographical region, with some vessels 
located in the region, and a query that could be issued by a user.

Figure 12.6 shows an example of instance annotation in the geographical feature 
ontology.

Object

GeoFeatureVessel

MapObject map

Region

Rectangle Point

inside

covers

NE SW

locatedIn

contains

FIGURE 12.5  A geographical feature ontology.
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The focus for this example is the region of Persian Gulf. It is mapped to a rect-
angle, called here PersianGulfContour, via the map property. This rectangle has two 
corners called here PGSWPnt and PGNEPnt. Each of the points has two data type 
properties called Lat and Lon (for latitude and longitude, respectively). The reader 
should not pay too much attention to the decimal values for this rectangle since the 
main issue here is to show how such an ontology can be used, rather than provide a 
precise geographical description of a particular region. This ontology also describes 
three other geographical features—the Strait of Hormuz (located in the Persian Gulf) 
and the Gulf of Oman, located in the Arabian Sea. Additionally, it includes three 
vessels—the Enterprise, located in the Persian Gulf, the Ohlafi, located in Strait of 
Hormuz, and the Baha, whose location is specified by its longitude and latitude.

All of this information has been given to the ontology explicitly. Running the rea-
soner on this ontology uncovers a few new facts, mainly because of the properties of 
the relations—transitive and inverse. And so the reasoner will infer that the Ohlafi is 
located in the Persian Gulf, the Arabian Sea contains the Gulf of Oman and that the 
Persian Gulf contains the Strait of Hormuz, as well as the Ohlafi and the Enterprise, 
and so on.

While all of these inferences may play a very significant role for interoperability, 
an even more interesting type of inference would need to go through combining the 
explicit information about the relationships among geographical features and objects 
with the reasoning about geometry. To achieve this, we developed a rule that relates 
the two sub-ontologies. In English, this rule can be expressed as follows:

Ohlafi GulfOfOman Baha

Enterprise StraitOfHormuz ArabianSea

PersianGulf

locatedIn locatedIn

locatedInlocatedIn

map

map

NE SW

PBaha

~@decimal 28.0

~@ decimal 54.0

Lat =

Lon =

PersianGulfContour

PGNEPnt

PGSWPnt

NE =

SW =

PGNEPnt

~@decimal 30.30

~@ decimal 56.0

Lat =

Lon =

PGSWPnt

~@decimal 23.6

~@ decimal 48.0

Lat =

Lon =

FIGURE 12.6  An example of an annotation of regions and objects.
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	 3.	 If an object O maps to a point OP on the map and OP’s longitude and lati-
tude are within a rectangle R defined by its S-W and N-E corners, where R 
represents a region, then O is located in R.

When we implement this rule in the rule language of BaseVISor, 
BaseVISor infers, in addition to all the facts inferred and shown earlier, 
that the Baha is located in the Persian Gulf. This inference was based 
on the information about the geo-coordinates of the Baha, as shown in 
Figures 12.5 and 12.6.

12.8  DISCUSSION: INFERENCE OF SUSPICIOUS ACTIVITIES

The information annotation and processing steps we have shown in this chapter could 
be used for various purposes. For instance, one could use this kind of approach to 
query for vessels in a specific region, where the vessels are involved in some activi-
ties that could be considered as “suspicious” by the user. Here we just briefly outline 
the approach to achieve such a goal, rather than going into any details, since a full 
description of the solution of this problem would take too much space.

The first step would be to develop an appropriate ontology that could be used 
for annotating information, formulating definitions of what constitutes a suspicious 
activity, querying a network of information sources in order to find relevant infor-
mation, and finally running inference in order to determine who, where, and when 
might be involved in such activities.

So the first question would be: what is a suspicious activity? Where does it stand 
in relation to other concepts? While answering such a question might lead to a very 
lengthy philosophical discussion, here we present our own proposal, without mak-
ing any claims about the generality or correctness of our ontological interpretation. 
Following our experiences with developing ontologies for various applications and 
domains, we propose that suspicious activity, being a subclass of activity, can be 
viewed as a “Situation.” This view was promoted by Barwise and Perry (1983), and 
then Devlin (1991). On the other hand, if one follows the philosophy of Davidson 
(1967), one would call it an “Event,” rather than a situation. We are calling this situ-
ation just because we already have developed an ontology, called Situation Theory 
Ontology (or STO) (Kokar et al. 2009) which mainly incorporated the ideas from 
Situation Theory by Barwise and Perry (1983). So our view of suspicious activity is 
represented in the ontology shown in Figure 12.7.

According to this ontology, SuspiciousActivity is a subclass of Situation. Situation, 
on the other hand, is a subclass of Object that is linked with other classes—Goal, 
Individual, Relation, Attribute, and Rule via appropriate properties. So first of all, a 
Situation, or a SuspiciousActivity in particular, is an entity, a “first class citizen” of 
the ontology. It can have its own attributes and its own existence. Goal is what gives 
focus to a situation. Sometimes this is called relevance, or intent. Otherwise, with-
out a specific goal, anything could be related to a situation. Goal is expressed as a 
relation. More specifically, for any situation, it is a single tuple that belongs to a rela-
tion, as expressed in set-theoretic terms. Perhaps the most important properties of 
Situation are relevantIndividual, describing the objects that participate in a specific 
situation, and relevantRelation, which describes the relations that must hold among 



342 Distributed Data Fusion for Network-Centric Operations

the individuals, in order for the situation to take place. The existence of a specific 
relation is implied by a rule, either an axiom in the ontology or a rule specified in a 
rule language (e.g., the BaseVISor rule language). Situations, as any objects, can have 
their own attributes. Most typical attributes of situations include Time and Location.

If we are interested in a specific domain, we need to extend the STO with some 
domain-specific concepts. For example, if we are interested in the maritime domain, 
we show such an extension with the classes of Vessel, Port, and Nation, which are 
subclasses of the class Individual. To support descriptions of suspicious situations, 
we introduced the properties of atPort (to say that a given vessel is at a specific port), 
flagState (to say that a given vessel carries a flag of a given nation), and embargoed-
Nation (to say that a given nation is on the embargo list).

To show an example of a situation of type EmbargoViolation, we show a case 
in which the information sources include data on a Cuban vessel being reported at 
Boston Harbor, while an embargo on Cuba is in effect. The dynamic construction 
of the situation of interest starts with the creation of an instance of Situation and an 
instance of Goal. An instance of Situation is generated by the system. Suppose it is 
represented as BostonHarborAug19-1975.

The goal is the same kind of entity as query in our previous examples. As can 
be seen from Figure 12.7, Goal is related to an instance of Relation. Suppose the 
query is: “Is there a suspicious activity in Boston Harbor on August 19, 1975?” 
Suppose this query is represented in OWL as CurrentGoal, which in turn is related 
to an instance of the relation (property), which is expressed here as a triple ⟨rdf:type 
BostonHarborAug19-1975 SuspiciousActivity⟩. Here rdf:type stands for the relation 
“instance of”; this is a term of the OWL language. Note, however, that even though 
this triple looks like a fact that is in the current ontology, it cannot be asserted into 
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FIGURE 12.7  An extended STO.
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the ontology since it represents a query—a question rather than a fact. In the litera-
ture (Sowa 2005, Hayes n.d.), these kinds of statements are called “propositions,” to 
distinguish them from facts.

The next step in the processing of this query, as in the first example of this 
chapter, is to derive the information that is relevant to this query. This may involve 
various kinds of processing, which may also include logical inference. In particular, 
the ontology of situations and suspicious activities may provide information on what 
types of Individual may be relevant individuals and what types of Relation may be 
relevant relations. For instance, our ontology in Figure 12.7 shows that the relevant 
types of Individual are Vessel, Port, and Nation, while the relevant relations are 
atPort, flagState, and embargoedNation.

The result of the processing of this situation is (partially) shown in Figure 
12.8. In this figure, we can see the current situation (BostonHarborAug19–1975), 
attributes of this situation (location and time), relevant individuals, and the relevant 
relation shipAtEmbargoedPort, which is a sub-property of relevantRelation. 
It is assumed that the class EmbargoViolation is defined by the relevant relation 
shipAtEmbargoedPort. According to the ontology, this relation is implemented by a 
rule, which then can be executed by BaseVISor.

12.9  CONCLUSION

The main objective of this chapter was to show the utility of ontologies in situation 
awareness in particular and in information integration in general. The discussion 
was focused on a network centric environment in which multiple information 
producers and multiple information consumers exist. In this kind of scenario, it is 
quite difficult for a user to know what information is available at particular network 
nodes. A solution to this kind of a problem is to annotate all of the information 
sources so that an automatic information collection system can decide whether a 
particular information source has some potentially relevant information to a user’s 
query. Since the user queries are generated dynamically, and since the variety 
of the types of queries may be infinite, it is not possible to list all of the possible 
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FIGURE 12.8  Representation of an Embargoed Port situation.
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queries during the design of a net-centric system. Instead, a way of inferring the 
relevance of a specific information source to a given query is needed. We have 
shown both the inference of which sources are relevant and which things are 
relevant to a given query.

Another problem with situation awareness is to be able to narrow the queries 
to particular areas or geographical regions. In this chapter, we showed how this 
kind of knowledge can be represented using ontologies and how a generic infer-
ence engine can draw the appropriate inferences by means of OWL axioms and 
domain-specific rules.

Finally, to conclude this chapter, we provided a discussion of how much more 
complicated problems, like detecting suspicious activities in maritime domain sce-
narios, can be achieved within the same kind of framework.

Throughout the discussion, we stressed two aspects that are addressed by the use 
of ontologies: interoperability and inference. Interoperability means that particular 
nodes in a net-centric environment can understand what other nodes ask for or send. 
Inference means that facts that are only implicit in the information can be made 
explicit by the use of inference engines. Nodes can take advantage of their inference 
capability by inferring facts locally, rather than sending all the information over 
the communication links. Both the interoperability and the inference capability are 
limited only by the language used to represent ontologies and not by algorithms that 
need to be developed for any specific case.
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13 Service-Oriented 
Architecture for 
Human-Centric 
Information Fusion

Jeff Rimland

13.1  INTRODUCTION

Information is currently undergoing a paradigm shift that is radically changing 
how it is sensed, transmitted, processed, and utilized. One of the primary driving 
forces in this shift is the transformation of mobile device usage. The new mobile 
device user is an amazingly capable hybrid system of human senses, cognitive 
powers, and physical capabilities along with a suite of powerful physical sen-
sors including high-definition (HD) video/still camera, global positioning satel-
lite (GPS) positioning, and multi-axis accelerometers. Additionally, these devices 
are linked to the “hive mind” (Kelly 1996) of various social networks and the 
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distributed power of ever-growing open-source information provided by nearly 
countless applications that have the potential to funnel specific geospatial and 
temporally appropriate bits of information to the user on a high-resolution display 
or through high-fidelity audio. The potential information gathering and processing 
power of massive social networks connecting these human/machine hybrids that 
we call “mobile device users” is unprecedented. However, advances in architecture 
and infrastructure are required to fully recognize this potential. The paradigm of 
service-oriented architecture (SOA) is evolving in exciting and largely unantici-
pated ways due to the convergence of these factors.

In O’Reilly and Battelle (2009), Tim O’Reilly discusses the potential for “collec-
tive intelligence” to exist in the World Wide Web, but states that the current web is 
somewhat like a newborn baby—having the basic facilities necessary to grow into 
an intelligent and conscious entity yet still “awash in sensations, few of which she 
understands.” This analogy can also be applied to human-centric information fusion, 
which in many ways is a part of the second-generation “Web 2.0” that O’Reilly 
discusses.

The information fusion community has recently been shifting its emphasis toward 
network-centric and human-centric operations (see Castanedo et al. 2008, Fan et al. 
2010, Keisler 2008, Kipp 2006). Distributed human-centric information fusion is 
proving indispensable in a broad variety of civilian and military applications. Team-
based tasks that were formerly limited by geographic distance, siloed information, 
and inability to share mental models present great opportunities for a hybrid-sensing/
hybrid-cognition model. There has already been extensive research into “participatory 
sensing” campaigns that facilitate decentralized collaboration for disaster response, 
counterinsurgency efforts, and “citizen science.” However, the potential for true 
collective intelligence remains largely unrealized. Addressing this need by combining 
the paradigms of participatory sensing and distributed sensor networks over an 
evolving human-centric SOA (Figure 13.1) is the focus of this chapter.

SOA

= Network-centric hard and soft information fusion

Distributed
sensor nets

Participatory
sensing

FIGURE 13.1  The intersection of distributed sensors, participatory sensing, and service-
oriented architecture.
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13.2  PARTICIPATORY SENSING AND SENSOR WEBS

Participatory sensing (Burke et al. 2006) enables the observation of both people-
centric and environment-centric (Christin et al. 2011) information by leveraging 
the ubiquitous and increasingly powerful mobile devices already being carried by 
billions of people, the high-speed/high-reliability voice and data networks already 
in place to support these devices, and the uncanny human ability to capture, isolate, 
annotate, and transmit the data of interest.

Although this evolving technique of distributed “soft” sensing holds great 
promise, the field is still in its infancy and there are many challenges to plan-
ning and executing a successful participatory sensing campaign. There is a great 
deal of concern among participants and other citizens that the Orwellian mass 
surveillance mechanism of “Big Brother” (Orwell 1977) will effectively be real-
ized by “Four Billion Little Brothers” (Shilton 2009) armed with smart phones. 
Without a mechanism to address this fear, the number of participants and the 
type of information shared will be limited. Additionally, new methods are needed 
for determining the veracity, objectivity, and “observational sensitivity” of the 
source (Schum and Morris 2007). Without sufficient quality control of the observ-
ers and the data provided, campaigns can be severely compromised through either 
intentional deception or simple lack of competence on the part of the observer. 
Incentivizing participation (Jiang 2010) is another challenge that can be espe-
cially difficult and critical to the success of campaigns that require longitudinal 
data. The following section will provide a sample of campaigns from a variety of 
disciplines.

13.2.1 P articipatory Sensing Campaigns

13.2.1.1  MobileSense
The MobileSense campaign (Lester et al. 2008) conducted by researchers at the 
University of Washington attempted to gather GPS, barometric pressure, and accel-
erometer data and use it to infer the type of activity that the subject is currently 
performing. Additionally, they used Geographical Information System (GIS) data 
layers in conjunction with the information that they gathered from each subject to 
determine specific locations where the subject had a tendency to dwell for various 
periods of time. This fusion of data allowed inferences to be made regarding where 
the subject lived, worked, shopped, and socialized.

They collected data from 53 test subjects over a period of 1 week using a device 
called the Mobile Sensing Platform (MSP) (MSP Research Challenge n.d.), which 
is a proprietary device that is worn using a belt clip. The subjects also manually 
recorded their activities every hour. For privacy, the users were allowed to switch the 
device on and off at will, resulting in a per-subject average of 53 h of data collected 
per week. Requiring the user to switch off the entire device for privacy is less than 
optimal in terms of user convenience and data gathering. In Christin et al. (2011), 
more advanced privacy schemes such as k-anonymity, identity blurring, and user-
configurable granularity are introduced.



350 Distributed Data Fusion for Network-Centric Operations

MobileSense is a useful early example of combining data gathered via participa-
tory sensing with open-source GIS. Fusing a priori information with sensed data in 
this manner provides advantages that will be discussed in later sections.

13.2.1.2  PEIR
The Personal Environmental Impact Report (PEIR) (Mun 2009) is a long-run-
ning participatory sensing campaign led by the Center for Embedded Networked 
Sensing (CENS) at UCLA. PEIR uses a variety of GPS-enabled mobile devices 
to provide assessments of both how the individual impacts the environment, and 
how much exposure the individual has had to environmental threats and hazards. 
Although the system detects as variety of factors, the impact contributors can be 
summarized as carbon impact and sensitive site impact, and the environmental 
hazards can be summarized as smog exposure and (the somewhat controversial) 
fast food exposure.

The project has evolved somewhat since it entered “pilot production mode” in 
June 2008, but there are several aspects of this project that can serve as lessons for 
other participatory sensing campaigns. Rather than forcing the user to completely 
switch the sensor off when they are in a private location (as MobileSense does), 
PEIR instead allows the user to select locations that they would like to obscure from 
the public report. Additionally, when the user specifies that a location is private, 
the system uses an algorithm to create an alternate simulated path to avoid raising 
suspicion of unusual/illicit activity during the “blanked out” time period. While this 
synthetic generation of location data might not be appropriate for all participatory 
sensing projects, it adds to the user’s convenience and therefore reduces the chances 
of them dropping out of the campaign.

Additionally, the system lets the user review their PEIR (and all contributing 
data) before uploading it to the server. After viewing the data, they are allowed to 
selectively delete any personal information that they would not like to share before 
uploading it to the CENS server. If they chose, the user may also share this informa-
tion directly with their social network via a Facebook application.

Where some participatory sensing campaigns attempt to gather several modali-
ties of data by equipping the users with advanced mobile sensor systems consisting 
of several integrated devices (Ishida et al. 2008), PEIR takes the approach of only 
gathering GPS data directly from the individual and using open-source informa-
tion to obtain a myriad of other details related to that location. Rather than attach-
ing a smog sensor to the mobile device and attempting to measure levels directly, 
they utilize the Emissions Factors Model (EMFAC) developed by the California Air 
Resources Board (CARB) to determine individual smog exposure based on their 
location at a given time. Although not always practical, this approach improves scal-
ability by reducing dependency on nonstandard devices, reduces battery drain, and 
improves efficiency by offloading processing tasks to a remote server that is far more 
powerful than the mobile device.

13.2.1.3  “Voluntweeters”
While many crowdsourcing efforts are the result of a top-down, centralized cam-
paign to achieve a specific purpose or collect specific data, the massive efforts of 
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the “digital volunteers” who responded to the devastation that resulted from the 7.0 
magnitude earthquake near the capitol city of Port-au-Prince Haiti on January 12, 
2010, was largely self-organized and startlingly effective (Starbird 2011).

The importance of incentives is perhaps most relevant in this category of crowd-
sourcing. The participants were taking part in these activities to save their own lives 
or the lives of others, or to determine whether their loved ones were safe.

Because of its low bandwidth and battery requirements, ease of use, ubiquity of 
compatible devices, and connection to a publicly searchable timeline, the micro-
blogging service Twitter became the platform of choice. With the help of a few facili-
tating organizations such as the CrisisCamp initiative (crisiscommons.org) and the 
ATLAS Institute (Starbird 2011), an augmented Twitter syntax called “Tweak the 
Tweet” (TtT) was designed to leverage the existing Twitter hashtag capabilities to 
further reduce some of the ambiguity inherent in 140 characters of free-form text.

If the Twitter users on the ground in Haiti were simply uploading messages to the 
public Twitter feed, that may have been somewhat helpful. However, the real utility 
came when social networks formed between people in need of assistance, people 
with information, people seeking information, and volunteers capable of translating 
the requests between both multiple languages and multiple networking methods.

The success of this grassroots effort shows the importance of incentive and 
the power of platforms that support and facilitate rapid self-organization of social 
networks.

13.2.1.4  DARPA Network Challenge
Due to the diversity of the goals, methods, and scopes of most participatory sensing 
campaigns, it is generally very difficult to obtain “apples-to-apples” comparisons for 
the test and evaluation (T&E) of these campaigns. The Defense Advanced Research 
Projects Agency (DARPA) Network Challenge (DARPA Report 2010) is one of the 
few instances where a direct quantitative comparison is possible between various 
campaigns that are competing to accomplish the same goal.

In December 2009, DARPA conducted an experiment that tested the combination 
of crowdsourcing, social network utilization, and viral marketing capability in a race 
to most quickly solve the distributed geo-location problem of finding ten 8 ft red bal-
loons that were tethered at various locations throughout the United States. Locating 
the red balloons could be considered analogous to detecting the start of an epidemic, 
distributed terrorist attack, or massive-scale cyber attack—thus the importance of 
understanding the key elements of successfully undertaking this challenge is very 
high. Many lessons can be learned by the techniques that the top performing teams 
utilized to win the challenge.

The winning MIT team’s strategy began with incentivizing participation. They 
used the $40,000 in potential prize money to construct a recursive incentive structure 
that rewarded not only those participants who actually spotted balloons, but also 
those who connected balloon spotters to the team (see Figure 13.2). This incentive 
structure rewards not only individuals who are good at performing the end task, but 
also those who are good at creating network connections that improve the overall 
odds of success at the given task. Since mobilization time was of the essence and 
there was insufficient time to develop an advanced machine-learning system to 
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determine which reports were valid and which were false, the winning MIT team 
relied on human reasoning of the data that was provided by the network (Tang 
et al. 2011). This exemplifies the effectiveness of modular hybrid-sensing, hybrid-
cognition models (Rimland 2011) that enable an ad hoc combination of human and 
machine sensing as well as human and machine processing of the data. The hybrid 
approach used computerized Internet Protocol (IP) tracing to filter out obvious 
false reports (e.g., Pennsylvania IP addresses used to upload pictures of a balloon 
in Texas) and Web/GIS-assisted human analysis to verify that businesses, weather 
conditions, roadways, etc. that are shown in the reported pictures of the balloons are 
consistent with real-world features.

The tenth place iSchools team relied on open-source intelligence methods 
of searching cyberspace for potential leads and then confirming those leads by 
quickly activating the “hive mind” (Kelly 1996) of its extensive social network 
across Twitter, Facebook, and e-mail in an attempt to find direct confirmation of 
the observation.

There were many lessons about participatory sensing learned from the Network 
Challenge. The most successful teams were those that incentivized effectively, relied 

Balloon
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connector

($1000)
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($500)

Multi-level
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* Prize money shown in
parentheses

FIGURE 13.2  Example of MIT’s recursive incentive structure.
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on their specific advantages (e.g., mass media coverage, wide geographical distribu-
tion, etc.), and—possibly most importantly—relied on the strengths of social net-
works, open web information and tools, and the power of an individual with a mobile 
device who is at the right place at the right time.

13.2.2  Sensor Webs

As sensors and networking capability improve in both performance and afford-
ability, the interconnected network of sensors, or sensor web, is proving invaluable 
for tasks ranging from weather prediction (Hart and Martinez 2006) to tracking 
the behavior of endangered species (Hu et al. 2005). While the idea of using a 
distributed network of low-cost sensors instead of sending humans into conditions 
that may be hazardous or difficult/expensive to access is promising, there are sev-
eral challenges.

Sensors record data in a wide variety of formats. Many of these are proprietary 
and designed to work with specific software tools. While this is not a problem in 
the case of a single organization accessing a small number of sensors, it makes it 
difficult or impossible to construct a network of distributed heterogeneous sensors 
or to share that sensor information between multiple organizations. Additionally, 
semantic standards describing exactly what is being observed by the sensors, as well 
as metadata related to accuracy, timeliness, and provenance, are required if the sen-
sors are to be integrated in an extensible manner.

To address these issues, the Open Geospatial Consortium (OGC) has spearheaded 
improvements in Sensor Web Enablement (SWE), which is a series of standards and 
best practices for facilitating the connectivity and interoperability of heterogeneous 
sensors and devices that are connected to a network.

Among these innovations, Transducer Markup Language (TML) is of particular 
interest to the information fusion community. This XML-based language facilitates 
the storage and exchange of information between sensor systems—which may 
include actual sensors as well as transmitters, receivers, actuators, or even software 
processes. The data can be exchanged in either real-time streaming mode or archived 
form, and real-time data can be exchanged in various chunk sizes over multiple 
protocols (e.g., TCP or UDP) depending on network bandwidth and data integrity 
requirements. TML provides the capability to capture intrinsic (e.g., physical 
hardware) specifications as well as extrinsic (e.g., environmental) metadata that may 
be of interest to consumers of the data.

Sensor Planning Service (SPS) is another SWE tool that applies SOA principles 
to the identification, use, and management of sensor systems based on sensor 
availability and feasibility for successful completion of a specific task.

Other OGC standards for SWE include

	 1.	Observations and Measurements (O&M)
	 2.	Sensor Model Language (SensorML)
	 3.	Sensor Observation Service (SOS)
	 4.	Sensor Alert Service (SAS)
	 5.	Web Notification Services (WNS)
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The benefit of these openly available, consortium-designed standards is that they pro-
vide organizations with the ability to web-enable all manners of sensors, collections of 
sensors, sensor platforms, and even human observers via the web (Botts et al. 2007).

For the information fusion community, these advances in SWE translate into 
improved timeliness, coverage, metadata, and consistency. Perhaps most importantly, 
sensor net technology provides the potential for sensor tasking based on capability 
and not simply modality. For example, a weather forecaster might need to know if it 
is currently snowing in a given location. In some instances, a human observer will 
be the most cost-effective and accurate way of making this determination. In other 
instances (e.g., dangerous remote locations), a persistent physical sensor might be the 
best tool for the job. In either case, the consumer of the data requires a certain degree 
of precision, timeliness, and credibility, but is often not concerned with the modality 
of the sensor itself.

13.3  SERVICE-ORIENTED FUSION ARCHITECTURE

For several years, SOAs have been praised for providing loosely coupled and 
interoperable software services for accomplishing system requirements and goals. 
In the conventional SOA sense, these services are typically specific software func-
tionalities made discoverable and accessible via a network. The service advertises 
its functionality, and then returns data and/or performs a task when called with 
the appropriate parameters. In a hybrid-sensing/hybrid-cognition framework, this 
paradigm is extended to not only allow software routines, but also sensors, sensor 
platforms (e.g., robots and Unpiloted Air Vehicles [UAVs]), and even humans with 
mobile devices to be queried and tasked in a manner analogous to software resources 
in conventional SOA.

This approach can be considered both a logical extension and a somewhat radical 
departure from existing methods. It is a logical extension in that it follows the SOA 
principle of encapsulating the inner workings of the service and selecting it based on 
its availability and capability. It is a radical departure in that it could result in a con-
dition where human beings are receiving instructions from a software application. 
Although this may sound like cause for alarm, I will explain in further sections why 
this too is a natural progression of SOA.

The service-oriented computing (SOC) paradigm asserts that services are the 
fundamental and most basic elements with which applications and software systems 
may be created. Although these methodologies are conventionally applied to 
situations in which the service (or system of services) is provided purely by software, 
there is nothing about SOC or SOA that mandates this. In fact, when viewed in 
the context of creating systems for improving situational awareness or quality of 
knowledge via distributed hard and soft information fusion, these conventional 
machine-centric visions of SOC/SOA can be a limiting factor.

13.3.1  Service-Oriented Fusion Pyramid

When discussing the roles and components of conventional SOA, a pyramid 
diagram is often used (Georgakopoulos and Papazoglou 2008). The bottom third 
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of the pyramid represents the basic services provided by the architecture and the 
low-level “plumbing” tasks of the system including publication, discovery, selection, 
and binding. The middle or composition layer of the pyramid shows tasks related 
to the coordination, performance/integrity monitoring, and combination of various 
lower-level services to complete the task at hand. The top or management layer of 
the pyramid shows high-level concepts such as performance assurance and top-
level status of the system. While this view is useful for visualizing the operational 
structure of conventional SOA, it does not offer insight into the utility of SOA for 
human-centric information fusion. The service-oriented fusion pyramid (SOFP) 
attempts to addresses this (see Figure 13.3).

In the SOFP, the levels of data fusion (as outlined by the Joint Directors of 
Laboratories [JDL] Fusion Model [Hall and Llinas 1997]) as well as relevant human 
factors are integrated with the corresponding levels of the SOA pyramid. The three 
levels of the SOFP are low-level operations, composite services, and high-level 
assessments.

13.3.1.1  Low-Level Operations
The bottom level is similar to existing SOA pyramids in that it contains service 
publication, discovery, and selection. These are fundamental SOA principles that 
make it possible for stateless, loosely coupled services to advertise their capabilities, 
locate other useful services, and perform basic communication. In conventional, first-
generation SOA, services are described by the Web Services Description Language 
(WSDL), directory lookup is facilitated by the Universal Description, Discovery, 
and Integration (UDDI) framework, and the services eventually communicate via 
the XML-based Simple Object Access Protocol (SOAP) (Walsh 2002). Although it 
is beyond the scope of this chapter, it should be noted that the newer representational 
state transfer (REST) architecture eliminates much of this complexity. Fielding and 

Service oriented fusion pyramid
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FIGURE 13.3  A perspective on SOA for human-centric information fusion.
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Taylor (2002) is recommended reading for details of REST. Polling data for Quality 
of Service (QoS) analysis is also performed at this level.

In addition to these SOA capabilities, the SOFP adds human observations, sen-
sor data readings, and tasking at the bottom level of the pyramid. In the JDL data 
fusion model, data preprocessing and entity assessment correspond to levels 0 and 1, 
respectively. Tasking of sensors is typically considered a process refinement task that 
corresponds to JDL level 4. In one regard, tasking can be considered a higher-level 
operation because it relies on broad understanding of the system from a composite 
and multifaceted perspective (Bedworth and O’Brien 2000). However, in the context 
of the service-oriented model, physical sensors and even human observers can be 
considered as a service provider—although the ramifications of Humans as a Service 
(HaaS) require additional exploration (in a later section). From this perspective, task-
ing can often be a decentralized operation that relies on the localized needs of other 
services and entities in the system, as opposed to relying purely on high-level dicta-
tion from a centralized tasking mechanism.

Decentralized control has many benefits in a distributed heterogeneous system. 
In addition to increased robustness due to removing single points of failure and the 
performance advantage of parallel processing, decentralized control based on local 
inputs has been shown to have excellent potential for finding good solutions to prob-
lems that are otherwise considered intractable. For example, consider the Ant Colony 
Optimization (ACO) for solving the travelling salesman problem. In Dorigo et al. 
(2006), control in computational systems is modeled after control in ant colonies—
which relies on both local stimulus (finding food) and localized messaging between 
ants (by modifying their environment with pheromones, which is known as stig-
mergy). Much as centralized control of an ant colony would be impossible and even 
undesirable, the same applies to the evolving paradigm of distributed crowdsourcing 
and information fusion. That is why tasking is presented as a low-level operation in 
this framework.

13.3.1.2  Composite Operations
Although the previous section extolled the virtues of decentralized control, most 
systems still require an element of logical hierarchy that can combine and compose 
basic services into more complex services, coordinate data flow between services, 
and ensure system integrity. Additionally, a primary task in designing a distributed 
information fusion system is ensuring that the data is available where it is needed 
and in a usable format. These are considered composite operations in the SOFP 
framework.

A meaningful task is seldom performed by a single service. For example, view-
ing a website and placing an order with an online retailer causes the elaborate 
orchestration of a multitude of services across multiple domains and corporate 
boundaries (Mallick et al. 2005). When everything works properly, the cus-
tomer is presented with a coherent and appealing shopping experience in which 
product availability, detailed images, suggested complimentary purchases, cus-
tomer reviews, shipping rates, and opportunities to save money (or spend more) 
through affiliate programs. Behind the scenes, however, this requires coordination 
between product databases, media services, retail supply, and delivery channels, 
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and affiliate partners that are often geographically dispersed and have disparate 
representations of their data.

Another example that more closely reflects current concerns in the information 
fusion community is the Global Information Grid (GIG) model that the Department 
of Defense (DoD) has embraced for information superiority (Chang 2007). The next 
generation of battle applications relies heavily on network-centric and service-cen-
tric principles to provide a globally connected, highly secure, and extremely robust 
method for enabling operations that span multiple domains, varying security lev-
els, a broad variety of HCI form factors (McNamee 2006). Accomplishing this feat 
requires an extensive orchestration and constant evaluation of system status.

Much like information exchange between various services relies on coordina-
tion and composition, information fusion relies on association of data from dif-
ferent sources before algorithms (such as Kalman filters, see Hall and McMullen 
[2004]) can be used to make predictions about future states. Techniques for data 
association include Nearest Neighbor (NN), Strongest Neighbor (SN), Probabilistic 
Data Association (PDA), and Multiple Hypothesis Testing (MHT) (Mitchell 2007). 
Additional details on data association and related aspects of data fusion can be found 
in Hall and Llinas (2001).

When making decisions based on fusion of information from a variety of sources, 
it often becomes necessary to perform adjudication over which sensors, observers, 
or fused combinations of these are most qualified to deliver accurate assessments. 
For example, in Tutwiler (2011), Flash LIDAR is fused with mid-wavelength infrared 
(MWIR) to deliver a product that provides both distance and thermal information 
about a scene or subject (see Figure 13.4). Under varying conditions and situations, 
each one of these modalities might prove more effective than the other for tasks 
such as identification, localization, and tracking. There are a variety of adjudication 
and voting methods (Parhami 2005) for physical sensors, yet there are very few that 
account for the introduction of humans as observers. This will be a ripe area for 
research over the coming years.

In complex systems that combine heterogeneous inputs from a broad variety of 
geographically distributed sources, providing adequate QoS is vital. It is informative 
to compare the approach to QoS taken by the SOA community with the T&E metrics 
that appear in the data fusion literature. Since SOA relies largely on aggregating 
component services (often from multiple providers) into a more complex composite 
service, the QoS metrics must also take into account the QoS of the services that it 
aggregates. This is typically done by looking at the following categories of metrics: 
(1) provider-advertised metrics, (2) consumer-rated metrics, and (3) observable 
metrics (Zeng et al. 2007).

Provider-advertised metrics are simply the claims or advertisements make by the 
service provider. Service cost, for example, is typically a provider-advertised metric. 
Consumer-rated metrics are based on the feedback and evaluations of past service 
consumers. This can be thought of as analogous to feedback left by buyers on online 
auction sites. Ratings for factors such as responsiveness or accuracy of information 
obtained can be averaged and supplied to future consumers. Finally, observable 
metrics can be obtained through direct measurement and the application of formulae 
that are typically specific to the domain in question.
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For years, the data fusion community has focused on measuring the quality of a 
fused information product (and the underlying fusion process) in terms of Measures 
of Performance (MOPs), Measures of Effectiveness (MOEs), and Measures of Force 
Effectiveness (MOFEs) (White 1999). MOPs include direct evaluation of perfor-
mance factors such as

	 1.	Detection probability
	 2.	False alarm rate
	 3.	Location estimate accuracy
	 4.	Time from transmission to detection
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MOEs evaluate fusion processes on their capability to contribute to the success of a 
task or mission. They typically include

	 1.	Target nomination
	 2.	Target leakage
	 3.	 Information timelines
	 4.	Warning time

MOFEs look at the bigger picture of performance of a data fusion system as well 
as the larger force that it is a part of Hall and Llinas (2001). MOFEs are typically 
applied to military situations, but have other applications as well.

There is a good deal of literature and research related to QoS in SOA (Oriol 2009) 
and T&E of data fusion systems (Blasch 2004), but there is little research into the 
intersection of those areas—which occurs in the middle layer of the SOFP. Prior 
work in this area is especially sparse regarding human-centric factors.

13.3.2 H igh-Level Assessments

In the JDL data fusion model, levels 2 and 3 refer to situation assessment and 
threat or impact assessment. While the levels of the JDL model are not neces-
sarily intended as sequential flowchart, fusion at these higher levels typically 
requires that information be represented at the feature or entity attribute level as 
opposed to raw data representations. Additionally, JDL level 4 is a meta-process 
in which the fusion process itself is evaluated. That is, in the JDL model, the 
level 4 process is a process that monitors the other ongoing fusion processes and 
seeks to optimize the processing results (e.g., by directing sensors, modulating 
algorithm parameters, etc.).

In SOA literature, the high-level management tasks include system evaluation 
through statistical analysis, delivering notification upon completion of high-level 
tasks, and telegraphing the results of high-level decision making. Since SOA supports 
open service marketplaces in which service providers can autonomously negotiate 
with each other to add value or help perform a task, service-level agreements 
(SLAs) are often provided to facilitate “fair trade” within these marketplaces. The 
management levels of SOA help to negotiate these agreements.

In this highest level of the pyramid, a significant change occurs from lower levels 
of SOA and data fusion. At lower levels, mathematical formulae, pattern matching, 
and various detection and tracking algorithms can refine signals and give estimates 
of attributes such as position, identity, and direction/velocity of motion. At higher 
levels, shared knowledge and understanding becomes necessary (Perlovsky 2007). 
Since software fusion systems lack the natural language capabilities that humans 
use to exchange understanding and knowledge between individuals, we rely on 
ontologies or other knowledge representations in an attempt to digitally describe and 
delineate properties that are often easily and intuitively understood by humans, yet 
poorly captured by machine representation. The resulting systems often work well 
for isolated “toy problems” or provide “one off” solutions, but may prove brittle in 
real-world applications.
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13.4  HYBRID SENSING/HYBRID COGNITION OVER SOA

One approach to solving this problem is enlisting a “human-in-the-loop” to provide 
both information gathering and sense-making contributions to the system. While 
computers solve certain problems with speed and accuracy far exceeding that of 
any human, there are also tasks that are still poorly performed by the best sensors, 
software algorithms, and hardware. These tasks often require fusing multiple senses 
or applying innate reasoning or understanding.

In the simple act of stepping off a curb to cross a street, the human perceptual and 
cognitive systems are performing an amazing sequence of calculations that we are 
completely unaware of except on the relatively rare occasion that conscious interven-
tion is needed on our part. The visual system is locating and tracking oncoming and 
passing traffic that we maintain record of just long enough for the visual inputs to 
be corroborated by our auditory system and finally for the sense of passing vibration 
and occasionally the rush of air against our skin. Our vestibular and propriocep-
tive systems maintain awareness of our balance and the location of each joint as it 
moves through its range of motion. In robotics, the inverse kinematics field (Tolani 
et al. 2000) is dedicated to calculating the proper angles and forces necessary to 
move robotic limbs into the correct position to perform a given task. Humans do this 
exquisitely and automatically.

Aside from advantages in perception, information fusion, and movement dynam-
ics, humans have an amazing ability to make near-instantaneous assessments of cur-
rent situation status or risk. Computer systems may be able to read license plates or 
even identify faces with superhuman speed and accuracy, but the best automated 
systems are still utterly incapable of judging individual intent. When one person is 
approached by another, perceptual elements and cues are integrated subliminally. 
We generally do not consciously notice the saccadic eye movements (Pelz et al. 2001) 
or subtle facial gestures, but we can quickly tell that a person in a crowd recognizes 
us, or that we have just made a statement that hurts a friend’s feelings, or that some-
one is about to ask for a favor.

There are also tasks at which computers are at a clear advantage over humans. 
Performing complex numerical calculations, searching large volumes of text, rapidly 
matching patterns, and performing certain types of quantitative assessments (e.g., 
“the vehicle weighs 2819.56 pounds”) are tasks that put computers and physical 
sensor systems at a clear advantage. However, the most significant task that computers 
are capable of is facilitating the connection of people in ways that were previously 
impossible.

Advances in several parallel technologies are now converging in a way that is 
poised to change how humans approach the most complex and difficult tasks that we 
undertake. This will happen through the following factors:

	 1.	The mobile device user, capable of acting as a sensor platform to capture 
high-definition, high-fidelity digital information, is at the same time able 
to apply his or her innate human sensing and cognitive abilities to either 
annotate the captured digital information or share direct observations 
via speech or micro-blogging services such as Twitter. Additionally, the 
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mobile device user’s capability as a sensor platform is enhanced through 
open-source information, geo-location, and group collaboration facilities 
available to them via the device.

	 2.	Social networks allow members to readily identify and aggregate a “hive 
mind” that is ideally suited for the task at hand. Although this capability 
exists to some degree already, the concept of “friending” someone on a 
social network will evolve to include opportunistic sharing of data or 
cognitive ability for a specific task or type of task, as opposed to the current 
model of permissively sharing personal information with large numbers of 
friends or acquaintances.

	 3.	Artificial intelligence and data fusion algorithms are improving—not only 
in their stand-alone capacities, but also through their increasing abilities to 
interact with a human-in-the-loop.

	 4.	Service-oriented system methodologies not only connect computers, 
sensors, and mobile device users, but also facilitate abstraction and service 
description to allow sensing, information fusion, and cognition tasks to be 
performed by either computer, human, or a hybrid (e.g., mobile device user).

13.5  CONCLUSION

The last point mentioned earlier is the most important point of this chapter, so it is 
worth restating. The SOA, with its ability to provide access to data or processing 
algorithms via loosely coupled, rapidly reconfigurable, modular services, allows 
each of the earlier mentioned breakthroughs of mobile device technology, social 
networking, and advancing algorithms, to act as an effectiveness multiplier for each 
other. When the potential of this combination is fully realized, it will have broad 
implications for the sciences, prevention and recovery from natural and man-made 
disasters, medicine, and countless other aspects of human endeavor.
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14 Nonmyopic Sensor 
Management

Viswanath Avasarala and Tracy Mullen

14.1  INTRODUCTION

Sensor management which may be defined as “a process, which seeks to manage 
or coordinate the use of sensing resources in a manner that improves the process 
of data fusion and ultimately that of perception, synergistically” (Manyika and 
Whyte 1994). The recent advances in sensor and communication technologies have 
led to a proliferation of sensor network applications (Balazinska et al. 2007, Hall 
and McMullen 2004). Traditional sensor management approaches apply network 
resources policies myopically so that allocation decisions are optimized only for 
the current time. Myopic sensor management is suboptimal since current network 
allocations have significant future consequences. To illustrate this example, consider 
the following scenario. Consider the following very simple scenario (Scenario I). 
A single sensor X is used to track targets of type A and type B. The utility of tracking 
targets of type A (UA) is much greater than the utility of tracking targets of type 
B (UB). The sensor X has energy reserves that are sufficient only for operating for 
T time schedules. Assume that the environment has only a target of type B in the 
first T time schedules, after which target A appears. If a greedy sensor management 
approach were used, the energy reserves of X would be exhausted by the time a high 
priority task becomes available. Nonmyopic behavior is suboptimal even when the 
only network resources that need to be considered are restricted to sensor schedules 
alone. For example, consider the scenario illustrated in Figure 14.1 (Scenario II). 
A sensor network spans a particular area with varying coverage. Two targets, A and 
B, exist in the environment. The sensor network’s task is to reduce the uncertainty 
associated with estimating target positions to below a certain threshold. The tasks 
with tracking A and B have the same utility. Target A is expected to move along the 
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path shown in Figure 14.1 from region R1 to R2. Target B is expected to move from 
region R1 to R3. Since R3 has much higher sensor coverage then R2, an optimal 
sensor should consider allocating more tracking resources to A than B, when both 
A and B are in R1. However, myopic sensor managers (SM) consider optimization 
only for the current schedule and therefore do not prioritize between A and B in R1.

As Figure 14.1 illustrates using a simple scenario, an optimal sensor should be 
nonmyopic. That is, it should have a far-sighted strategy where the sensor alloca-
tions are optimized over a time horizon. However, the resource allocation problem is 
exponentially complex in the length of time horizon. Furthermore, modeling uncer-
tainty associated with future possibilities is also a challenging problem. As a result, 
traditionally sensor management problems have used myopic approaches where the 
optimality for the current is considered (refer to Avasarala [2006] for a good review 
of greedy techniques). However, recent breakthroughs in stochastic optimization 
techniques combined with increases in computational speed have made nonmyopic 
sensor management techniques real-time feasible.

In this chapter, we review two of the most promising techniques for nonmyopic 
sensor management, stochastic dynamic programming, and market-oriented pro-
gramming. This chapter is organized as follows. Section 14.2 introduces the sto-
chastic dynamic programming approach and elaborates on a few crucial aspects of 
this approach. Section 14.3 introduces market-oriented programming. Our own work 
in this domain is presented as an example implementation in Section 14.4. Finally, 
Section 14.5 provides some concluding remarks.

14.2  STOCHASTIC DYNAMIC PROGRAMMING

Stochastic dynamic programming (Bertsekas and Tsitsiklis 1996) is based on the 
following principle (Gelly et al. 2006): “Take the decision at time step t such that the 
sum ‘cost at time step t due to your decision’ plus ‘expected cost from time steps t + 
1 to T from the state resulting from your decision’ is minimal. Bellman’s optimality 
principle states that this strategy is optimal. Unfortunately, it can only be applied if 
the expected cost from time steps t + 1 to T can be guessed, depending on the current 
state of the system and the decision.”

R2

R4

R1

R3

A

B

Sensor

FIGURE 14.1  Sample scenario for nonmyopic sensor management.
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These methods solve the equation of the form:

	

V g E
V S

S
t t t

t t

t
t= ( ) ( )





+ +Λ Λ+ α 1 1 , 	 (14.1)

where
gt(Λt) is the utility of taking action Λt at time t
St is the “state” of the system at time t
E(Vt+1(St+1)/St) is the expected future value of current actions
α is the time discount factor

In recent years, stochastic dynamic programming approaches have been applied to 
sensor management problems. In 1995, Castañon considered a multigrid, single sen-
sor detection problem. Under certain assumptions about the target distributions and 
probability distribution of sensor measurements, Castañon solved the problem to 
optimality. The optimal allocation policy was to search either of the two most likely 
target locations during each round of scheduling. Castañon (1997) further dem-
onstrated swing a simulation study that this optimal policy outperforms a greedy 
information-theoretic approach. However, except for trivial cases, solving stochastic 
dynamic programming to optimality is not possible because of their complexity. As 
a result, more generally, researchers have used approximation techniques to solve 
stochastic dynamic programming problems. Researchers have used various approxi-
mation methods for solving the sensor management problem that is concerned with 
tracking targets. Washburn et al. (2002) formulate a single-sensor, multitarget sched-
uling problem as a stochastic scheduling problem and use the Gittin’s index rule 
to develop approximate solutions. Williams et al. (2005) consider a single-target, 
multisensor allocation problem with communication constraints and use adaptive 
Lagrangian relaxation to solve the constrained dynamic programming problem. 
Schneider et al. (2006) have used approximate dynamic programming to allocate 
gimbaled radars for detecting and tracking tracks over a multihorizon time period. 
As explained earlier, these more complex stochastic dynamic programming prob-
lems have been solved used using greedy approximations.

As a sample illustration, consider Schneider et al.’s (2006) rollout approximation-
based approach. In this problem, a base sensor allocation policy is adopted for 
myopic allocation. The authors have used certain heuristics as the base policy but 
more generally any greedy single-period scheduling problem like the information-
theoretic sensor management (Kastella 1996, Walsh et al. 1998). Assuming a base 
policy, the stochastic dynamic programming problem is solved as follows: find the 
optimal action at time tk by assuming that all allocations for times t > tk are calculated 
using the base policy. This method can be applied straightforwardly when the only 
resources available are sensor schedules. However, for scenarios that involve other 
network resources like energy (as explained in Scenario I), the rollout algorithm-
based results can be inadequate. This is because, by definition, a greedy approach for 
nonmyopic optimization implies that a sensor should be used for tasks in the current 
round schedule if its energy reserves permit it. Therefore, using a greedy base policy 
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for future schedules leads to very conservative energy utilization allocations for 
the current time. An alternative approach to avoid this pitfall when heterogeneous 
network resources have to be modeled is to use a weighted sum of performance 
on multiple objectives like track accuracy, energy reserves, and communication 
bandwidth. This approach is similar to the approach presented in Williams et al. 
(2005).

So far, the research approaches for sensor management on stochastic dynamic 
programming have considered on a single type of target. For example, Castañon 
has considered the detection problem in 1995 (Castañon 1995), classification 
problem in McIntyre and Hintz (1996), and the tracking problem has been consid-
ered in Washburn et al. (2002), Williams et al. (2005), and Schneider and Chong 
(2006). Research studies that analyze the performance of a more generic multi-
sensor, multitask sensor network environment are not currently available in the 
public domain.

14.3  MARKET-ORIENTED PROGRAMMING

Market-oriented programming techniques use market algorithms for resource 
allocation in distributed environments (Wellman et al. 2001). The genesis of mar-
ket-oriented programming was in Artificial Intelligence (AI) community’s work in 
developing economic mechanisms for distributed problem solving and can be first 
traced to the contract net protocol. Davis and Smith (1983) and Sandholm (1993) 
extended the contract net protocol by integrating the concepts of cost and price. For 
a detailed review of market-oriented programming, refer to Wellman et al. (2001) 
and Wellman (1991). We have developed market architecture for sensor manage-
ment (MASM) based on market-oriented programming techniques for multitask, 
multiconsumer, multisensor sensor management. MASM assumes that all sensors 
belong to a single platform where a centralized SM is responsible for allocating 
resources to task. For smart dust environments, Mainland et al. (2005) have pro-
posed similar price-based mechanisms that do not require a central resource allo-
cation agent.

The design of MASM is shown in Figure 14.2. The Mission Manager (MM) is 
responsible for allocating task responsibilities and budgets to the various agents in 
the market. The actual details of the sensor network are invisible to the consumer 
agents. Instead, consumers are allowed to bid on high-level tasks, like “Track Target 
X to an accuracy Y.” The SM stipulates the type of tasks that the consumers can bid 
on, so that the consumer bids are restricted to tasks SM knows how to accomplish. 
Consumer bids are of the type <t, p> where t is the task description that includes the 
task type and final task quality desired by the consumer, and p is the price that the 
consumer is willing to pay. For example, the task description for a bid to search a 
particular grid, x, so that the uncertainty of target presence (as measured by entropy) 
<0.001 is as follows:

(type: search
entity: grid no x
quality: (entropy < 0.001))
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Since MASM models network resources as commodities that need to be sold in 
the market, it has to set prices for these resources during each round of schedul-
ing. In the current version of MASM, we use a pricing protocol similar to the 
tatonement process for determining resource prices. Tatonement is an iterative 
procedure for finding equilibrium prices based on the search parameter (e.g., price 
or quantity) (Samuelson 1947, Walras 1954, Waldspurger et al. 1992). The price 
adjustment process starts with an auctioneer communicating an arbitrary price 
set to the users. The users compute their demand for the first good at the given 
prices and communicate it to the auctioneer. Depending on whether the aggregate 
demand for the first good is positive or negative, the auctioneer either increases 
or decreases its price. This process continues until a price at which aggregate 
demand for the first good equals zero is reached. This process is then repeated 
for the second good and so on. At the end of the first cycle, only the last good 
is guaranteed to have a zero demand, but assuming gross substitutability (i.e., 
when the price of good j goes up, there is a positive increase in the demand for 
every other good by each user) the price set arrived at after each cycle is closer to 
equilibrium than the previous one. More refined algorithms using partial deriva-
tives of the demand functions have been developed to search for equilibrium in 
parallel (Shoven and Whalley 1992, Ygge 1998). Though the gross substitutability 
assumption is often violated (as in sensor networks), the tatonement process has 
been found to give satisfactory results (Cheng et al. 2005).

To use the tatonement process in MASM, we model the supply and demand 
functions for a resource at a particular price. MASM estimates these functions 
using the current resource usage rate. Prices for individual resources are initial-
ized to zero during the sensor network initialization. After each round of sched-
uling, the prices ϑS

t+( )1  for the resource S for the next round of scheduling are 

Finished goods
Area scans, target tracks, etc.

Sensors
Sensor 

pointing,
battery power,

processing
power

Consumers

Mission
manager

Sensor 
manager

Market auction

Schedule

Bid
Market

reports
Budgets

Consume

Transmission
channels
Bandwidth

FIGURE 14.2  MASM architecture.
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calculated based on the current usage rate of the resource rS
t( ) and the available 

usage rate of aS
t :
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where τ is the constant which determines the rate at which prices are updated.
The definitions of rS

t  and aS
t  are dependent on the resource being modeled. 

For example, for sensors, we have used the available battery power. Let sensor 
A be endowed with initial battery power bi and assume that sensor A needs to be 
available for a total operating time of T. At time t, if the available battery power 
is bt, then
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Once the resource prices are formulated, SM uses a combinatorial auction mechanism 
to find the optimal allocation given the consumer bids. However, the consumer 
bids are on high-level tasks and the sensor resources are raw sensor schedules or 
communication bandwidth, etc. Thus, some method for bundling goods produced 
by various sellers is essential to create commodities that consumers are interested in 
and can bid for. The SM uses a special-purpose protocol, continuous combinatorial 
auction (CCA), to disintegrate the high-level consumer bids to bids for sensor 
resources. CCA has been designed to decrease computational and communication 
complexity of the market. The details of CCA are available in Avasarala (2006). 
We briefly describe the salient features of CCA. CCA uses discrete time slots to 
schedule resources. For each time slot, a combinatorial auction is held to determine 
the optimal allocation of resources. As explained earlier, there is a dichotomy in what 
the consumers bid on (high-level tasks) and what resources the sensor network has. 
To address this dichotomy, the CCA uses a bid translation function to create low-level 
resource bids from high-level task bids. For each time slot t, the auctioneer constructs 
bids on each resource set, S, that can be allotted to task X. To construct these bids, 
the auctioneer needs to calculate the price associated with the bid on resource set S, 
for task X, based on the consumer bid price P. For this purpose, a novel mechanism 
of price calculation has been devised. For the task X, the auctioneer computes the 
bid price for a resource set S as the percentage of the consumer task completed by 
the resource set multiplied by the actual consumer bid price P. Computation of the 
percentage of task completed by a resource set S is in terms of readings of a canonical 
sensor, A, as follows. Let task X require, on average, na consecutive schedules of the 
standard sensor A to be completed. Instead, if a resource bundle S is allocated to task 
X during the current round of scheduling, the expected number of standard sensor 
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readings required changes to ′na. The percentage of task completed by resource set S 
is equal to the percentage savings in the required number of sensor A readings:

	
f

n n

n
S X

a a

a
,

( )= − ′
	 (14.4)

Then, the bid price for resource set S at time t for task X with bid price P is

	 p f PS X S X s
t

, , *= − ϑ 	 (14.5)

where ϑs
t  is the price of the bundle during the tth round of scheduling. It is calculated 

as the sum of the prices of the individual resources comprising S. Once the resource 
bids and their corresponding bid prices are formulated, MASM uses a standard 
combinatorial auction winner determination algorithm (Andersson et al. 2000) to 
find the optimal resource allocation.

The number of resource combinations that can be allocated to a task is exponen-
tial in the number of resources. For large sensor networks, we have formulated a 
special genetic algorithm that solves the bid translation problem in polynomial time 
(Avasarala 2006). The representation schema used for the algorithms resembles the 
SGA algorithm that we developed for determining combinatorial auction winners 
(Avasarala et al. 2006). First, let the number of bids be k and the number of sensors 
be n. The representation schema used by the genetic algorithm is a string of length 
n, where each string element is a real-valued number between 1 and k. The jth string 
member represents the bid to which sensor j is allocated. We obtain this string’s 
overall utility as the sum of utilities obtained from individual bids, which are calcu-
lated as the sum of individual bid prices calculated as shown in Equation 14.5. The 
genetic algorithm is anytime and has polynomial complexity.

Clearly, the efficiency of the market algorithm depends to a great extent on the bid-
ding strategies of the consumer. Formulating an optimal bidding strategy for MASM 
consumers is not straightforward because of the following reasons. In MASM, the 
SM accepts bids only on a set of predefined tasks. The consumer agent is responsible 
for deconstructing its high-level tasks or goals into a sequence of SM acceptable sub-
tasks on which it can bid. Furthermore, it is responsible for calculating appropriate 
bid prices for these subtasks in order to bid in the market. The resource requestors 
have utility for tasks that they are trying to accomplish but not necessarily for the 
tasks the SM accepts bids for. Therefore, the consumer agents have to formulate a 
bidding strategy to formulate the optimal prices for their auction bids. For example, 
assume that a consumer has utility ut for destroying a target T. The high-level task 
of destroying T might consist of the following two subtasks, for which SM accepts 
bids: (a) search for target T and (b) track target T so that the uncertainty about its 
position is reduced. The consumer then has to divide its overall utility, ut into utilities 
for the two subtasks, so that it can formulate bid prices. The optimal weights of the 
individual subtasks are dependent on the system conditions. For example, it might be 
difficult to search for targets in some environments whereas in others tracking tracks 
to high accuracy might be the bottleneck. Utilities for the subtasks should take into 
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consideration the competition for resources. For example, sensors that can be used 
for velocity estimation, like Doppler sensors, might be abundant in the network, 
making the tracking task a less competitive one. Moreover, MASM uses a combina-
torial auction–based mechanism for resource allocation and therefore predicting the 
optimal bidding strategies is a difficult problem (Cramton et al. 2005). Furthermore, 
future market conditions depend on a number of unpredictable variables including 
future competing consumer task load, their bidding strategies. As an initial study, we 
implemented a consumer bidding strategy that uses some simplified market assump-
tions (Avasarala et al. 2009).

We frame this problem as follows. Let φi (i = 1 to m) be the set of tasks that the 
consumer has a utility for. Let ui be the consumer utility of accomplishing the 
ith consumer task. Let ϕj {j = 1 to n} be the set of tasks that the sensor network 
accepts bids for and can accomplish. We assume that each consumer task φi con-
sists of a collection of sensor network tasks ϕj accomplished in a certain sequence. 
The sequence of sensor tasks for the ith consumer task is denoted by χi. We also 
assume that there is one to many mapping between consumer tasks and sensor 
network tasks. That is, each sensor network task can be a subtask for one and only 
one consumer task. For example, in the MASM simulation scenario, consumer 
has a utility for destroying targets (φ1 = “destroy targets”). To accomplish this 
task, the consumer has to use the sensor network resources to first search for and 
detect targets {ϕ1 = “search for targets”}. Then, the consumer has to track targets, 
{ϕ2 = “track targets”}. In this case,

	 χ1 search for targets track targets= { , }.“ ” “ ”

Clearly, establishing the optimal bid prices involves solving a stochastic, multiperiod 
optimization. However, we make the following assumptions to make consumer 
bidding optimization for a single-period, deterministic optimization problem.

	 1.	Consumers model the market as a fixed-price market. In a fixed-price mar-
ket, the different commodities have fixed prices and the only choice con-
sumers have is whether to buy them or not (Cliff and Bruten 1997). For 
fixed-price markets, consumers can construct the price–quality of service 
(QoS) mapping as a deterministic relationship.

	 2.	Consumers model the price–QoS to be independent of time. That is, 
consumers assume that the current price–QoS mapping will persist 
throughout the sensor network operation.

	 3.	Consumers optimize bidding prices under the assumption that they use a 
constant price for each sensor network task throughout the sensor network 
operation.

Since the consumers assume that the market is a fixed-price market, they can model 
the market behavior with a series of monotonically increasing functions, γϕj {j = 1 
to n} where γϕj

 (Pϕj
) represents the fraction of sensor task φj that will be completed in 

any round of scheduling if the consumer pays a price Pϕj
. The number of schedules 

for completing the sensor network task φj using Pϕj
 as the bid price is
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where [x] = min{n∊Z|n ≥ x), Z being the set of integers.
The consumer earns a utility ui for completing a consumer task φi. If χ i is the 

set of sensor tasks that comprise φi, then the estimated number of bidding cycles to 
complete consumer task φi can be calculated as
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where χi
k is the kth element of χi.

Let pχi
 be the vector of bidding prices p i

kχ  (k = 1 to |χi|) for the sensor network tasks 
that comprise φi. To calculate the optimal set of bidding price for the ith consumer 
task, consumers have to solve the optimization problem:
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In the earlier equation, we have assumed that consumers are profit-maximizing 
agents. Instead, in a cooperative environment where consumers are unselfish and 
intend to maximum the number of tasks completed subject to budget constraints, the 
optimization problem faced by the consumers is of the form:

	
min( )

P i
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For the earlier formulation, we assumed that the consumer can simultaneously pur-
sue multiple consumer tasks and one sensor task pertaining to each consumer task is 
active at any time. For example, in the MASM simulation scenario involving target 
destruction explained previously, this translates to the assumption that consumers 
can either search for targets or track a particular target at any given time, but cannot 
do both simultaneously. These assumptions were guided by the design of consumer 
agents in the MASM simulation environment (see the next section). For alternate 
scenarios, Equations 14.8 and 14.9 have to be reformulated accordingly. Since both 
Equations 14.8 and 14.9 are deterministic optimization problems, straightforward 
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heuristic-based approaches like genetic algorithms can be used to solve them. 
However, the results of this optimization are dependent heavily on the price–QoS 
mapping Υϕi

, which is constructed based on current market conditions.
Directly using the values obtained by maximizing Equation 14.6 leads to exten-

sive reliance on current market conditions. For example, a particular consumer 
agent that is tracking a highly important target might bid aggressively for tracking 
resources. As a result, the estimate of price–QoS mappings for the track subtask 
might show a temporary shift. If all the consumer agents adapt rapidly to the new 
auction outcomes, they cause a permanent price increase in the market. To avoid 
speculative behavior, we implemented Widrow–Hoff learning to buffer consumer 
responses, similar to the approach used by Cliff and Bruten’s Zero Intelligence Plus 
(ZIP) traders (Cliff and Bruten 1997).

ZIP traders were originally designed to extend the zero intelligence agent–based 
simulations of Gode and Sunder (1997). The Widrow–Hoff learning rule with 
momentum (Widrow and Hoff 1960) is used by the consumers to adapt their bid 
prices, based on their bid prices in the previous auction round and the calculated 
optimal prices. Assume that the bidding price used by the consumer for task φi in 
the previous round of scheduling is p iϕ

t−1. Let the optimal bidding price calculated 
according to Equation 14.6 or 14.8 be pφi

. The current bidding price for task budget, 
p iϕ

t , is calculated as follows:
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The learning rate parameter, λκ determines the rate at which the budget is changed. 
During each iteration, the search budget is updated using the current momentum, 
τcurrent, which is a weighted sum of the momentum during the previous iteration 
and the current error. Current error is defined as the difference between the current 
search budget and optimal search budget. The momentum rate parameter, κτ deter-
mines the weight given to the past changes in the calculation of momentum.

14.4 � PERFORMANCE EVALUATION USING 
A SIMULATION TEST BED

14.4.1  Simulation Platform

We developed a multisensor, multiconsumer, multitarget platform to serve as a test 
bed for MASM. The design of the sensor network and the communication channel 
are derived from McIntyre and Hintz (1997). The complete details of the simulation 
environment are available in Avasarala (2006). The simulation environment repre-
sents a two-dimensional area where targets are uniformly distributed. These targets 
move around the search area with constant velocity. The search area has several dif-
ferent kinds of sensors, including sensors that provide range and bearing, bearings 
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only sensors, electronic support measure (ESM) sensors. The simulation has a set 
of software agents that search for and destroy targets. The agents are not provided 
any sensing resources and they depend on the sensor network for obtaining informa-
tion about the environment. They bid for sensor resources and update their status 
based on information provided by the SM. They use the sensor network’s resource to 
search for potential targets and if the probability of target existence within their range 
exceeds a certain threshold, initialize target tracks. Once a target track is initialized, 
the agents attack the target if their confidence in the target position is greater than a 
certain threshold. This is again accomplished by buying sensing resources from the 
sensor network. Agents are assumed to have a utility ut (=1.0) for destroying a target. 
To divide the overall utility into utilities for search and track tasks, agents initially 
use equal priorities. During the simulation run, agents update the search to track bud-
get ratio using the learning previously described. The consumer agents converged to 
a budget of 0.95 for tracking task and 0.05 for search task (Avasarala 2006). In this 
simulation environment, we found that MASM outperforms information-theoretic 
sensor management. For a detailed review of these results, refer to Avasarala (2006). 
Here, we elaborate on the nonmyopic nature of MASM.

We found that MASM uses resource prices to implicitly reserve resources for 
future use by high priority tasks, even if no high priority tasks are currently in prog-
ress. For example, consider a situation where the first user is tracking a target and the 
rest of the users are in search mode. Both MASM and ITSM give highest priority to 
the track task. The first user has a high budget for a track bid and bids accordingly. 
However, during the tracking task, the prices associated with the sensing resources 
increases since the rate of their battery power usage during tracking is high. After 
the tracking task is completed and when only detection tasks are in progress, prices 
of the sensor schedules would have increased. Consequently, sensors will be used 
at a slower rate during the detection phase, effectively reserving sensors for future 
higher-priority tasks. However, ITSM has no method of prioritizing between two 
tasks, except when both the tasks are currently in progress. Figure 14.3 shows the 
number of sensors used during different rounds of scheduling using MASM, where 
the number of sensors used when tracking tasks are in progress is higher than the 
number of sensors used when only detection tasks are in progress. When only detec-
tion tasks are present, a significant percent of sensors are resting, thereby preserving 
their battery power for future use.

This explains how MASM addresses the situation presented in Scenario I.
Although the current simulation is not equipped to generate situations simi-

lar to Scenario II, it is easy to how MASM would generate nongreedy behav-
ior for this situation, even while using the simple consumer learning behavior 
explained earlier. If MASM is used for resource allocation in Scenario II, it will 
learn to price the sensors in region R2 higher than sensors in region R3 after a 
certain period of operation, since they are scarcely available. Consequently, the 
price–QoS relationship for tracking A constructed using historic data will yield 
a lower QoS for the same price as compared to the price–QoS relationship for 
tracking B. Therefore, bids on task B will be priced lower than bids on task A 
since bidding agents will learn that task B can be completed at a overall lower 
cost. Consequently, in R1, the tracking tasks involving targets that are expected 
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to move to R2 get preferential resource allocation than tracking tasks that involve 
targets expected to move to R3.

14.5  CONCLUSION

In this chapter, we presented two promising techniques for implementing nonmyopic 
sensor management. Approximate dynamic programming approaches offer a rigorous 
framework for this problem but require elaborate problem-specific formulation. Market-
oriented programming approaches offer a comprehensive framework for multisensor, 
multiuser, multitask nonmyopic sensor management. However, the implementation 
involves using a few heuristics that might have to be optimized specifically for the 
concerned domain.
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Distributed Data and 
Information Fusion 
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15.1 � BRIEF REMARKS ON ABSTRACT CONCEPTS 
RELATED TO TEST AND EVALUATION

Since both the first and second editions of this handbook for multisensor data fusion 
have addressed various of the fundamental and abstract concepts related to test and 
evaluation (T&E henceforth), we will only briefly remark and summarize some of 
these still-important notions (see Hall and Llinas [2001], chapter 20 and Liggins 
et al. [2009], chapter 25 for more extended remarks).

A still-valid and important assertion is that generalized methods and procedures 
as well as formalized statistical/mathematical analysis techniques for improved 
T&E of data and information fusion systems and processes are still very under-
studied. Partially as a result of this deficiency, transition of seemingly capable data 

CONTENTS

15.1	 Brief Remarks on Abstract Concepts Related to Test and Evaluation.......... 379
15.2	 Understanding Distributed Fusion System Concepts 

and Implications for Test and Evaluation...................................................... 382
15.2.1	 Implications for Test and Evaluation.................................................384
15.2.2	 Measures and Metrics in the Network Value Chain.......................... 386
15.2.3	 Fusion Estimates and Truth States.................................................... 388
15.2.4	 Notion of a Performance Evaluation Tree......................................... 389
15.2.5	 Complexities in Error Audit Trails.................................................... 393
15.2.6	 Formal Experimental Design and Statistical Analyses..................... 393

15.3	 Summarizing Impacts to and Strategies for Distributed 
Fusion System T&E....................................................................................... 398

15.4	 Remarks from a DDIFS Use Case................................................................. 399
15.5	 Summary and Conclusions............................................................................404
References...............................................................................................................407



380 Distributed Data Fusion for Network-Centric Operations

fusion systems has been problematical. Among factors needing additional study to 
smooth the path toward reliable operational use are new, user-oriented techniques, 
for example, involving new ideas on metrics such as trustworthiness metrics as 
well as those related to dealing with the inherent uncertainties involved with fusion 
processes so that a clear understanding of these effects can be realized by typical 
users. As the field of multisensor data fusion moves its focus to the higher levels 
of abstraction and inference (Levels 2, 3, and 4 of the Revised JDL Model, see 
Figure 15.1 [Steinberg et al. 1999, Bowman and Steinberg 2001, Bowman 2004, 
Llinas et al. 2004, Steinberg and Bowman 2004]), efforts have been made toward 
defining new types of metrics for these fusion levels (Blasch 2003; Blasch et al. 
2004, 2010; Haith and Bowman 2010) with extensions for dual resource manage-
ment levels, but much more needs to be done in regard to efficient T&E techniques 
for high-level state estimates, since these are much more complex and of higher 
dimensionality than Level 1 type states.

Following Hall and Llinas (2001) and Liggins et al. (2009), we still emphasize the 
remarks having to do with test philosophy and context. A philosophy is that line of 
thinking that establishes or emphasizes a particular point of view for the tests and/or 
evaluations that follow. Philosophies primarily establish points of view or perspec-
tives for T&E that are consistent with, and can be traced to, the goals and objectives: 
they establish the purpose of investing in the T&E process. T&E philosophies, while 
generally stated in nonfinancial terms, do in fact establish economic philosophies for 
the commitment of funds and resources to the T&E process. The simplest example of 
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this notion is reflected in the so-called black box or white box viewpoints for T&E, 
from which either external (I/O behaviors) or internal (procedure execution behav-
iors) are examined. Another point of view revolves about the research or development 
goals established for the program. The philosophy establishes the high-level state-
ment of the context for testing and is closely intertwined with the program goals and 
objectives. Assessments of delivered value for defense or other critical systems must 
be judged in light of system or program goals and objectives. In the design and devel-
opment of such systems, many translations of the stated goals and objectives occur 
as a result of the systems engineering process, which both analyzes (decomposes) the 
goals into functional and performance requirements and synthesizes (reassembles) 
system components intended to perform in accordance with these requirements. 
Throughout this process, however, the program goals and objectives must be kept in 
view because they establish the context in which value will be judged.

Context, therefore, reflects what the program (i.e., the DF&RM process or a func-
tion within it) is trying to achieve—(e.g., what the research or developmental goals 
[the purposes of building the system at hand] or the learning intelligent DF&RM 
system are). Such goals are typically reflected in the program name, such as a “Proof 
of Concept” program or “Production Prototype” program. Many recent programs 
involve “demonstrations” or “experiments” of some type or other, with these words 
reflecting in part the nature of such program goals or objectives.

Once having espoused one or another of the philosophies, there exists a perspec-
tive from which to select various criteria, which will collectively provide a basis for 
evaluation. There is, in the most general case, a functional relationship as

	

Criterion fct [(Measure fct (Metric Metric ),

Measure fc

i i j

j

= =

=

, …

tt (Metric Metric ), etci, .]…

that defines how each criterion is dependent on certain measures that are in turn 
derived hierarchical functions of higher-level metrics (e.g., from probability of mis-
sion success on down), which are the quantities that are (importantly) observable in 
an experiment. Each metric, measure, and criterion also has a scale that must be con-
sidered. Moreover, the scales are often incongruent so that some type of normalized 
figure of merit approach may be necessary in order to integrate metrics on disparate 
scales and construct a unified, quantitative parameter for making judgments.

Another important element of the T&E framework is the approach element of the 
T&E process. In this sense, approach means a set of activities, which are both proce-
dural and analytical, that generates the “measure” results of interest (via analytical 
operations on the observed metrics) as well as provides the mechanics by which deci-
sions are made based on those measures and in relation to the criteria. The approach 
consists of two components as described in the following:

•	 A procedure, which is a metric-gathering paradigm; it is an experimental 
procedure.

•	 An experimental design, which defines (1) the test cases, (2) the standards 
for evaluation, and (3) the analytical framework for assessing the results.
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Aspects of experimental design include the formal methods of classical, statistical, 
experimental design. Few if any fusion T&E research efforts in the literature have 
applied this type of formal strategy, presumably as a result of cost limitations or 
other unstated factors. Nevertheless, there are the serious questions of sample size 
and confidence intervals for estimates, among others, to deal with in the formulation 
of any T&E program, since simple comparisons of mean values, etc. under unstruc-
tured test conditions may not have very much statistical significance in compari-
son to the formal requirements of a rigorous experimental design. Any fusion-based 
T&E program, because all fusion systems and processes are inherently dealing with 
random variables and stochastic behaviors, should at least recognize the risks associ-
ated with such simplified analyses.

The T&E process contains a Level 4 fusion performance evaluation (PE) process 
as per the DNN technical architecture; see Haith and Bowman (2010), Bowman 
(2008), Gelfand et al. (2009), and Bowman et al. (2009). The PE process architecture 
typically involves a network of interlaced PE fusion and T&E Process Management 
(PM) DF&RM nodes. Each PE node performs data preparation, data association, 
and state estimation where the data are DF&RM outputs (e.g., track estimates) and 
estimates of truth and the output state estimates are the Measures of Performance 
(MOPS) such as described earlier.

Much more is said in Hall and Llinas (2001) and Liggins et al. (2009) on the 
general considerations of T&E for data and information fusion systems, and the 
interested reader is directed to those sources for additional commentary and insight, 
along with many references.

15.2 � UNDERSTANDING DISTRIBUTED FUSION 
SYSTEM CONCEPTS AND IMPLICATIONS 
FOR TEST AND EVALUATION

Testing and evaluating anything requires that the item to be tested, the “test arti-
cle,” be clearly defined. It is also important to understand the role or purpose 
of the test article in the context of its use or setting in a larger system frame-
work. To stimulate this discussion, let us characterize what a Distributed Data 
or Information Fusion System (DDIFS) is; it is appreciated that other chapters in 
this book may have other characterizations of a DDIFS, but we feel it is impor-
tant to review these, even if redundant, in relation to developing thoughts about 
testing and evaluating such systems and functions. So, our local characterization 
describes a DDIFS as follows:

	 1.	 It is first of all “distributed,” meaning that its components (which immedi-
ately implies that it comprises a number of components) are spread apart 
somehow; very often this is a geographical separation, or for defense/
security applications, a platform separation where DDIFS components are 
hosted on an aircraft or ship or satellite, etc. (that could, in turn, be geo-
graphically separated)—thus we can also have a kind of local distribution 
embedded in a larger distributed-system context.
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	 2.	The components are interconnected (informationally) according to the 
design of a specified communication/datalinking network, and share infor-
mation and/or processing results according to some supported protocol.

	 a.	 Note that this makes the components interdependent in some way.
	 3.	The components also may have local resources of various description or 

type to include sensors, processors, and manageable resources; representa-
tive component functionalities can include sensor nodes, processing nodes, 
fusion nodes, communication nodes, etc.—not every component in a DDIFS 
is necessarily a fusion node in the sense of producing state estimates, as 
some may perform functions that contribute to the formation of estimates.

	 4.	 In this framework, the components can only fuse two things: local 
(“organic”) information from resources that they “own” (i.e., for which they 
have control and design authority), and information that comes to them 
“somehow” (i.e., according to the inter-component information-sharing 
strategy (ISS) or protocol) from other components in the networked system 
(we interchange the terms distributed and networked).

	 5.	Metadata must also be shared across components along with the shared infor-
mation in order that sender-components can appropriately inform receiver-
components of certain information necessary to subsequent processing of 
the sent “message” or data-parcel by receiver-components. (It can also be 
the case that receiver-components can request information from various 
other components, and such requests may have metadata and the requesting-
component may ask that certain metadata be contained in the reply.)

	 a.	 Another reason for metadata is due to the generally large size of most 
distributed systems that prevents any given component from knowing 
much about “distant” components and their (dynamic) status.

	 6.	The topology of the DDIFS is very important since it affects a number of 
overall system properties to include connectivity, failure vulnerability, etc. 
Table 15.1, drawn largely from Durrant-Whyte (2000) and Utete (1994), 
shows a subjective characterization of some DDIFS properties as a function 
of topological type.

	 7.	 It can be expected that in larger, complex systems any given fusion com-
ponents or nodes may have to have two fusion processes operating, one 
to process local, organic data as described earlier—since these data are 
best understood by the local node, allowing optimal fusion processes to be 
developed—and one to process received network information, about which 
only the metadata are known, restricting the realization of optimal methods 
for this “external” data. Such separation may also be required because of 
distinct differences in the nature of the fusion operations, requiring differ-
ent algorithmic techniques.

We will restrict our discussion to DDIFSs that are coherently designed toward some 
bounded set of overarching purposes and capabilities, as distinct from loosely cou-
pled sets of components that may operate opportunistically or some ad hoc man-
ner, in the fashion of a federated system. Such a restriction makes development of a 
T&E scheme or plan more controllable, but nevertheless requires a clear partitioning 
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of requirements and capability specifications to parts of the DDIFS. Note that this 
framework is not unlike the system design approach characterized by Bowman for 
centralized and distributed fusion systems (Bowman 1994).

There is another feature of DDIFSs that needs to be mentioned, although this 
attribute is applicable to all information fusion systems and many intelligence and 
surveillance systems that may not even employ IF methods. That attribute is that the 
fundamental nature of any IF or DDIFS is that the data and even often the knowledge 
employed in system design and in system operation has a stochastic quality.* This 
immediately raises the question about how to define and develop a T&E approach, in 
the sense of questioning how to account for and measure statistically assured confi-
dence in the test results. More is said about this in the later sections of the chapter.

15.2.1 I mplications for Test and Evaluation

There are various implications that the features of a DDIFS impute onto the nature 
of and methods for T&E. For example, there are two broad types of testing used in 
the development of defense systems: developmental test & evaluation (DT&E) and 
operational test & evaluation (OT&E). DT&E is oriented to a bounded system as a 
test article, the “system under test or SUT,” and verifies that the system’s design is 
satisfactory and that all technical specifications and contract requirements have been 
met. It is kind of a check-list process of examining whether defined SUT requirements 

*	Sensibly every sensor has embedded thermal noise and other factors that attach randomness to the 
measured/observed data obtained by the sensor; much system design knowledge is imperfect and 
draws from world models that have inherent stochastic features, and some such knowledge is drawn 
from knowledge elicitation from humans that of course involve imperfect and random effects.

TABLE 15.1
Subjectively Judged Properties of a DDIFS as a Function of Topology-Class

DDIFS Topology

Inherent 
Redundancy/

Failure Protection Scalability

Ability to Manage 
Redundant Information 

(Double Counting) Practicality

Fully connected Good Very poor Good Poor

Tree Poor; branch 
failures can lead 
to tree splitting

Poor Limited to most recent 
transaction

Reasonable

Decentralized Moderate Good Possible but requires careful 
design

Good

Dynamically 
managed

Good Moderate Moderate Complex

Source:	 Adapted from Durrant-Whyte, H.F., A beginner’s guide to decentralized data fusion, Technical 
report, Australian Centre for Field Robotics, University of Sydney, Sydney, New South Wales, 
Australia, 2000; Utete, S., Network management in decentralized sensing systems, PhD thesis, 
The University of Oxford, Oxford, U.K., 1994.
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have been met, one-by-one, as determined by T&E processes that address these 
requirements either singly or in combination. As noted, it is typically a process that is 
checking that the delivered system satisfies contractual requirements and so is closely 
related to the acquisition process. DT&E is usually managed by the governmental 
client but can be conducted by the government, by the contractor, or by a combined 
test team with representatives from both government and industry. Most early DT&E 
in a program will likely be done at the contractor’s facilities under controlled, labora-
tory conditions. OT&E follows DT&E and validates that the SUT can satisfactorily 
execute its mission in a realistic operational environment including typical operators 
and representative threats. The difference between DT&E and OT&E is that DT&E 
verifies that the system is built correctly in accordance with the specification and 
contract, and OT&E validates that the system can successfully accomplish its mission 
in a realistic operational environment. Another way to think of these differences is 
that DT&E is concerned chiefly with attainment of engineering design goals, whereas 
OT&E focuses on the system’s operational effectiveness, suitability, and survivability.

For DDIFSs, it can be seen that these differences can become cloudy and prob-
lematical, due to the underlying nature of various interdependencies between 
nodes or platforms in such a system. To define a SUT in a DDIFS, one must cut the 
connectivity to the network at some points so that a standalone, bounded system 
can be tested as an integrated deliverable within a contract framework. We will 
later in this chapter discuss our work in supporting the U.S. Major Test Range at 
Edwards Air Force Base, California, in their preparations for testing new tacti-
cal aircraft that have embedded datalinking and data fusion capabilities. These 
platforms are designed to share sensors and data, as well as locally computed 
parameters and target tracks, for example. The fundamental mission sortie envi-
sions multiple aircraft flying cooperatively together in the execution of a mission. 
However, Edwards has historically been a DT&E facility, testing aircraft against 
single-platform requirements. With the evolution of fusion-capable aircraft and 
purposefully cooperative mission plans, the nature of what comprises a SUT and 
how to do DT&E gets muddy. It may be that some new type of T&E activity that 
bridges between DT&E and OT&E will need to be defined and developed. Such 
issues also raise the question of the costs of such boundary activities, for example, 
the very high cost of flying multi-aircraft “SUTs,” or the corresponding technical 
challenge of developing real-time capable surrogate aircraft simulation capabili-
ties as virtual wingmen as one alternative strategy for a cost-effective approach. 
So it can be seen that there are some subtle but nontrivial issues to deal with when 
deciding on a scheme for DDIFS DT&E and OT&E.

We are discussing here automated DDIFSs, where the core technical and func-
tional capabilities are enabled in software, so another core issue in thinking about 
DDIFS T&E is the domain of software testing. By and large, software testing is the 
process of executing a program or system with the intent of finding errors. Software 
is not unlike other physical or functional processes where inputs are received and 
outputs are produced, but where software differs is in the manner in which software 
processes fail. Most physical systems fail in a fixed and bounded set of ways. By con-
trast, software, ironically because of a wide variety of interdependencies (analogous 
to DDIFSs in the large), can fail in many bizarre ways. Detecting all of the different 
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failure modes for software is generally infeasible because the complexity of soft-
ware is generally intractable. Unlike most physical systems, most of the defects in 
software are design errors, and once the software is shipped, the design defects—or 
bugs—will be buried in and remain latent until activation.

The transition to network-centric capabilities has introduced new T&E challenges. 
Network functional capabilities can reside in both nodes and links, and various com-
mon system capabilities can reside in, for example, service-oriented architecture 
(SOA) infrastructures. The T&E of capabilities in this type of framework involving 
specialized and common functionalities requires new thinking and a new strategy; 
this is another SUT-defining challenge. In the same way that using live/real nodes or 
platforms in testing adds great expense as was discussed previously, evaluating the 
performance of the software network itself is probably not going to be accomplished 
without extensive use of modeling and simulation because the expense of adding live 
nodes in a laboratory increases dramatically with the number of nodes added to the 
test apparatus. A T&E strategy that mitigates risk in the development of a network 
infrastructure that will support network-centric warfare requires a balance of theo-
retical analysis and laboratory testing.

15.2.2 M easures and Metrics in the Network Value Chain

Chapter 3 addressed the topic of the network-centric value chain. The value chain 
has three major quality dimensions: data/information quality, quality of share-
ability/reachability, and quality of interactions. All of these dimensions will occur 
to varying degrees in any net-centric operation (NCO), and the degrees to which 
they occur form the basis for the wide range of metrics suggested in Garstka and 
Alberts (2004).

This viewpoint is shown in Figure 15.2, from Garstka and Alberts (2004). One 
way then to develop a measures and metrics framework for a DDIFS is to simply shift 
the labeling from the NCO application to DDIFS, as there are more or less one-to-
one equivalencies in the applicability of these notions as a basis for T&E and a basis 
of measurement. One distinction would be that fusion processes do not inherently 
yield a Sensemaking capability but they can be key to realizing such capability. The 
fusion–Sensemaking interdependency is expressed and actualized via well-designed 
human–computer interfaces.

In the same way that in Section 15.1 we defined criteria, their dependency on mea-
sures, and the dependency of measures on metrics (the ultimate parameters measured 
in a T&E experiment or trial), Garstka and Alberts (2004) define top-level concepts 
(the three we have discussed), the attributes upon which they depend, and the mea-
sures and metrics used to quantify them. These dependencies are shown in Figure 
15.3, from Garstka and Alberts (2004). Four categories of attributes are defined 
(excerpted literally from Garstka and Alberts [2004]):

Objective Attributes measure quality in reference to criteria that are independent of 
the situation. For example, the currency of a given data element indicates the age of 
the information available and can be expressed in units like minutes, hours, days, etc.
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Fitness-for-Use Attributes measure quality in reference to criteria that are deter-
mined by the situation. For example, the timeliness of a given data element indicates 
the extent to which the information is received in a time that is appropriate for its 
intended use. What is appropriate is context dependent. In some contexts a currency 
of two hours is adequate, whereas in other contexts a currency of two minutes is what 
is needed. Fitness-for-use attributes allows one to capture information that is context 
dependent.

Agility Attributes measure the aspects of agility across the six dimensions. These 
attributes inherently are comparative, i.e., agility implies an ability to change over time 
and, as such, the values of the metrics for these attributes have to be compared to some 
baseline values.

Concept Specific Attributes measure unique aspects of some concepts. For instance, 
synchronicity is an attribute of the Quality of Interactions concept that measures the 
extent to which C2 processes are effective across time (synchronous vs. asynchronous) 
and space (collocated vs. distributed). This attribute is appropriate in determining the 
extent to which elements in a C2 organization can interact simultaneously in time and 
space but is not necessarily relevant to other concepts.

In the same way that we ported the NCO evaluation concepts to the DDIFS applica-
tion, these attribute categories can also be ported to DDIFS applicability.
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FIGURE 15.2  The NCO framework with quality and degree measures. (Adapted from 
Garstka, J. and Alberts, D., Network Centric Operations Conceptual Framework Version 2.0, 
U.S. Office of Force Transformation and Office of the Assistant Secretary of Defense for 
Networks and Information Integration, Vienna, VA, 2004.)
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15.2.3 F usion Estimates and Truth States

Information fusion can generally be thought of as an association and estimation 
process, yielding estimates ranging from attributes of an entity to an estimate of 
a complex, dynamic, multi-entity situational picture. The entities can be physical 
objects, events, relationships, and courses of action (COAs). The entity estimates 
are based upon the association of the data together over space, time, type, etc. as an 
entity. A rational basis for evaluating the performance of such an estimation process 
is to compare the estimates to the underlying truth states of either the entity attributes 
or situations, or whatever estimation product is sought from the fusion process. 
When the fusion-based estimation process involves multiple entities of various 
types (physical objects, events, behaviors, informational entities, etc.), there can be a 
combinatoric complexity in determining which fused estimate should be compared 
with which truth entity; this is an issue that is known in the fusion community and 
typically called the “track-to-truth” problem, as the question arose in the application 
to evaluating multitarget tracking systems. The problem gives rise to essentially 
a separate fusion type problem, in which an adjunct data association function is 
required to reconcile which estimate-to-true associations are correct in order to 
support subsequent computation of estimation errors. These PE functions are part 
of the Level 4 Process Assessment Fusion which lies outside the L0–3 Fusion SUT.
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FIGURE 15.3  Concepts-to-quality/degree dimensions-to-attributes and measures/met-
rics. (Adapted from Garstka, J. and Alberts, D., Network Centric Operations Conceptual 
Framework Version 2.0, U.S. Office of Force Transformation and Office of the Assistant 
Secretary of Defense for Networks and Information Integration, Vienna, VA, 2004.)



389Test and Evaluation of Distributed Data Fusion

The idea is shown in Figure 15.4, for a multitarget tracking application. On the 
top we have the SUT fusion process (where we have removed the data preparation 
common referencing processes for both SUT and PE for simplicity), involving the 
traditional three-step data association process supporting the production of the 
SUT state estimates and computed multitarget tracks. Below we have the PE data 
association process that determines, using an association score and an assignment 
algorithm, which SUT tracks should be compared to which truth tracks. The 
assertion of these associations is a core functionality that supports, in turn, the 
computation of evaluation metrics. It can be seen that, the specific details and 
nature of the evaluation metrics are clearly interdependent on the methodological 
details of the PE data association process. Such considerations become yet more 
complex in the distributed fusion (DDIFS) application since there are different 
state estimates being produced at various nodes and shared and further fused 
across the intermodal network.

The DNN technical architecture specified PE Level 4 fusion node is shown in 
Figure 15.5.

15.2.4 N otion of a Performance Evaluation Tree

These PE nodes are processed in networks (e.g., trees) that are interlaced with 
the SUT DF&RM nodes such as shown in Figure 15.6 for RF, electronic support 
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measures (ESM), and EO/IR SUT fusion nodes. These PE nodes can also be inter-
laced with PM nodes that manage how these nodes are applied over time, mission, 
space, etc.

The DNN technical architecture helps to break the PE and PM processes into 
more manageable design steps as follows for a PE process architecture.

Step 1 is PE role optimization. This step defines the role for PE as a blackbox to 
include all its inputs and outputs and measures of success. An example of the role 
for PE in a T&E system is shown in Figure 15.7. In this example, there is a SUT with 
multiple subsystems, with the fusion subsystem being only one of them. The role for 
fusion here is to support certain SUT Effector systems such as weapon systems, and 
to support a user, say a pilot. The evaluation focus is on the fusion system in this 
particular context or role only. This is also the step where baseline accuracy and 
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timing MOPS based on PE requirements are established. By providing an objective 
evaluation, the MOPS help

•	 Determine whether the fusion algorithms meet engineering and operational 
requirements

•	 Compare alternative algorithms and approaches
•	 Optimize configuration parameters for a given algorithm

Step 2 is PE fusion network optimization. This step determines how to divide and 
conquer the PE problem over space, mission, time, etc.

Step 3 is the PE fusion node optimization. While the details of the PE algorithms 
are tailored to each data analysis step, the overall process follows the canonical 
fusion node steps, namely data preparation, data association, and state estimation as 
described earlier. Examples of these processes are given in the remaining sections 
in this chapter.

Building upon the previous remarks, it can be seen that in a DDIFS there are 
estimates being produced at different nodes and these estimates are also evolving in 
time. In turn, additional fusion operations are occurring at certain receiving nodes 
that combine the estimates sent to them from various sending nodes. Thus, there 
is also a temporal dimension to the T&E functions (true for most fusion processes 
whether distributed or not, so long as the problem space is dynamic), and there can 
be a need to compute both the evolving real-time performance as well as to compute 
cumulative performance. Hence, in the same way that a typical fusion process can 
be viewed as a kind of tree or in general a network (see Bowman [1994]), one can 
also envision a PE Tree, as introduced earlier. The PE Tree will have various com-
putational modules, nodes that accumulate evaluation-related computations, and a 
network of such nodes that gather the computations in a coordinated way according 
to the PE Tree design, framed to satisfy the overall role of the PE/T&E process for 
the evaluation process. As one example, the PE nodes could be the places where, for 
example, the evaluation calculations for a given platform in a multiplatform DDIFS 
system are gathered. The rationale for arranging or batching the PE nodes can be 
drawn from the same considerations given to batching fusion processes in multi-
sensor type systems; this idea is shown in Figure 15.8, where one could think of 
batching the PE nodal processes according to individual sources or sensor—these 
could also be thought of as nodes of a given type in a DDIFS—or according to a PE 
sampling-time—or according to important events from an evaluative point of view. 
Conceptually, any of the nodes in a PE Tree can be performing the SUT-to-Truth 
calculations shown in Figure 15.4.

A simple, time-batched PE Tree is shown in Figure 15.9 (Rawat 2003) for a 
notional simple three-node DDIFS performing target tracking, being tested in a sim-
ulation environment. At each time slice, the network simulation data are sent to the 
fusion/tracking nodes according to whatever data-to-node and internodal commu-
nication protocol exists (these details not shown), and each node computes its track 
estimates accordingly. As mentioned earlier, the PE process for each node would 
have a track-to-truth association process that determines the local best associations 
for PE at the given time, according to whatever MOPS are being used. It is typical 
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that cumulative performance would want to be computed, and separate PE func-
tions perform these separate calculations as shown. This is a simple case but it can 
be appreciated that PE Tree (network) design can be relatively complex for more 
complex network topologies; and when the network information flow protocols (the 
ISSs discussed previously) are more complex, along with further complexities such 
as separate local and network fusion operations being done at any network node, a 
fair (accurate, unbiased) yet affordable PE is needed. Engineering guidelines for 
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achieving the knee-of-the-curve in PE “fairness versus complexity” have been devel-
oped based upon the DNN technical architecture. Namely,

•	 The PE solution space is organized as a network of PE functional nodes.
•	 Each PE node performs fusion and truth data preparation, data association, 

and MOP state estimation.

In addition, the PE process “fairness” can be improved by the Level 4 PM function 
as described in Haith and Bowman (2010). For example, the distributed fusion test 
article and the PE process functional parameters can be optimized for each test sce-
nario to insure a “fair” comparison of alternative distributed fusion systems under 
test. This optimization can be based upon the top level Measure of Success (e.g., 
probability of meeting mission requirements) or on the selected MOPS. In this latter 
case, a “Pareto optimal front” (Haith and Bowman 2010) of parameter values can be 
derived (i.e., a boundary in parameter space where all other parameters values will 
yield a lesser performance in at least one MOPS).

15.2.5  Complexities in Error Audit Trails

T&E is performed in part to understand the causes of errors and it is typical that an 
error audit trail would be developed to understand where improvements can be or 
need to be made, i.e., to discern the error-producing operation and how to repair it. In 
the same way that pedigree metadata tags are needed for certain DDIFS fusion func-
tions, it may be necessary to incorporate pedigree tagging to track certain network 
processing operations for the purpose of error tracking. At the design level, there is 
both a complexity and tension in developing an optimized DDIFS design between 
the two major functions of a DDIFS: the nodal fusion operations and the network 
ISS. Similarly, tracking causal errors is also problematical since, for example, the 
fusion processes at receiving nodes can only operate on data sent to them, so assert-
ing a cause of a fusion deficiency can be difficult; that is, determining if there was a 
lack of appropriate data sent to a node or a defect in the nodal association/estimation 
processes can be difficult and if nothing else adds to T&E analysis complexity. This 
is not very different than the error audit trail complexities in other fusion systems 
that have any type of adaptive operation such as dynamic sensor management.

15.2.6 F ormal Experimental Design and Statistical Analyses

There is usually little argument that any fusion process produces estimates and that 
those estimates have a stochastic character. This is because, in the strictest sense, the 
inputs to the fusion processes are the statistically noisy sensor or other data having 
stochastic properties. These features have yet other implications for the T&E meth-
odology, namely that the stochastic nature of the process needs to be recognized and 
dealt with in any T&E approach. At least when conducting any simulation-based 
T&E, this implies that (1) the experiments should be designed through the employ-
ment of the methods of statistical experimental design (a.k.a. design of experiments 
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or “DOE”) and (2) in conjunction with this that Monte Carlo based replications of 
any given test condition should be done. Further, given the execution of such planned 
experiments, the analysis processes would employ methods that can frame the sta-
tistical quality of the analysis results, such as methods from analysis of variance or 
ANOVA, as well as other formal statistical techniques.

It is recognized by the way that such rigor comes at a price, even when using 
simulations, and especially when doing field tests and the like. It is likely that there 
has been limited application of these formal methods because of the cost implica-
tions. However, DDIFSs are used in life-critical and other important applications, 
and it would seem that the cost of rigorous testing is a price that should be paid to 
assure that the best understanding of system performance is being achieved. It is 
only through the use of such methods that assertions about the computed metrics 
can be made with statistical confidence. These remarks are not only applicable to 
DDIFSs but also to any fusion system.

At any given phase in both the SUT fusion process design and the PE Tree 
process design, there is the consideration of the independent variables or Factors 
in that layer’s design, and the Effects of each of those Factors, or perhaps even 
the composite Effect of certain Factor combinations that might be of interest to 
evaluate.* It is convenient to think of Factors as independent variables related in 
part to the “problem space” (e.g., in tracking problems these can be related to the 
nature and behaviors of the targets, or also the tracking environment, meaning 
both weather (which affects the nature of sensor observations used for tracking) 
or clutter, such as the nature and extent of “confuser” objects, etc. (we mean this 
in the wide sense). Factors or independent variables can also be related to the 
“solution space,” meaning the Factors that affect the performance of particular 
fusion algorithms (e.g., the nature and number of models in an interacting multiple 
model tracker), or for the case of a DDIFS, the choice of topological structure. 
Thirdly, and peculiar to the nature of the overall PE process being suggested 
here, there are Factors involved in the PE approach itself, such as the choice of 
technique for track-to-truth assignment, or the Factors upon which a specific PE 
Tree might be partitioned, etc. Thus, in this overall approach, there are three 
classes of Factors around which the PE process revolves: Problem-space Factors, 
Solution-space Factors, and PE process Factors. Said otherwise, Factors are those 
parameters whose influence on performance is sought; in nonfusion applications 
the PE Factors would not normally be present, but note that now we have a new class 
of Factors of interest. The influence of any Factor on a performance/effectiveness 
measure is labeled as the “Effect” in the statistical literature, and is in essence 
defined explicitly by a given measure or metric. The notion of an Effect can be 
thought of as the change in response (i.e., in an MOP) resulting from a change in 
the level of that Factor. For example, we might inquire as to the Effect of a change 
in SUT nodal tracker type from Kalman to Alpha-Beta on a given MOP, or the 
difference in an MOP resulting from different inter-target spacing. At any given 
level of a Factor, we conduct a number of Monte Carlo replications, so we really 

*	We capitalize the words “Factor” and “Effect” purposely here as we are soon to introduce the language 
of statistically designed experiments and the associated analysis processes.
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examine whether there is a statistically significant difference on a mean MOP 
value resulting from these changes in factor levels, and whether the results really 
reflect the significance of a statistical hypothesis test. It can happen of course that 
combinations of Factors can cause Effects; this is called an “interaction” in the 
statistical literature. Interactions among Factors can occur in a combinatoric sense; 
if there are three Factors say, then there are three 2-way interactions and one 3-way 
interaction (ab, ac, bc, and abc, assuming order is unimportant, as is usually done).

What is sought in determining a PE approach is a statistically sound yet cost-
effective way to gather the metrics and/or measures. The statistical DOE is a formal 
and highly quantitative way to develop a test plan that gathers the metrics in a prov-
ably cost-effective manner. That is, a DOE-based test or experimental plan extracts 
the maximum statistically significant information from the minimum number of test 
runs. DOE is a quite-mature area of study in the field of statistics, and its specific use 
to perform the PE function in the overall PE Tree methodology can yield the best 
rigorous framework for T&E.

We believe there are two major reasons for formal experimental designs and for-
mal methods of data analysis: statistical validation of a nominated DDIFS fusion 
solution for some important real-world application or statistical validation of some 
knowledge gained about fusion processes in a range of applications for the advance-
ment of science in an in-depth sense (i.e., “laws” as validated, explainable empiri-
cal generalizations). This latter rationale can in fact be important for empirically 
learning design laws for DDIFSs, and we argue in fact that the only way to develop 
design guidelines for DDIFSs is empirically, due to the combinatorial complexities 
in choosing design variables.

Designed experiments reflect a notion of a phased learning process, in which 
a succession of hypotheses are confirmed or denied and knowledge is gained 
sequentially. The need for a phased process is typically driven by the “curse of 
dimensionality” and the qualification problem, i.e., that there are too many Factors 
whose Effects need to be understood or isolated, so that a divide-and-conquer type 
approach must be employed to achieve in-depth understanding. The details of a 
phased approach, i.e., the staging of hypotheses of inquiry, are a case-dependent 
choice, and are of course influenced by the stage-by-stage outcomes.

The dominant analysis methodology for statistically designed experiments is 
analysis of variance or ANOVA. ANOVA is an analysis technique that determines 
whether the mean values of an MOP or MOE, for the several “treatments” or set 
of experimental conditions (as depicted in the Factor-level combinations of the set 
of independent variables both in the problem-space and the solution [or fusion-
process]-space) are equal or not, by examining the estimated population variances 
across these conditions, often using Fisher’s F-statistic (the “test statistic” can 
change in various cases). The treatments can be the result of changing problem-
domain independent variables or design-domain (fusion process) variables 
or PE design variables, and/or the associated levels of each variable, or, as 
noted previously, the Factors that influence the nature of the PE approach. The 
F-statistic is based on the estimates of the population variance as drawn from the 
sample variance of the data. ANOVA basically compares two estimates of this 
variance, one estimate drawn from the variance exhibited within (all) treatment 
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conditions. That is, for any given treatment, say a given tracker design for a given 
problem condition, the variance of, say, position errors across the “n” Monte 
Carlo replications for this treatment condition is a “within treatment” variance, 
and only exists because of the collective errors in this tracker estimation process. 
As a result, this variance is called the variance due to error in the statistical DOE 
literature. When these within-treatment variances are properly pooled across all 
treatments of the experiment,* they form a pooled estimate of the (supposedly) 
common variance within each of the treatments. The other estimate is drawn from 
the variance exhibited between (all) treatment conditions—if we were concerned 
with position error, for example, this would be the variance of the mean position 
errors of two different trackers from the global mean position error. However, 
these two estimates of variance are only equal if in fact there is no difference in 
position error variance for each tracker. The ANOVA process and the F-statistic 
are the means by which a hypothesis test that in effect tests the equality of these 
variance estimates is performed.

When employing DOE test-planning methods, one issue that can arise is the com-
plexity involved in designing efficient test plans if there are many independent vari-
ables (Factors) whose Effects on the DDIFS process under test or SUT want to be 
known. Using traditional DOE experimental designs, the number of runs that have 
to be made will grow exponentially when the number of Factors is large, and the 
number of “levels” (specific value settings of the Factors) is large; these go as the 
number of levels raised to the number of Factors, or LF. This exponential growth is 
associated with the type of experimental design being employed, called a “facto-
rial” design, which not only allows the so-called main effects to be discerned from 
the experiments but also what are called “interaction” effects, where knowledge is 
gained about the Effects on the metrics of interest due to interacting Effects among 
the Factors. A representative “2k” factorial DOE design of test runs for a case involv-
ing studying the Effects of target maneuverability, tracker type, target spacing, track-
truth association technique, and error in truth tracks is shown in Table 15.2; recall 
these combinations of test run conditions represent the most cost-effective strategy 
to gain the information desired.

If the desire to learn about the interaction Effects is relaxed, using a type of exper-
imental design called a “fractional factorial” design, the severity of the exponential 
growth is lessened but can still be an issue to deal with. One notion of a phased but 
still DOE-based approach is shown in Figure 15.10, where the fractional designs are 
used initially as a screening step to determine those Factors which are most influen-
tial on the metrics, and then the factorial designs to better understand the main and 
interaction Effects of the key variables and, if necessary, what are called “response 
surface” methods to understand the broad Effects of the Factors across the levels of 
interest for the application.

Various alternative strategies may be possible, since there are also many types 
of DOE techniques, each designed for environments involving varying num-
bers of Factors and where prior information/knowledge may suggest the level 

*	Meaning, in a two-tracker comparative experiment, the within-treatment variances for both trackers 
across the varied problem conditions.
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of concern for expected interaction Effects. In Kleijnen (2005), a plot of DOE 
technique (many of these have person’s names associated with them) for different 
magnitudes of the number of Factors and the expected degree of Factor interac-
tions (or analysis complexity, shown here as response surface complexity) is pre-
sented, shown here as Figure 15.11. So, in addition to a phased/layered approach 
as in Figure 15.10, a direct approach using these special DOE designs can be an 
alternative approach.

TABLE 15.2
Table Showing DOE Experimental Design for Two Levels of Each 
Factor (“2k Factorial Design”)

Run Order Maneuverability Filter
Target 

Spacing
Track/Truth 
Association

% Error 
in Truth

1 Non-Man Kalman Low Switch 0

2 Man Kalman Low Switch 0

3 Non-Man Alpha-Beta Low Switch 0

4 Man Alpha-Beta Low Switch 0

5 Non-Man Kalman High Switch 0

6 Man Kalman High Switch 0

7 Non-Man Alpha-Beta High Switch 0

8 Man Alpha-Beta High Switch 0

9 Non-Man Kalman Low Window 0

10 Man Kalman Low Window 0

11 Non-Man Alpha-Beta Low Window 0

12 Man Alpha-Beta Low Window 0

13 Non-Man Kalman High Window 0

14 Man Kalman High Window 0

15 Non-Man Alpha-Beta High Window 0

16 Man Alpha-Beta High Window 0

17 Non-Man Kalman Low Switch 10

18 Man Kalman Low Switch 10

19 Non-Man Alpha-Beta Low Switch 10

20 Man Alpha-Beta Low Switch 10

21 Non-Man Kalman High Switch 10

22 Man Kalman High Switch 10

23 Non-Man Alpha-Beta High Switch 10

24 Man Alpha-Beta High Switch 10

25 Non-Man Kalman Low Window 10

26 Man Kalman Low Window 10

27 Non-Man Alpha-Beta Low Window 10

28 Man Alpha-Beta Low Window 10

29 Non-Man Kalman High Window 10

30 Man Kalman High Window 10

31 Non-Man Alpha-Beta High Window 10

32 Man Alpha-Beta High Window 10
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15.3 � SUMMARIZING IMPACTS TO AND STRATEGIES 
FOR DISTRIBUTED FUSION SYSTEM T&E

Much more could be said about these various high-level thoughts regarding how to 
approach the topic of T&E for distributed fusion systems; there is a large body of 
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literature that can be accessed to further explore the ideas offered here as well as 
yet more issues on this topic. It can be seen that there are some very basic issues 
that need to be addressed; just defining the test article or the SUT may not be so 
easy. In the practical world where a team of contractors may have come together 
to build a DDIFS, establishing responsibilities for various parts of a DDIFS during 
the T&E phase, and understanding causal effects and audit trails of errors to deter-
mine responsibility (and imputed costs) for corrective actions can be problematical 
and can create complexities in writing equitable contracts. The Network Centric 
Operations Conceptual Framework of Garstka and Alberts (2004) forms one rea-
sonable basis from which to develop top-level ideas on DDIFS T&E, but as always 
the devil is in the details. Many of the subtleties such as the fused estimate-to-truth 
association issue and the various statistical aspects discussed here are often not 
adequately addressed in much fusion literature. Any given R&D or development 
program of course only has a given number and amount of resources, and the role 
for and value of the T&E phase of the program has to be weighed in terms of over-
all cost-effectiveness, but the ramifications of poor/inadequate T&E lead to poor 
transition and receptivity of any fusion prototype. The worse outcome of course is 
that poor/inadequate T&E results in some type of disastrous outcomes, possibly 
involving loss of life.

15.4  REMARKS FROM A DDIFS USE CASE

This section describes the ideas and a number of details of the project the authors 
were involved with for the U.S. Edwards Air Force Base (EAFB) that formed a 
basis for T&E of advanced tactical fighter aircraft that had integrated Information 
Fusion capabilities and were linked to concepts of employment that set them in a 
networked/distributed mission context. EAFB is nominally a DT&E test facility, 
but staff there have agreed that there is an issue in DDIFS applications as to the 
atypical nature of DT&E and the tendency toward what is more like an OT&E test 
environment, as we have previously remarked. EAFB is a large test range in the 
California desert where prototype tactical aircraft are tested in near-operational 
conditions. To explore some of the T&E issues and ideas, a simple use case involv-
ing two friendly aircraft in a test scenario was defined; each platform has three 
on-board sensors: Radar, ESM, and IRST (infrared search and track). The focus 
was on target tracking and threat estimation or fusion Levels 1 and 2 type capa-
bility in a two-node network where the aircraft exchanged tracking estimates, 
as shown in Figure 15.12; “CTP” in the figure means common tactical (track) 
picture.

The problem scenario was suggested by staff at EAFB and comprised a two 
versus six offensive sweep problem as shown in Figure 15.13. During the scenario, 
there are simulated missile launches and various flight dynamics emulating a plau-
sible scenario of this type. The PE Tree for this problem was defined to have seven 
PE nodes, performing the following evaluative operations: (1) three individual 
sensor nodes, two ownship nodes (friendlies only), one distributed fusion track-
to-truth PE node, and (2) one internetted platforms track-to-track PE node. The 
PE nodes described in Section 15.2.4 perform three necessary fusion functions: 
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(1) data preparation, (2) data association, and (3) estimation of the metrics or 
MOPS. During data preparation the PE node puts tracks and truth information 
in [x, y] coordinates and common time. Data association performs deterministic 
track-to-truth association and track-to-track association.

In this case study there are two platforms which have their own view of the truth 
picture called “common” and “unique” pictures. The common tracks are seen by 
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both the platforms while unique tracks are uniquely seen by platforms 1 and 2. From 
the point of view of supporting the tactical mission, one critical issue of course if 
whether there is a consistent “track picture” across the two aircraft. It can be seen 
in Figure 15.12 that it is typical that there are differences in the local target track 
pictures on each platform which need to be reconciled for mission application. In 
this study then, one focus of analysis was the fused track picture consistency as a 
function of certain factors, looking at both track-to-truth and track-to-track consis-
tency metrics. Each of the platforms exchange their track files and data fusion is 
done upon receipt of this information at each platform. We explain below how this 
information is exchanged where we assume that there are no bandwidth limitations 
in communication. The baseline distributed fusion output is the consistent tactical 
picture (CTP). The sensor track file “consistency” is computed at each time point as 
the average over time of the percentage of matching CTP tracks in the track files of 
each platform. In addition to these, the following metrics are computed:

	 1.	Track-to-track consistency
	 2.	Track-to-truth consistency
	 3.	Percentage of tracks from first (or second) platform that are not associated 

with truth tracks (PFT) (this is just a track-to-truth MOP)
	 4.	Percentage of tracks from first platform that is not associated with tracks 

from second platform (PFT1)
	 5.	Percentage of tracks from second platform that is not associated with tracks 

from first platform (PFT2)
	 6.	The average number of standard deviations of error in the associated tracks 

at each time point
	 7.	The average location error standard deviation of associated tracks at each 

time point
	 8.	Percentage of correct classification for both platforms
	 9.	Range to correct ID for both platforms

In addition to the above consistency PE metrics, the corresponding performance 
metric of each of the platform track files relative to truth is computed.

In relation to Figure 15.12, we defined three “tiers” of processing:

•	 Tier 0: here, each friendly platform generates fusion-based but sensor-spe-
cific tracks; that is, each of the radar, ESM, and IRST sensor data streams 
are locally associated and used to generate tracks.

•	 Tier 1: here, the above sensor-specific tracks are associated (track-to-track 
association) and fused, but this fused picture is still local to the “ownship,” 
or unique tracks as seen by the particular friendly aircraft.

•	 Tier 2: here, each of the ownship Tier 1 track files are fused at each Tier 1 
track file update time (again, track-to-track association and fusion).

Within this framework, we defined a simple but executable statistical experimen-
tal design or DOE (partially driven by scope limitations) that was a 2k type full 
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factorial design with three main Factors with two levels each, as shown in the 
following:

DOE Factors and Levels:

Levels

PE factors Association algorithm 
gating factor

Vogel 
approximation 3

Hungarian 
algorithm 5

SUT design factors Gating factor 5 15

	 1.	PE Factors:
	 a.	 Two alternative track-to-truth association schemes
	 b.	 Two alternative association gate sizes
	 2.	SUT design factors:
	 a.	 Two alternative association gate sizes

The factorial experiment is analyzed using ANOVA from the MINITAB statistical 
analysis package. The factors and interactions that are significant for various MOPS 
are denoted by “S” in Table 15.3. In Tier 0, we have three sensors on two platforms 
and they do not fuse any data within or across platform. Hence we have to only ana-
lyze track-to-truth associations for each of the MOPS. The summary of the results is 
shown in Table 15.3. For each MOP we have the normal probability plot and Pareto 
chart which recapitulates the significant factors. Then for the significant factors we 
plot the main effects plot which tells us how the change in factor affects the MOP. 
For the significant interactions we plot the interaction plot which shows the effect of 
change in factor level combination on MOPS. After taking a look at the summary 
Table 15.3, we can say that SUT design gating factor is comparatively more signifi-
cant than PE gating factor and PE association algorithm. SUT design gating factor 
appears to be a significant factor in nearly all the Tier 0 DOE runs. So at Tier 0 we 
must be sensitive toward selection of SUT design gating factor.

In Tier 1, we have three sensors on two platforms and they fuse data within plat-
form (not across platform). So we have to analyze track-to-truth and track-to-track 
associations for each of the MOPS. The summary of the results is also shown in 
Table 15.3. After taking a look at the summary Table 15.4, we can say that all the 
three factors are very significant. All the three factors appear to be significant in 
nearly all the Tier 1 DOE runs. The interaction between SUT design gating factor 
and PE gating factor is mostly significant for all the MOPS.

In Tier 2, we have three sensors on two platforms and they fuse data within and 
across platforms. So we have to analyze track-to-truth and track-to-track associations 
for each of the MOPS. The summary of the results is shown in Table 15.5. After 
taking a look at the summary Table 15.5, we can say that none of the three factors 
are significant. In this case only some of the two- and three-way interactions are 
significant, which suggests that fusing data across platforms reduces the discrepancies 
in the input data.

In addition to these DOE runs, we ran another set of full factorial runs to see the 
effect of communication tiers on the various MOPS. We added another factor, (D) 
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TABLE 15.3
Tier 0 Analysis of Variance (ANOVA) Results

A B C AB AC BC ABC

Track 1 to truth radar Consistency S

PFT S S S

Mean location error S S S

Average standard deviation 
location error

S S S

Average standard deviation S S S

Track 2 to truth radar Consistency S S

PFT S S S S

Mean location error S

Average standard deviation 
location error

S S S

Average standard deviation S S

Track 1 to truth ESM Consistency S

PFT S

Mean location error S

Average standard deviation 
location error

S S

Average standard deviation S S S

Track 2 to truth ESM Consistency S S S S

PFT

Mean location error S S S

Average standard deviation 
location error

S S

Average standard deviation S S

Track 1 to truth IRST Consistency S

PFT S S

Mean location error S S S

Average standard deviation 
location error

S S

Average standard deviation S S S S

Track 2 to truth IRST Consistency S S

PFT S

Mean location error S S S

Average standard deviation 
location error

S S

Average standard deviation S S S S S S

S = statistically significant.
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Tier, with two levels: Tier 1 and Tier 2. Table 15.6 shows the significant factors and 
their interactions for the various MOPS. Table 15.6 shows that factor D is significant 
for all the MOPS, which confirms the intuitive result that fusing data across plat-
forms reduces the input data inconsistency.

15.5  SUMMARY AND CONCLUSIONS

Moving information fusion processes and algorithms into the context of a distributed 
or networked architecture has many potential operational benefits but can add con-
siderable complexity to the framing of a T&E activity. This chapter has offered some 
discussion on these complicating factors, to include

•	 The fundamental question of defining what is being tested, i.e., the test 
article or system under test

•	 The fuzzification of the boundary between DT&E and OT&E
•	 The question of functional boundaries between application functions or ser-

vices and the generic-service infrastructure, for example, in an SOA

TABLE 15.4
Tier 1 Analysis of Variance (ANOVA) Results

A B C AB AC BC ABC

Track-to-track Consistency S S S S

PFT1 S S S S

PFT2 S S S

Mean location error S S S S S

Average standard deviation 
location error

S S S S

Average standard deviation S S S S S

Track 1 to truth Consistency S S S S

PFT S S S S S

Mean location error S S

Average standard deviation 
location error

S S

Average standard deviation S S S S S S S

Tract 2 to truth Consistency S S S S S S

PFT S S S S S

Mean location error S S S

Average standard deviation 
location error

S S

Average standard deviation S S S S S S S

S = statistically significant.
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•	 The question of degree of investment in supporting test facilities and simu-
lation environments

•	 The need to think about architecting a PE Tree structure to support analysis 
of the various and many types of functions, processes, and metrics involved 
in DDIFSs

•	 The challenge of employing statistically rigorous experimental designs 
and post-test data analysis techniques to improve the statistical sophistica-
tion, but more importantly the effective and efficiency insights into how a 
DDIFS is functioning

and some other considerations. The user community and R&D community need to 
come to grips with the challenges of DDIFS T&E, and to carefully examine how to allo-
cate funding and resources to find a best cost-effective path through these challenges in 
achieving a “fair” PE system. In support of this, we offer the DNN technical architec-
ture providing problem-to-solution space guidance for developing distributed DF&RM 
PE systems as a Level 4 fusion process that includes PE functional components, inter-
faces, and engineering methodology, see also Bowman (2004), Bowman and Steinberg 
(2001), Steinberg et al. (1999), Haith and Bowman (2010), and Bowman et al. (2009).

TABLE 15.5
Tier 2 Analysis of Variance (ANOVA) Results

A B C AB AC BC ABC

Track-to-track Consistency S

PFT1

PFT2

Mean location error S

Average standard deviation 
location error

Average standard deviation S

Track 1 to truth Consistency

PFT

Mean location error

Average standard deviation 
location error

Average standard deviation

Track 2 to truth Consistency S

PFT S

Mean location error S

Average standard deviation 
location error

Average standard deviation S

S = statistically significant.
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16 Human Engineering 
Factors in Distributed 
and Net-Centric 
Fusion Systems

Ann Bisantz, Michael Jenkins, and Jonathan Pfautz

16.1  INTRODUCTION

Successful deployment and use of distributed fusion systems require careful integration 
of human and automated reasoning processes. While fusion systems exploit sophisti-
cated and powerful algorithms that can rapidly and efficiently transform masses of 
data into situational estimates, human operators remain a crucial component of the 
overall fusion process. Not only are humans information consumers, but they are also 
participants throughout the fusion process (Blasch and Plano 2002), acting individu-
ally or collectively as sensors or, more critically, as in-the-loop guides for specific com-
putations. Because of the complex interaction between human and automation inherent 
in fusion systems, attention to human-system integration issues during design, devel-
opment, and evaluation is critical in the ultimate success of these systems.
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For example, as information is delivered by the fusion system, human operators 
must make a judgment about its pertinence, as well as about the means by which it was 
generated (e.g., what data sources were used, which algorithms with what assumptions 
and error characteristics) and how that may affect the quality of the information (e.g., 
whether a remote sensor is reliable, whether a model for the situation is valid, whether 
a correlation tool has sufficient data to reach desired levels of accuracy and precision). 
These judgments determine how the human as information consumer will use, 
interpret, and appropriately value or trust the fused information, and are based in part 
on the information that qualifies the outputs of the fusion system, or meta-information 
(e.g., uncertainty, source quality or pedigree, timeliness, pertinence) (Bisantz et al. 
2009, Pfautz 2007). These judgments may be more challenging in distributed or net-
centric situations where the operator is removed (spatially, jurisdictionally, and/or 
hierarchically) from the sources of data or nodes performing the data processing.

In well-designed fusion systems, operators can work in concert with the fusion 
process, using their knowledge of the situational context and environmental 
constraints to:

•	 Provide qualitative data as a sensor—for example, judge the location or 
count of visible entities

•	 Guide the selection of input data—for example, choose sources, filter sources, 
filter certain types of data, or prioritize data (e.g., as a function of source)

•	 Provide corrections to intermediate results—for example, manually provide 
detections, “hand-stitch” tracks to correlate objects across frames, or select 
most-apt situation models based on mission context

•	 Adjust or “tune” fusion system parameters—for example, manipulate 
detection thresholds, define training sets for learning models, or specify 
processing stages or algorithms

Operators can perform some or all of these tasks to improve the fusion system’s 
performance, particularly in mixed-initiative, dynamic fusion systems, and “hard/
soft” fusion systems, which combine data from human or “soft” sources with those 
from physical sensors (Hall et al. 2008). Figure 16.1 illustrates the range of actions 
operators can take with respect to fusion system performance. Operators can also 
interact with the fusion system to pose questions and test their own hypotheses about 
the implications of the fused information. These tasks, like those of an operator 
simply consuming the fused information, are also directly affected by the meta-
information inherent in the fusion process (e.g., Algorithm B performs in real-time, 
Algorithm A can only perform in near-real-time, but has a higher rate of detection; 
therefore, given a critical need for timely information, Algorithm B is the better 
choice, despite lower detection rates, because it performs in real-time).

The need to make these judgments raises important human factors challenges 
regarding appropriate methods for coordinating mixed human-automated control 
over fusion processes, communicating system processes and states to the human 
operator, and visualizing key information and meta-information. These challenges 
are exacerbated in net-centric environments, in which humans distributed in time 
and space provide input, interact with, and make decisions based on fusion processes.
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To further explore the role of human operators within a complex fusion process 
as well as to illuminate various challenges and potential human factors solutions, 
this chapter uses the design of a fusion system that aids a hypothetical intelligence 
analysis process as a case study. This case study demonstrates that by combining 
knowledge of both human and system strengths and limitations with an understand-
ing of the work domain (i.e., through the application of cognitive systems engineer-
ing methods [Bisantz and Burns 2008, Bisantz and Roth 2008, Crandall et al. 2006, 
Hollnagel and Woods 2005, Vicente 1999]), engineers can design fusion systems that 
successfully integrate human operators at critical interaction points (“touch points”) 
to enhance overall system performance.

This chapter begins with a discussion of military intelligence analysis, its charac-
teristics as a work domain, and the challenges it poses for human analysts. Subsequent 
sections highlight potential features of fusion systems that can mitigate these chal-
lenges for different stages of the intelligence analysis process. The chapter ends with 
design characteristics and rationale for a set of touch points for human control and 
interaction with a distributed, hard-soft information fusion system.

16.2 � CHARACTERIZING THE DOMAIN TO DRIVE FUSION 
SYSTEM DESIGN, DEVELOPMENT, AND EVALUATION

One of the first requirements for identifying and supporting beneficial interactions 
between a fusion system and a human operator is to understand the relevant char-
acteristics of the domain in which they will perform, as well as the requirements 
and constraints that rise from environmental, computational, operational, and socio-
organizational factors. This understanding can be derived via formal systems engi-
neering practices (e.g., requirements analysis [Laplante 2009]), but these approaches 
often fail to adequately characterize human factors. Cognitive systems engineer-
ing and its associated methodologies for characterizing work domains (e.g., cogni-
tive work analysis [Bisantz and Burns 2008, Bisantz and Roth 2008, Vicente 1999]; 
human-centered system engineering [Crandall et al. 2006, Hollnagel and Woods 
2005]) represent an approach that focuses on both human and system performance 
and their interrelationships. In our case study, we demonstrate how this approach 
reveals specific features of human-system interaction that should influence design, 
development, and evaluation of fusion systems.

The intelligence analysis domain: “Intelligence analysis” broadly refers to rea-
soning over available data with the goal of making a coherent whole of the past, pres-
ent, and/or future states of some real-world environment or situation. Intelligence 
analysts review and process (i.e., filter, validate, correlate, and summarize) as much 
data as feasible under constraints such as externally imposed deadlines, availabil-
ity of data, and availability of data collection resources. This typically massive 
amount of data crosses spatio-temporal scales (from a street corner to vast regions, 
from microseconds to decades) (Mangio and Wilkinson 2008). It is interpreted by 
the analysts who use their experience to compare their interpretations with exist-
ing hypotheses (Tam 2008–2009). The analyst revises and generates hypotheses 
defining the current situation (which continues to evolve during the analysis) until 
a threshold of confidence is reached, or, more often, a deadline is reached. At this 
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point, the analyst creates useful products for decision-makers, often in distributed 
locations. This entire process may be completed in only seconds (e.g., to answer 
requests such as “Where did the target go?”) or months (e.g., for questions such 
as “What are the historic and economic drivers behind the regional instability?”).

Prior literature provides a variety of characterizations of intelligence analysis, 
including some from the human factors community (Cook and Smallman 2008, 
Elm et al. 2004, Grossman et al. 2007, Heuer 1999, Patterson et al. 2001a, Pfautz et 
al. 2005b, Pfautz et al. 2006, Pirolli and Card 2005, Powell et al. 2006, Powell et 
al. 2008, Trent 2007, Zelik et al. 2007). An extensive review of this literature is out 
of the scope of this chapter; however, there are several characteristics worth high-
lighting. In terms of the tasks that analysts commonly perform, Hughes and Schum 
(2003) point out that regardless of the specific form or goal of an analysis, the intel-
ligence analysis process always involves three parts: (1) hypotheses generation, (2) 
evidence gathering and evaluation, and (3) generation and evaluation of arguments 
linking evidence and hypotheses. Incomplete and uncertain information combined 
with the need for timely solutions mean that success in this domain is best charac-
terized by convergence (Grossman et al. 2007). Elm et al. (2005) Potter et al. (2006) 
define convergence as “a stable balance of applying broadening and narrowing … 
to focus on a reduction of the problem towards an answer.” Therefore, a successful 
analysis effort will be one that applies multiple cycles of broadening and narrow-
ing based on available resources (e.g., time, information, cognitive capacity, etc.) to 
avoid premature closure and arrive at a set of final hypotheses that best explain the 
substantive problem.

Kent’s early model describing seven intelligence analysis stages (1965) includes 
activities which can be associated with more recent models, as shown in Figure 16.2.

These models help provide a general definition of the steps of intelligence analy-
sis and support identification of the characteristics of the domain that make success-
ful performance challenging. By leveraging human factors engineering techniques, 
several research efforts identified factors that contribute to the complexities that 
commonly arise during the analysis process. The majority of these factors relate to 
the unique characteristics of the data that feed the intelligence analysis process and 
the dynamic structure of the problems that the intelligence analysis process attempts 
to solve. Table 16.1 presents a nonexhaustive list of factors that create challenges dur-
ing problem analysis and references that illustrate the methods used to uncover and 
characterize each factor. In subsequent sections, we demonstrate how this analysis 
can contribute to the design of supportive fusion systems.

Finally, in addition to understanding the characteristics of the domain that 
make performance challenging, cognitive engineering analyses typically charac-
terize expert performance within the domain. Here, that focus is on identifying the 
knowledge and strategies required for successful intelligence analyses. The itera-
tive broadening and narrowing across data collection, synthesis, and hypothesis 
evaluation analysis phases as described in Elm et al. (2004, 2005) is one exam-
ple strategy. Multiple cognitive task analyses of the intelligence analysis process 
support the fact that analysts employ simplifying strategies as a result of high 
cognitive demands (particularly in terms of large amounts of data with varying 
characteristics, the need to simultaneously consider multiple hypotheses, and time 
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Conflict and collaboration

Generation and evaluation of arguments linking 
evidence and hypotheses

St
ag

e 
4:

D
at

a 
ev

al
ua

tio
n

• 
In

-d
ep

th
 r

ev
ie

w
 o

f 
co

lle
ct

ed
 in

fo
rm

at
io

n 
(b

ot
h 

co
nt

en
t a

nd
 p

ed
ig

re
e)

 to
 d

et
er

m
in

e 
im

pa
ct

 o
n 

de
ve

lo
pi

ng
 h

yp
ot

he
se

s 
an

d 
pr

ev
io

us
ly

 r
ev

ie
w

ed
 in

fo
rm

at
io

n
• 

R
ea

so
ni

ng
 o

ve
r 

un
ce

rt
ai

nt
y 

an
d 

as
se

ss
in

g 
so

ur
ce

 a
nd

 in
fo

rm
at

io
n 

pe
di

gr
ee

 a
re

 
co

m
m

on
 c

ha
lle

ng
es

St
ag

e 
5:

T
he

 m
om

en
t o

f 
hy

po
th

es
is

• A
 s

ta
ge

 o
r 

m
om

en
t w

he
re

 th
e 

an
al

ys
t f

or
m

s 
th

e 
in

kl
in

gs
 o

f 
an

 e
xp

la
na

tio
n 

fo
r 

th
e 

ev
al

ua
te

d 
da

ta

• 
N

um
er

ou
s 

ex
pl

an
at

io
ns

 s
ho

ul
d 

be
 c

on
si

de
re

d 
in

 p
ar

al
le

l, 
bu

t d
ue

 to
 th

e 
lim

ita
tio

ns
 

of
 h

um
an

 c
og

ni
tiv

e 
ca

pa
bi

lit
ie

s,
 th

e 
id

ea
l c

om
pa

ri
so

n 
se

t i
s 

ra
re

ly
 c

on
si

de
re

d

Down collect

Evidence gathering 
and evaluation

St
ag

e 
6:

M
or

e 
co

lle
ct

in
g 

an
d 

m
or

e 
te

st
in

g 
of

 h
yp

ot
he

se
s

• 
Si

m
ila

r 
to

 S
ta

ge
 4

, w
ith

 a
 g

re
at

er
 f

oc
us

 o
n 

su
pp

or
tin

g/
re

fu
tin

g 
de

ve
lo

pi
ng

 
hy

po
th

es
es

• 
O

ft
en

 d
ep

en
de

nt
 o

n 
th

e 
av

ai
la

bi
lit

y 
of

 ti
m

e 
an

d/
or

 n
ew

/u
pd

at
ed

 in
fo

rm
at

io
n

• 
M

ul
tip

le
 c

og
ni

tiv
e 

bi
as

es
 a

pp
ea

r 
th

at
 p

os
e 

ch
al

le
ng

es
 to

 a
na

ly
st

s 
(e

.g
., 

co
nfi

rm
at

io
n 

bi
as

)

St
ag

e 
7:

Pr
es

en
ta

tio
n

• 
C

re
at

io
n 

of
 a

n 
ar

tif
ac

t t
o 

co
m

m
un

ic
at

e 
th

e 
es

ta
bl

is
he

d 
hy

po
th

es
is

 (
or

 id
ea

lly
, 

co
m

pe
tin

g 
hy

po
th

es
es

 [
G

re
itz

er
 2

00
5]

) 
to

 th
e 

in
te

lli
ge

nc
e 

an
al

ys
is

 c
on

su
m

er
(s

)

• A
rt

if
ac

t s
ho

ul
d 

es
ta

bl
is

h 
a 

“n
ew

 a
nd

 b
et

te
r 

ap
pr

ox
im

at
io

n 
of

 th
e 

tr
ut

h”
 (

H
ut

ch
in

s 
et

 a
l. 

20
04

) 
re

ga
rd

in
g 

th
e 

si
tu

at
io

n 
of

 in
te

re
st

• A
na

ly
st

s 
ch

al
le

ng
ed

 w
ith

 th
e 

ne
ed

 to
 p

ro
vi

de
 “

ac
tio

na
bl

e”
 in

te
lli

ge
nc

e 
gi

ve
n 

th
e 

co
nt

ex
t o

f 
us

e 
fo

r 
th

e 
in

fo
rm

at
io

n 
re

qu
es

te
d 

by
 th

e 
co

ns
um

er

FI
G

U
R

E 
16

.2
 

C
om

pa
ri

so
n 

of
 m

od
el

s 
of

 in
te

ll
ig

en
ce

 a
na

ly
si

s 
an

d 
im

pl
ie

d 
ch

ar
ac

te
ri

st
ic

s 
an

d 
ch

al
le

ng
es

 o
f 

in
te

ll
ig

en
ce

 a
na

ly
si

s 
ta

sk
s.

 (
Fr

om
 E

lm
, W

. 
et

 a
l.,

 D
es

ig
ni

ng
 s

up
po

rt
 f

or
 i

nt
el

lig
en

ce
 a

na
ly

si
s,

 P
re

se
nt

ed
 a

t 
th

e 
48

th
 A

nn
ua

l 
M

ee
ti

ng
 o

f 
H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y,

 N
ew

 O
rl

ea
ns

, 
L

A
, 

20
04

; 
H

ug
he

s,
 F

.J
. 

an
d 

Sc
hu

m
, A

., 
Pr

ep
ar

in
g 

fo
r 

th
e 

fu
tu

re
 o

f 
in

te
lli

ge
nc

e 
an

al
ys

is
: 

D
is

co
ve

ry
-p

ro
of

-c
ho

ic
e,

 J
oi

nt
 M

ili
ta

ry
 I

nt
el

lig
en

ce
 C

ol
le

ge
, 

U
np

ub
lis

he
d 

M
an

us
cr

ip
t, 

20
03

; 
K

en
t, 

S.
, 

Sp
ec

ia
l 

P
ro

bl
em

s 
of

 M
et

ho
d 

in
 I

nt
el

li
ge

nc
e 

W
or

k.
 S

tr
at

eg
ic

 I
nt

el
li

ge
nc

e 
fo

r 
A

m
er

ic
an

 W
or

ld
 P

ol
ic

y,
 A

rc
ho

n 
B

oo
ks

, H
am

de
n,

 C
T,

 1
96

5.
)



416 Distributed Data Fusion for Network-Centric Operations

TABLE 16.1
Nonexhaustive List of Factors Contributing to the Challenges 
of Problem Analysis

Factor Description References

Ambiguous 
requests for 
information (RFI)

Analysts may receive RFIs from a third party they have 
no means of contacting. In these cases, if information 
needs are poorly expressed or communicated, or if the 
operational context surrounding the RFI is unclear, then 
the analyst is faced with the problem of first defining 
the problem that he or she is supposed to be solving. 
Information, such as why the question is being asked, 
what are the boundaries for investigation, and what the 
consumer is really trying to accomplish, are all critical 
pieces of information for successful analysis that are 
often missing

IW JOC (2007)
Elm et al. (2005)
Heuer (1999)
Hewett et al. (2005)
Hutchins et al. 
(2004)

Johnston (2005), 
Kent (1965)

Pfautz et al. (2006)
Roth et al. (2010)

Complex data 
characteristics

The complexity of the data that analysts must interpret is 
increased by numerous factors that are all commonly 
present during analysis. Factors, such as multiple data 
formats (e.g., images, written/verbal reports, technical 
data, etc.), operational context (i.e., multiple lines of 
operation require multiple skill sets for interpretation), 
massive volumes of data, data set heterogeneity, data 
set complexity (i.e., number of relationships within the 
data set), and data class (e.g., HUMINT, SIGINT) all 
increase the overall complexity of the data. As these 
factors become more prominent, the difficulty of the 
analysis increases and analysts become more 
susceptible to problems such as data overload

MSC 8/06 (2006), 
2FM 3-24 12/06 
(2006)

IW JOC (2007)
Drucker (2006)
Elm et al. (2004)
Greitzer (2005), 
Heuer (1999), 
Hutchins et al. 
(2006)

Larson et al. (2008)
Patterson et al. 
(2001a,b), Pfautz 
et al. (2006), Roth 
et al. (2010), 
Taylor (2005)

Distributed work 
structure

Analysts may not be in the environment or participants 
in the situation they are investigating. Analysts may or 
may not be co-located with their “customers.” 
Socio-organizational structure may impose several 
levels (and geospatial distance) between the analyst 
and the source of information, information requestor, 
and other analysts or experts, creating communication 
barriers that impede analysis. Analysts may be required 
to work on requests that overlap with current or past 
projects of analysts in other organizations. The lack of 
inter-organizational information sharing in the 
intelligence community (even within the same 
organization) creates information access challenges, 
and results in a failure to consider multiple 
perspectives

Hewett et al. (2005)
Johnston (2005)
Kent (1965)
Pfautz et al. (2006)
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TABLE 16.1 (continued)
Nonexhaustive List of Factors Contributing to the Challenges 
of Problem Analysis

Factor Description References

Multiple 
perspectives for 
consideration

Analysts face the difficult challenge of simultaneously 
integrating considerations from multiple perspectives 
when performing their analysis, including the 
perspective of the information sources; the situation/
culture/area being assessed; and the objectives, goals, 
and situational context of the consumer or user of the 
information being developed

Johnston (2005)
Taylor (2005)

Information may 
be deceptive, 
unreliable, or 
otherwise 
qualified

Issues of deception are common in the intelligence 
analysis domain and add complexity to each piece of 
information that analysts must interpret. Information 
may come from human sources which are biased or 
unreliable due to characteristics of the situation or the 
human observer. Analysts must understand the impact 
these different levels of meta-information have on 
information utility, as well as maintain and 
communicate qualifiers throughout the analysis 
process, a task which can be particularly challenging in 
distributed systems

Bisantz et al. 
(2009), Hardin 
(2001), Heuer 
(1999), Jenkins 
et al. (2011), 
Pfautz et al. 
(2005a), Pfautz 
et al. (2007), 
Pfautz et al. 
(2005b), Zelik 
et al. (2007)

Dynamic nature 
of domain

As time passes during the course of an analysis, analysts 
are faced with the challenge of constantly re-evaluating 
their hypotheses and supporting/refuting evidence to 
ensure they are still relevant and valid. This is a 
requirement resulting from the dynamic nature of the 
real-world. For example, the location of a person of 
interest is likely to be highly dynamic and must be 
continuously monitored and updated by the analyst. 
Additional considerations must also be given to 
meta-data (e.g., the source of data), which can evolve 
over time as real-world events play out

Pfautz et al. (2006), 
Roth et al (2010)

Unbounded 
problem space

During the broadening process, when analysts are 
attempting to uncover novel explanations for a set of 
information, they are faced with the challenge of 
considering a theoretically infinite problem space. The 
“open world” of possible explanations and events 
creates a wide range of unpredictable hypotheses for 
consideration. This unbounded range of possibilities is 
likely to result in a high degree of mental workload if 
analysts attempt to consider every hypothesis they can 
think of. Further, even in the case when they consider a 
large set of possible hypotheses, asking “Am I missing 
something?” is a very difficult question to answer, 
especially after an extensive attempt to avoid missing 
any relevant information

Hutchins et al. 
(2006), Pfautz 
et al. (2006)
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pressure) (Endsley 1996, Jian et al. 1997), and that these strategies may intro-
duce biases into the analysis process (see Heuer 1999, Hutchins et al. 2004, 2006, 
Johnston 2005, Kahneman et al. 1982, Mangio and Wilkinson 2008, Patterson 
et al. 2001a,c, Pirolli 2006, Pirolli and Card 2005, Roth et al. 2010, Tam 2008–
2009, Trent et al. 2007). Examples of decision biases which may impact intelli-
gence analysis include:

•	 Selectivity bias: Information is selectively recalled as a function of how 
salient the information is to the individual analyst.

•	 Availability bias: Frequency of an event is predicted based on how easily it 
is recalled from long-term memory.

•	 Absence of evidence bias: Failure to recognize and incorporate missing 
data into judgments of abstract problems (e.g., “What am I missing?”).

•	 Confirmation bias: Interpreting information to confirm existing beliefs or 
hypotheses.

•	 Overconfidence bias: Sureness that one’s own hypotheses are correct when 
most of the time they are wrong.

•	 Oversensitivity to consistency bias: Placing too much reliance on small 
samples and failure to discern that multiple reports come from the same 
source information.

•	 Discredited evidence bias: Persistence of beliefs or hypotheses even after 
evidence fully discrediting those hypotheses is received.

Systems designed to enhance analysis performance must provide support to reduce 
or overcome the impacts of these biases.

16.3 � IDENTIFYING FUSION SYSTEM CAPABILITIES 
TO MITIGATE DOMAIN COMPLEXITIES

Information fusion systems can be designed to support information analysis pro-
cesses. Considering domain characteristics and complexities allows identification 
of fusion system capabilities which support human performance in this challenging 
environment. After identifying the challenges that intelligence analysts are likely to 
face over the course of their analyses, the domain complexities that create these chal-
lenges can be characterized and high-level fusion system capabilities that address 
the complexities can be determined. Fusion system capabilities and their mapping to 
domain complexities are provided in Table 16.2.

In many situations, fusion systems are designed to integrate into existing work-
flows, as is the case with our fusion system to support a hypothetical intelligence 
analysis process. In these cases, it is often helpful to expand the capabilities map 
to show where in the existing workflow the end-user will access each capability. 
This map is useful for two reasons. First, it allows fusion engineers and system 
designers to understand where in their existing workflow end-user will access 
the system, and what goals they will have in mind at that time. This is important 
because it allows system designers to better understand the end-user’s informa-
tion seeking, system control or monitoring, and/or other interaction-related tasks. 
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TABLE 16.2
Intelligence Analysis Complexities and the High-Level Fusion System 
Capabilities Selected to Mitigate Them

Intelligence 
Analysis 
Complexity

Fusion System 
Capabilities Justification

Ambiguous 
RFIs

Support multiple 
searches (stored or ad 
hoc) for situations of 
interest

Allow analysts to explore multiple possibilities 
simultaneously to cover multiple interpretations or 
contexts. Facilitate systematic interaction between 
analyst and requestor to enable clarification and tie to 
specific fusion system products and processes

Data 
characteristics

Support manual or 
automated data 
association

Challenges relating to volume, heterogeneity, complexity, 
uncertainty, etc. of data can all be mitigated by providing 
external tracking of meta-data and automating data 
association to alleviate the analyst’s burden

Support manual/
automated situation 
assessment

Given the volume of data that analysts receive on a daily 
basis and the often high degree of complexity, having the 
fusion system perform automated situation assessments 
that can be highlighted for the analyst based on some 
pre-defined criteria will allow the analyst to handle a 
significantly larger volume of data during the analysis 
process

Distributed 
Structure

Store access 
credentials to 
multiple data sources

Analysts need to access different databases and 
information sources across departments and with 
different access requirements that need to be 
remembered. Having the fusion system store these 
credentials and automatically pull in data from these 
sources as needed will help mitigate this issue

Automate language 
translation

Feasibility may be an issue, but translating incoming 
natural language messages and reports into the analyst’s 
native language will open up the analysis to a range of 
sources that may otherwise be ignored due to the 
difficulty of overcoming the language barrier

Lack of data Set up custom search 
alerts to notify when 
data or situation is 
available/appears

Lack of key data or data sets may require analysts to 
repeatedly return to a source or data set to check for 
updates or appearance of the missing data. Allowing the 
analysts to set expectancies in terms of missing data and 
be automatically notified by the fusion system on its 
appearance/update will save time/effort during an 
analysis

Maintain and fusing 
pedigree data during 
data association 
processes

Information meta-data or pedigree is critical for analysts to 
evaluate the quality of the data and weight it appropriately 
to support or refute their hypotheses. Having the fusion 
system maintain this data in an accessible format before, 
during, and after processing will help analysts to quickly 
evaluate different pieces of data

(continued)
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TABLE 16.2 (continued)
Intelligence Analysis Complexities and the High-Level Fusion System 
Capabilities Selected to Mitigate Them

Intelligence 
Analysis 
Complexity

Fusion System 
Capabilities Justification

Potential for 
deception

Support what-if 
scenarios (e.g., what 
if this piece of data 
were false/true)

Allowing analysts to quickly change the characteristics of 
a piece of data (e.g., set uncertainty to 100% or 0%) and 
see how it affects networks of information and situations 
of interest will allow analysts to see how important 
different pieces of data are so they understand the degree 
to which their hypotheses rely upon them

Characterize and compute meta-information as part of the 
fusion process

Augment or enhance the algorithms in the fusion process 
to expose factors that allow for reporting of confidence, 
certainty. Similarly expose and maintain the qualities of 
the data feeding the fusion process. Provide an overall 
characterization of the state of the fusion process, its 
components, etc.

Real-world 
dynamics

Update knowledgebase 
in near real-time with 
most recently 
received data

Analysts need access to the most recent data to perform the 
most accurate analysis possible. System should update its 
database with new information as quickly as possible

Create temporal 
boundaries on 
situation assessment 
and data association

The theoretical dataspace for an analysis is infinite and 
impossible for a single analyst to fully consider. 
Allowing the analyst to set temporal boundaries on what 
data should be considered helps to limit the data under 
consideration and ensures that the data being considered 
falls within a specific time-frame, an important feature 
for historical analyses

Maintain temporal 
reference meta-data

All real-world events play out on the same timeline so 
analysts can drill-down to data or organize sets of data to 
view the order in which they occurred

Unbounded 
problem space

Support custom 
boundary ranges

For seemingly unbounded problems where theoretical 
data space is near infinite allowing the analyst to set 
custom boundary ranges (e.g., temporal, regional, 
cultural, etc.) will significantly reduce the volume of 
data for consideration. It also allows the analyst to 
provide top-down feedback to the system on where 
relevant data are likely to be found based on prior 
experience
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The second reason is that the capabilities map allows system designers to see if 
they are designing capabilities that do not readily integrate into existing work-
flows. If, during the capabilities-to-workflow mapping process, it is found that a 
capability does not have a clear location within the existing workflow, then the 
capability needs to be augmented or the workflow must change to incorporate the 
new capability.

Figure 16.3 provides an example of the capabilities map created for our fusion 
system to support intelligence analysis with the capabilities from Table 16.2 mapped 
to different common stages of the intelligence analysis process. The stages of analy-
sis are based on Kent’s overview of the intelligence analysis process (described ear-
lier) (1965). Cells shaded with grid backgrounds in Figure 16.3 represent stages of 
analysis where the respective intelligence analysis complexities are most likely to 
present challenges to analysts. This complexity-to-workflow analysis mapping was 
uncovered during the characterization of the domain and its complexities during 
the analysis of the work domain. Ideally, all highlighted cells will have associated 
capabilities that mitigate the challenges that arise due to the respective complexity at 
that stage of the intelligence analysis process. However, due to technological or other 
limitations, some of these capabilities may not be feasible. For example, Figure 16.3 
shows that the challenges arising from the distributed structure of the domain dur-
ing the analysis of the substantive problem (Stage 2) are not being addressed by any 
planned capabilities. Finally, capabilities which do not directly map to the intended 
purpose of the system (i.e., those that appear in cells with white backgrounds in 
Figure 16.3) can also be identified and reviewed regarding their respective utility (for 
example, to provide redundancy across stages).

16.4 � IDENTIFICATION OF TOUCH POINTS WITHIN A HARD-
SOFT FUSION PROCESS FOR INTELLIGENCE ANALYSIS

The domain and capabilities analysis is combined with information regarding the 
structure of a proposed hard-soft information system being developed to support 
intelligence analysis (Jenkins et al. 2011). Human-system interaction touch points 
represent stages during processing where the human operator will interact with the 
fusion system. Touch points can be included to accomplish a variety of goals; how-
ever, the overall suite of touch points should provide the information, interfaces, and 
control needed for the fusion system to support the human operator in the fusion 
loop. Subsequently, the selection and design of respective touch points are critical to 
the overall success of the fusion system because they will serve as the windows to 
the fusion system for the end-user. If the human operators do not have access to the 
information they need, there is a strong possibility they will develop an inappropriate 
understanding of the system’s true capabilities, which can lead to under- or overreli-
ance on the fusion system (Lee 2008, Parasuraman and Riley 1997).

This example presents the location and early definition of six touch points identi-
fied for inclusion in the hard-soft fusion system. For this example, touch point loca-
tions and definitions were based on an early-stage fusion architecture to illustrate 
how touch points can be identified early in the overall system development process. 
Early identification of touch point locations is important as touch point locations 
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FIGURE 16.3  Extended capabilities map showing intended capabilities, the associated 
intelligence analysis complexity they are intended to mitigate, and the stage of intelligence 
analysis where they are expected to be accessed. Stages of intelligence analysis are based on 
Kent’s model (1965). Highlighted cells indicate stages in the workflow where a complexity 
is likely to appear.
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and requirements influence the design of the fusion system. For example, a touch 
point requiring the display of specific information to the human operator influences 
the format and type of information the fusion system must maintain. This approach 
is consistent with the type of formative cognitive systems modeling and analysis 
described by Vicente (1999), in which modeling the work domain complexities can 
lead to new requirements for data sensing and processing capabilities necessary for 
successful performance.

The fusion system architecture used for this example is limited by user inter-
face mediums (e.g., keyboard/mouse/monitor), system input/output formats, and 
availability of source and data meta-information not yet being defined in terms of 
both format and availability. Subsequently, the touch points were defined by first 
identifying their location in the fusion processing stream given the capabilities 
they were intended to support. They were then refined by focusing on feature level 
details needed to support those capabilities. Each touch point can then be mapped 
to the stage(s) of analysis where it will be leveraged and the domain complexities 
that it is expected to mitigate. These details help designers understand the justifi-
cation of respective touch points and link the capabilities map to the touch points 
list. Figure 16.4 provides the outline of the fusion architecture that was used to 
select the location of touch points (for additional details on this fusion architec-
ture, see [Jenkins et al. 2011]) along with their location in the fusion stream. Figure 
16.4 shows each of the touch points, the capabilities they support, the domain com-
plexities they mitigate, and the interaction features required to support the human 
operator’s anticipated goals during the touch point interaction. In addition to these 
details, each fusion touch point provides the expected stage or stages of analysis 
(based on Kent’s seven-stage process mentioned previously [Kent 1965]) where the 
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FIGURE 16.4  Fusion system architecture to support the intelligence analysis process.
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analyst is expected to access the touch point. Understanding when the analyst will 
leverage the touch points within their current (or future) workflow allows system 
designers to anticipate the intelligence analyst’s goals and design more effective 
supporting capabilities.

16.4.1 T ouch Point 1

Description: While analysts are researching the problem(s) they are responding to, 
they must begin by setting boundaries on the data for consideration. This touch point 
allows the analyst to select data sets for inclusion in the final fused data set that 
they will access throughout the course of their analysis. Analysts can revisit this 
touch point to change the boundaries of data being considered during analysis if 
new information becomes available, which needs to be integrated with the already 
processed data or if their understanding of the substantive problem changes in a way 
that affects what data is likely to be relevant, creating a need for previously excluded 
data sets to be integrated into the fused data.

Location: Before incoming data set processing, but after incoming data sets have 
been received and are accessible to the fusion system for processing.

Expected intelligence analysis stage(s) when accessed:

•	 Stage 2—Analysis of substantive problem
•	 Stage 3—Collection of data
•	 Stage 6—Additional data collection and hypothesis testing

Capabilities to be supported:

•	 Multiple searches (stored or ad hoc) for situations of interest
•	 Queue incoming data for processing
•	 Custom boundary ranges

Required features:

•	 Create custom data sets
•	 Prioritize multiple data sets for processing
•	 Scan/review data sets pre-processing

Complexities addressed:

•	 Ambiguous requests for information
•	 Lack of data
•	 Unbounded problem space

16.4.2 T ouch Point 2

Description: After the fusion system has performed initial operations on incoming data 
to prepare it for data association, intelligence analysts can review the data and poten-
tially make changes to data association settings before processing occurs. Analysts 
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will want to ensure that respective data sets (including the primary fusion database) 
are appropriate for identifying associations, given their contextual understanding of 
the substantive problem and the goals of the analysis. Potential settings that analysts 
may want to alter include values such as the threshold level for associating two pieces 
of data or for merging together co-referenced entities. Settings can include thresholds 
specific to entity type, general thresholds, or other levels of granularity to ensure that 
associations are identified based on the analyst’s preferences. The analyst can also 
manually set the uncertainty/probability/reliability value associated with a piece of 
data or with a data source, which will override system-generated values. This feature 
will support what-if scenarios where analysts may wish to see what happens if a piece 
of data is true/false, and let analysts leverage their past experiences with the reliability 
of respective data sources or classes/types of information.

Location: After initial processing and uncertainty alignment of incoming data 
sets, but before data associations and co-references are identified and resolved.

Expected intelligence analysis stage(s) when accessed:

•	 Stage 3—Collection of data
•	 Stage 6—Additional data collection and hypothesis testing

Capabilities supported:

•	 Manual/automated data association
•	 What-if scenarios (e.g., what if this piece of data were false/true)
•	 Custom boundary ranges

Required features:

•	 Review of data sets being considered for data association
•	 Filtering of data sets to determine custom boundaries to utilize for data 

association
•	 Selection of additional data sets (previously processed) to be included in 

data association
•	 Custom threshold levels set to determine when manual approval is needed 

for a system-proposed merge to be carried out
•	 Custom uncertainty values to be assigned to individual data elements (e.g., 

what if scenarios)

Complexities addressed:

•	 Data characteristics
•	 Potential for deception
•	 Unbounded problem space

16.4.3 T ouch Point 3

Description: Depending on analysts’ preferences and requirements, they can approve 
potential data merges during the data association process. This needs to be done 
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during data association processing because subsequent processing decisions may be 
affected by the decision to merge or not merge two pieces of data. Given the large 
volume of data that can be processed over the course of an analysis, the high number 
of associations likely to be uncovered within the volume of data, and the rapid updat-
ing of data elements as new and/or updated information becomes available, analysts 
need the ability to monitor fusion processes to maintain their contextual understand-
ing of what the volume of data represents. A touch point during fusion processing 
can serve as a window to the underlying fusion processes to allow the analyst to 
understand how the system is manipulating the data before it presents its final output.

Location: Available throughout data association processing, either on demand or 
as needed by the system based on the system’s authority to autonomously carry out 
data association.

Expected intelligence analysis stage(s) when accessed:

•	 Stage 3—Collection of data

Capabilities supported:

•	 Manual/automated data association
•	 What-if scenarios (e.g., what if this piece of data were false/true)
•	 Maintain and fuse pedigree data during data association processes

Required features:

•	 Review of system proposed merges based on predetermined threshold level
•	 Approval/rejection of system-proposed merges

Complexities addressed:

•	 Data characteristics
•	 Potential for deception

16.4.4 T ouch Point 4

Description: The system will maintain a large-scale database that represents a 
network of associated entities and their respective attributes. This database will be 
a primary source of relevant information for analysts. Analysts can rapidly search 
through the database and set boundaries to focus on sections of the database for 
consideration. However, analysts could prefer to perform fusion operations on two or 
more data sets and analyze the results before they are merged and associated with the 
larger database of previously fused information. This touch point was incorporated to 
support this anticipated analyst requirement. It serves as a pre-integration window to 
analyze incoming data before it is associated and merged with previously processed, 
older information. This touch point is also especially critical for distributed fusion 
environments, where multiple analysts and fusion processes may be simultaneously 
working on similar problems. It will also allow analysts to highlight/flag/annotate 
different pieces of data or relationships before integration into the larger fusion 
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system database to allow analysts to understand where pieces of data they—or other 
analysts—viewed as relevant ended up in the larger network of information.

Location: After data association processing, but before the integration of merged 
and associated data set into the overall fusion entity-association database

Expected intelligence analysis stage(s) when accessed:

•	 Stages 3 and 4—Collection and evaluation of data

Capabilities supported:

•	 Automated language translation
•	 Manual or automated data association
•	 Maintain and fuse pedigree data during data association processes
•	 Maintain temporal reference meta-data
•	 Support automated pattern identification to highlight potential situations of 

interest
•	 Custom search alerts that notify when data or situation is available/appears

Required features:

•	 Browsing/reviewing of incoming data sets’ entity-association network
•	 Selection of entities within the network to highlight or annotate prior to fus-

ing with the overall fusion database
•	 Review of executed data merges
•	 Search input for the incoming data sets’ network for situations of interest
•	 Expand entity or association meta-data, source data, and data associa-

tion log

Complexities addressed:

•	 Distributed structure of the intelligence analysis domain
•	 Potential for deception
•	 Real-world dynamics

16.4.5 T ouch Point 5

Description: The fusion system can automatically pull in available data sets to be 
associated and integrated into the active (current bounded volume for analysis) or 
static (overall fusion database) volume of data maintained by the fusion system. 
When this occurs, analysts can review updates to the database so they can rapidly 
become aware of what is going on in the scenario represented by the incoming data 
(i.e., focus their attention on what is changing). To support the analysis of multiple 
hypotheses, the analyst can create data milestones that, if they occur, would help to 
confirm or reject one of the analyst’s current hypotheses. In this situation, the analyst 
can view the incoming data that signaled the milestone “alert” within its original 
context before it is merged into the larger fusion data set. This view would include 
the data’s meta-data and associations, which may be removed during the merge.

Location: After any update to the fusion system information database
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Expected intelligence analysis stage(s) when accessed:

•	 Stages 3 and 4—Collection and evaluation of data

Capabilities supported:

•	 Store access credentials to multiple data sources
•	 Set up custom search alerts to notify when data or situation is available/

appears
•	 Maintain and fuse pedigree data during data association processes
•	 What-if scenarios (e.g., what if this piece of data were false/true)
•	 Custom boundary ranges
•	 Update knowledge database in near real-time with most recently received 

data
•	 Maintain temporal reference meta-data

Required features:

•	 Browsing/reviewing of the fusion database
•	 Selection of database boundaries with respect to search/browsing 

capabilities
•	 Review of highlighted/annotated entities and/or associations
•	 Manual editing/addition of entities/associations/attributes
•	 Search the database using custom criteria
•	 Creation of entity/association placeholders that indicate expected hypoth-

eses not yet incorporated/observed
•	 Drill-down to entity or association meta-data, source data, update log, 

weighting, edit precedence, and data association log

Complexities addressed:

•	 Distributed structure of intelligence analysis domain
•	 Potential for deception
•	 Real-world dynamics
•	 Unbounded problem space

16.4.6 T ouch Point 6

Description: Touch Point 6 allows interaction with the fusion system’s primary out-
put. Depending on the output capabilities of the system, this touch point can help 
analysts generate their presentation artifact(s) by providing network association dia-
grams, key pieces of data supporting/refuting their hypotheses, meta-information 
on data and/or source, or other components in a consumable format. Because this 
touch point supports a number of analyst goals, the list of required features gener-
ated even at this high-level of abstraction is already lengthy; however, maintaining 
an understanding of the end-user’s goals as the touch point and associated features 
are defined will provide the foundation to ensure the final suite of features provide a 
positive and beneficial user experience.
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Location: Outside of the fusion processing architecture, this touch point serves as 
a global touch point which provides access to the output of the fusion system.

Expected intelligence analysis stage(s) when accessed:

•	 Stage 3—Collection of data
•	 Stage 4—Evaluation of data
•	 Stage 6—Additional data collection and hypothesis testing
•	 Stage 7—Presentation

Capabilities supported:

•	 Multiple searches (stored or ad hoc) for situations of interest
•	 Manual data association
•	 Manual situation assessment
•	 Store access credentials for multiple data sources
•	 Automate language translation
•	 Set up custom search alerts to notify when data or situation is available/

appears
•	 Maintain pedigree data
•	 What-if scenarios (e.g., what if this piece of data were false/true)
•	 Automated pattern identification to highlight potential situations of interest
•	 Create temporal boundaries on situation assessment and data association
•	 Maintain temporal reference meta-data
•	 Support custom boundary ranges

Required features:

•	 Filtering of data sets to determine custom boundaries
•	 Custom uncertainty values to be assigned (e.g., what-if scenarios)
•	 Review/approval of system proposed data merges
•	 Browse/review individual or group data sets’ entity-association database
•	 Select entities within the entity-association database to highlight or annotate
•	 Review executed data merges
•	 Search input to the entity-association database for situations of interest
•	 Select entity-association database boundaries/filters for search or other 

capabilities
•	 Review highlighted/annotated entities
•	 Manual editing/addition of entities and/or attributes
•	 Creation of entity/association placeholders that indicate expected hypoth-

eses not yet incorporate/observed
•	 Drill-down to entity or association meta-data, source data, update log, 

weighting, edit precedence, and data association log
•	 Revision to data set boundaries

Complexities addressed:

•	 Data characteristics
•	 Distributed structure
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•	 Lack of data
•	 Potential for deception
•	 Real-world dynamics
•	 Unbounded problem space
•	 Integration of additional data sets
•	 Review of data set and fusion entity-association database updates since pre-

vious milestone

16.5  CONCLUSION

The case study presented in this chapter describes the high-level challenges and 
system capabilities relevant to the support of human operators in fusion systems. 
These examples were presented within the context of developing a hard-soft fusion 
system to aid in intelligence analysis; however, the techniques used to analyze the 
domain and identify the challenges and posit design requirements are generalizable. 
Similarly, the process by which touch points for humans (and human organizations) 
allow interaction with data fusion systems may also be generalized from the example 
presented here. Our process involved three phases.

First, an extensive literature review was used to identify common stages of intel-
ligence analysis and factors that commonly add complexity to the task(s) facing the 
analyst. This review formed the foundation of understanding the role of humans in 
a distributed data fusion system, and could be expanded to include a review of work 
products and system or process documentation, ethnographic observations, study of 
artifacts in the work domain, structure interviews, and other knowledge elicitation 
activities (as formalized in Cognitive System Engineering practices), as well as a 
domain-specific review of research literature.

Second, fusion system capabilities were identified that could support analysts in 
situations where factors that commonly contribute to complexity are present. In this 
phase, our generalized process rapidly focuses a potentially broad analysis on areas 
of greatest need, and identifies where more design (and development and evaluation) 
efforts are required. Finally, by overlaying this capabilities mapping to the common 
stages of analysis, recommend touch points were identified that allow analysts to 
best leverage the fusion system capabilities throughout their analysis. While further 
effort is still required to refine the capabilities mapping and to define the specifics 
of each interaction touch point, focusing on these critical interactions facilitates 
the appropriate calibration of analyst perceptions to match the fusion system’s 
true capabilities, which will lead to appropriate reliance and, in turn, successful 
integration into analyst workflows. This critical final step of the process is focused 
on where and how human interaction with the data fusion system will result in 
overall improvement in unified human-system performance. Explicit definition of 
the touch points (and where they are required) allows for design and development 
investment to address specific human-related challenges, whether the human is a 
sensor, in the loop, or a consumer of fusion products. This same process applies to 
socio-organizational challenges inherent in distributed human/automated systems 
(see [Pfautz and Pfautz 2008] for a treatment of the different approaches to analysis 
of socio-organizational challenges)—as touch points can be considered not only 
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between the human and the fusion system but also among humans (e.g., a human 
operating in the loop with a data fusion system may report on confidence to the 
decision-maker consuming fusion products). Clearly, the role of humans in data 
fusion cannot be trivialized nor simplified—the deep complexity in human-system 
interaction should and must guide the design and development of fusion systems.
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17.1  INTRODUCTION

Computer vision, and in particular multi-camera environments, has been widely 
researched over the recent years, thus leading to several proposals of multi-camera 
or visual sensor networks (VSNs) architectures (Valera and Velastin 2005). The 
aims of these systems are very different; to name some of them, there are examples 
in surveillance applications (Regazzoni et al. 2001), sport domains (Chen and De 
Vlesschouwer 2010), or ambient intelligence applications for elderly care (Zhang 
et al. 2010). Despite the specific goal of each system, all of them have to cope with 
a distributed architecture of visual sensors to acquire and process information from 
the environment. The obtained information must then be fused in order to generate 
a meaningful global picture of the environment. Since a distributed VSN can be 
applied to different domains/scenarios, a specific ontology provides meaning and 
sense of the information that the system uses for interpretation purposes.

This chapter explores the use of the multi-agent paradigm and ontology-based 
knowledge representation formalisms to perform distributed data and information 
fusion (DIF) in VSNs. The multi-agent paradigm, which has been widely applied in 
distributed systems, provides a theoretical and practical framework to allow com-
munication and cooperation among the components of the system. For instance, in 
Lesser et al. (2003) several multi-agent protocols are presented to solve the task 
allocation problem in distributed sensor networks, but without visual capabilities.

Classical distributed visual systems work well for monitoring and surveillance 
tasks, but they can be improved using a multi-agent paradigm and ontology-based 
mechanisms. The underlying idea is to provide autonomous elements of the system 
with standard communication capabilities compliant to a content ontology in the 
process to achieve high-level data fusion.

The remainder of this chapter is organized as follows. The next section describes 
the main requirements and issues that should be taken into account when building 
VSNs. Section 17.3 introduces the application of multi-agent systems in visual sen-
sor domains. Section 17.4 provides a description of a specific architecture to fuse 
data in a VSN. An example using this architecture is shown in Section 17.5. Finally, 
Section 17.6 presents some open research problems and prospective directions for 
future work.

17.2  VISUAL SENSOR NETWORKS

Modern VSNs involve the deployment of a number of cameras in a wide area and the 
management of these geographically distributed monitoring points. Third-generation 
video systems apply techniques that resemble the human intelligent process of sur-
veillance, which activates certain cognitive abilities, to satisfy the challenges posed 
to modern security applications (Regazzoni et al. 2001). The most characteristic 
aspect of third-generation video systems is the use of physically distributed cameras 
able to locally run image-processing algorithms. Due to the huge amount of data, 
the natural processing architecture for a VSN is distributed (hierarchical or decen-
tralized) with processors dedicated to each visual data stream in a first level, before 
the information is communicated through the network. The combination of multiple 
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viewpoints brings potential improvements to the reliability and accuracy of the 
results, although the existence of multiple cameras inevitably increases the complex-
ity of the system. Although it is conceivable to achieve real-time performance with 
centralized processing, sending raw video streams to centralized servers is not prac-
tical, especially if the communication costs between nodes are accounted. Hence, 
local processing is necessary. Moreover, distribution increases system robustness 
and fault tolerance, since the same information may be captured and replicated at 
different points of the network.

17.2.1 R equirements and Issues

Two main requirements usually arise in distributed visual systems. First, it is nec-
essary to implement suitable procedures to fuse local data (captured by single 
cameras) in order to obtain an integrated view of the situation while reducing band-
width consumption. Second, coherence and scalability of the global system must be 
guaranteed with independence of the specific sensors and their configuration. This 
objective is difficult to accomplish when new heterogeneous cameras are incorpo-
rated to build a large and scattered network. Consequently, local data acquired by 
distributed video cameras must be combined to obtain a global understanding of 
the current scenario. Therefore, distributed systems for VSNs require techniques, 
algorithms, and procedures to solve the following issues.

17.2.1.1  Communication
Information acquired from each camera should be shared with others cameras and 
processing nodes, usually over a wired or wireless Internet Protocol (IP) network. 
The first decision in a multi-camera system is the physical installation of cameras. 
The number and placement of individual cameras have a great impact on system cost 
and capabilities. Since the main objectives are precise tracking of interesting objects, 
maximizing reliability and continuity of tracks, thus target-to-target or background-
to-target occlusions must be minimized by using multiple cameras monitoring the 
same area from different viewpoints.

17.2.1.2  Camera Calibration
Information in the VSN must be expressed in a common reference frame. Camera 
calibration, or common referencing, is the process of transforming from the local 
coordinates of each camera to a global coordinate space. Calibration and synchro-
nization can be done during an offline phase prior to system operation. This process 
is necessary to have a correspondence between the objects captured by different 
cameras. The resulting translation may include a reconstruction step to obtain a 3D 
representation of the 2D image. The most employed methods for camera calibration 
are those proposed by Tsai (1987), Heikkila (2000), and Zhang (2000). When the 
cameras have significant overlapping fields of views, the homograph between two 
corresponding image ground planes from two cameras can be computed by using 
target footprint trajectories and optimization techniques (Lee et al. 2000, Black and 
Ellis 2001). Typically, images of a calibration target (an object whose location and 
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geometry are known) are first acquired. Then, correspondences between 3D points 
on the target and their image pixels are obtained. This involves estimating the intrin-
sic and extrinsic parameters of the camera by minimizing the projection error of 
the 3D points on the calibration object. The Tsai camera calibration technique was 
popular in the past, but it requires a nonplanar calibration object with known 3D 
coordinates. Zhang (2000) proposed a more flexible planar calibration grid method 
in which either the planar grid or the camera can be freely moved. For multi-camera 
surveillance applications with little or no overlap areas between cameras, research 
has focused on automatically learning camera topology.

Some authors have proposed online calibration techniques. For instance, Javed 
et al. (2008) exploited the redundancy in paths that humans and cars tend to follow 
(e.g., roads, walkways, and corridors) by using motion trends and appearance of 
objects to establish correspondence. In Ellis et al. (2003) and Makris et al. (2004), 
authors used learned entry and exit zones to build the camera topology by exploiting 
temporal correlation of objects transiting between adjacent camera fields of view. In 
Pollefeys et al. (2009), a method is proposed to simultaneously compute the epipolar 
geometry and synchronization of cameras after considering the epipolar constraints 
that need to be satisfied by every camera pair.

17.2.1.3  Object Detection
Interesting objects must be identified in the sequence of images provided by the 
camera. There are various approaches to the detection of moving objects. Temporal 
differencing is based on calculating the pixel-by-pixel difference of various consecu-
tive frames (Lipton et al. 1998). Background subtraction is based on subtracting the 
current snapshot pixel values with a predefined background image (Piccardi 2004). 
Statistical methods are a variation of basic background subtraction method. They are 
based on the difference of additional statistical measures (Wang et al. 2003). Optical 
flow, in turn, is based on the computation of the flow vectors of moving objects over 
time (Barron et al. 1994).

17.2.1.4  Object Tracking
Detected objects should be tracked over time by matching the detections between 
consecutive frames. Object tracking, which involves state estimation and data asso-
ciation, has been traditionally tackled by applying statistical prediction and inference 
methods. Some tracking methods in general DIF are distributed multiple hypothesis 
tracking (MHT) (Chong et al. 1990), distributed joint probabilistic data association 
(JPDA) (Chang et al. 1986), covariance intersection (CI)/covariance union (CU) 
(Julier and Uhlmann 2001), and distributed Kalman filter (Olfati-Saber 2007).

In the case of video data association, it is necessary that objects are robustly 
tracked in time, even though the image processing algorithms may fail to segment 
them as single foreground regions (blobs) in some intervals. Problems with object 
segmentation often occur (Genovesio and Olivo-Marin 2004) when (1) the object is 
occluded by another region, a fixed object in the scene, or other moving object; (2) 
the object image is split into fragments during image segmentation; (3) the images 
from different objects are merged because of their close or overlapping projections 
on the camera plane.
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Classical data association techniques have been adopted and extended by com-
puter vision researchers. The JPDA filter has been applied to 3D vision reconstruc-
tion (Chang and Aggarwal 1991, Kan and Krogmeier 1996). Cox (Cox and Hingorani 
1996) proposed the first adaptation of Reid’s MHT (Reid 1979) to visual data asso-
ciation problems. In more recent approaches (Khan et al. 2005, Cai et al. 2006, Liu 
et al. 2008), a Markov Chain Monte Carlo strategy is applied to explore the data asso-
ciation space in order to estimate the maximum a posteriori joint distribution of mul-
tiple targets. Other recent approaches (Fleuret et al. 2008) are based on a discretized 
occupancy maps in the real world onto which the objects are projected. As we shall 
explain in the following, the estimation process is very sensitive to particular condi-
tions of the scenario. Thus statistical methods may be insufficient in VSNs, which 
requires the incorporation of additional information and knowledge in the process.

17.2.1.5  Classification
Object and activity recognition aim to determine the type of an object (e.g., car, 
human, aircraft) or the type of an activity (e.g., approaching, walking, manoeuvring). 
Depending on the specific application, classification can involve object type classifi-
cation (car, human, aircraft, etc.) or activity classification based on the object move-
ments. Recognition can be viewed as a probabilistic reasoning problem, in which 
case it is tackled through probabilistic models (Markov models, Bayesian networks, 
etc.) (Hongeng et al. 2004). It can also be modeled as a classification problem, in 
which case pattern recognition techniques (neural networks, self-organizing maps, 
etc.) (Hu et al. 2004) are employed.

17.2.1.6  Process Enhancement
Process enhancement, also known as active fusion, focuses on the implementation 
of suitable mechanisms that use the more comprehensive interpretation of the cur-
rent situation obtained after fusing data to improve the performance of the previous 
tasks. Generally speaking, process enhancement improves a fusion procedure by 
using feedback generated at a more abstract level. For instance, the behavior of a 
tracking algorithm can be changed once a general interpretation of the scene has 
been inferred. When the system recognizes that an object is moving out of the cam-
era range through a door, the tracking procedure will be informed to be ready to 
delete this track in the near future.

17.2.2 R elated Research

A wide range of alternative architectures and algorithms for distributed camera 
systems have been proposed in the last decade. Cai and Aggarwal (1999) pro-
posed a multi-camera framework for people tracking in outdoor environments. 
Mittal and Davis (2003) developed a multi-camera system for people tracking and 
action analysis.

Video surveillance and monitoring (VSAM), developed by Collins et al. (2001), 
is a system that addresses the problem of tracking multiple objects in a multi-camera 
scenario. VSAM presents the global picture of the environment to a human operator 
through a unified graphical user interface.
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Snidaro et al. (2003, 2004) described a system for outdoor video surveillance 
in which data are acquired from different types of sensors (optical, IR, radar). 
In the first level, data are fused to perform the tracking of objects in each zone 
of the monitored environment. Next, this information is sent to higher levels to 
obtain the global trajectories of the objects. They employed an aspect ratio metric 
obtained for each detected object over all the sensors. The fused result is obtained 
by weighting each sensor’s aspect ratio measurement. Analogously, Besada et al. 
(2005) proposed a distributed solution for airport surface traffic control based on 
a video network.

Matsuyama and Ukita (2002) developed a real-time multi-camera vision system 
in which the cameras are moved automatically with three degrees of freedom (pan, 
tilt, and zoom) according to the situation.

Typical examples of commercial surveillance systems are DETEC (DETEC 
Online) and Gotcha (GOTCHA Online). For outdoor applications, a representative 
example is the DETER system (Pavlidis et al. 2001). DETER reports unusual move-
ment patterns of pedestrians and vehicles in outdoor environments such as car parks. 
In these conditions, the systems typically require a wide spatial distribution that 
implies camera management and data communication. Nwagboso (1998) proposes 
combining existing surveillance traffic systems based on networks of smart cameras. 
The term “smart camera” is normally used to refer to a camera that has processing 
capabilities (either in the same casing or nearby) and can autonomously perform 
event detection and event video storage.

In general, third-generation surveillance systems provide highly automated 
information, as well as alarms and emergencies management. This is the aim of 
CROMATICA (CROMATICA Online), a system for crowd monitoring and its suc-
cessor, PRISMATICA (Velastin et al. 2005), a pro-active integrated system for secu-
rity management. PRISMATICA, which is one of the most sophisticated surveillance 
systems of the recent years, is a wide area multi-sensory, multimodal distributed sys-
tem. It receives inputs from closed-circuit television (CCTV), local wireless camera 
networks, smart cards, and audio sensors. Intelligent devices in the network process 
sensor inputs and send/receive messages to/from a central server module. Another 
important project is ADVISOR (Siebel and Maybank 2004), which aims to assist 
human operators by automatically selecting, recording, and annotating images con-
taining events of interest. Although both systems are classified as distributed archi-
tectures, they have a significant difference: PRISMATICA employs a centralized 
approach which controls and supervises the whole system, whereas ADVISOR can 
be considered a semi-distributed architecture. In Yuan et al. (2003), an intelligent 
video-based visual surveillance system (IVSS) is presented. This system aims to 
enhance security by detecting certain types of intrusion in dynamic scenes. The 
system involves object detection and recognition (pedestrians and vehicles) and 
tracking, with an architecture similar to ADVISOR (Siebel and Maybank 2004).

Scalability has been specifically addressed by including new security devices or 
analysis modules after the initial deployment of the surveillance system. Within this 
context, service-oriented computing has been used to design a framework to deploy 
video surveillance applications (Enficiaud et al. 2006). The authors used this frame-
work to detect and count people in monitoring environments.
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One disadvantage of most classical systems is that they rely on expensive com-
putational costs. This high processing load may be impossible to accomplish in 
real-time video applications, since image processing introduces a bottleneck due 
to the foreground/background subtraction algorithms. A second problem is that the 
employed algorithms usually rely on very strong statistical assumptions (such as 
Gaussian linear dynamic models of targets and noise), which unfortunately do not 
hold in several application domains. In video processing, statistical techniques have 
encountered practical limitations mainly due to the difficulty of obtaining analytical 
models of the source errors.

Researchers have proposed solutions to overcome the problems that usually arise 
when dealing with visual information. There is a growing interest in the design of 
open and flexible DIF software architectures and techniques that improve the clas-
sical approaches. One of the main challenges for achieving enough reliability in the 
information inferred from a visual network is the use of appropriate context repre-
sentation and management formalisms in the fusion process. Also, the coherence in 
the network requires communication and coordination mechanisms to share infor-
mation and carry out the necessary adjustments in the information derived.

Besides, distributed visual data fusion must address problems that are common 
to any distributed data fusion application. First of all, when dealing with images as 
an input source, it is very difficult to have a predefined model of sensor error and a 
priori detection probabilities (visual information may have problems with illumina-
tion changes, occlusions, etc.) Other problems with distributed solutions are the need 
of clock synchronization between sources, the presence of out of sequence measure-
ment and data incest problems.

For these reasons, in this chapter we explore the use of multi-agent architectures 
in distributed fusion with specific reasoning procedures at the low-level (contextual) 
and high-level to obtain an appropriate interpretation of the environment. The use of 
ontologies is also considered to represent the exchanged information and formalize 
the exploitation of contextual information.

17.2.3  Context-Based Approaches to High-Level Information Fusion

Broadly speaking, high-level information fusion (HLIF) refers to those inferences 
developed by IF systems which correspond to a higher level of abstraction. Cognitive 
approaches to HLIF propose building a symbolic model of the world, expressed 
in a logic-based language, to abstractly represent the scene objects, events, and 
behaviors, as well as the relations among them (Vernon 2008). Such a model can 
be regarded as the mental representation of the scene gained by cognitive software 
agents. It may include both perceptions and more complex contextual information. 
Cognitive approaches are robust and extensible, but they require the development of 
suitable interpretation and reasoning procedures.

The use of symbolic models to acquire, represent, and exploit knowledge in IF, 
and particularly in visual IF, has increased in the last decade. Lambert (2003) high-
lights three requirements that are crucial to the implementation of model-based 
IF systems: (1) to discern what knowledge should be represented, (2) to determine 
which representation formalisms are appropriate, (3) to elucidate how acquired and 
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contextual inputs are transformed from numerical measures to symbolic descrip-
tions, which is known as the grounding problem (Pinz et al. 2008).

Regarding selection of knowledge to be represented, there is a consensus about the 
importance of context knowledge in visual IF. Recently, researchers in IF have recog-
nized the advantages of cognitive situation models, and have pointed out the impor-
tance of formal context knowledge to achieve scene understanding. Specifically, the 
last revision of the Joint Directors of Laboratories (JDL) specification highlights the 
importance of context knowledge (Steinberg and Bowman 2009), especially when 
visual inputs are to be interpreted (Steinberg and Rogova 2008). Henricksen (2003) 
defines context as the set of circumstances surrounding a task that are potentially 
of relevance to its completion. Kandefer and Shapiro (2008) extend this definition 
and state that context is the structured set of variable, external constraints to some 
(natural or artificial) cognitive process that influences the behavior of that process 
in the agent(s) under consideration.

To be consistent with this definition, we can consider that context in visual appli-
cations includes any external piece of knowledge used to complement the quantita-
tive data about the scene computed by straightforward image-analysis algorithms. 
Context information (CI) is therefore an “external constraint” (because it is not 
directly acquired by the primary system sensors) that “influences the behavior” of 
the fusion process (since it is used to guide and support visual IF). Adapting the 
characterization by Bremond and Thonnat (1996), four sources of CI must be taken 
into account in visual DIF: (1) the scene environment: structures, static objects, illu-
mination, and other behavioral characteristics, etc.; (2) the parameters of the sensor: 
camera, image, and location features; (3) historic information: past detected events; 
(4) soft information provided by humans.

Several representation formalisms have been proposed to be used in IF prob-
lems. Nevertheless, logic-based languages have received modest interest, in spite 
of their notable representation and reasoning advantages. Moreover, in this case 
most approximations have used ad hoc first-order logic representation formalisms 
(Brdiczka et al. 2006), which have certain drawbacks: they are hardly extensible and 
reusable, and reasoning with unrestricted first-order logic models is semi-decidable. 
Recently, there is a special interest in ontologies (Nowak 2003), since they over-
come these problems. Current approaches are using ontologies to combine contex-
tual and perceptual information, but there is still a lack of proposals that describe in 
detail how context knowledge can be characterized and integrated in general fusion 
applications.

At the low-level IF (i.e., JDL levels 0 and 1), one of the most important contri-
butions is the Core Ontology for Multimedia (COMM). COMM is an ontology to 
encode MPEG-7 data at image level (i.e., JDL L0) (Arndt et al. 2007). It is rep-
resented with the Ontology Web Language (OWL), the standard proposed by the 
World Wide Web Consortium (W3C) (Hitzler et al. 2009). COMM does not repre-
sent high-level entities of the scene, such as people or events. Instead, it identifies 
the components of a MPEG-7 video sequence in order to link them to semantic 
web resources. Similarly, the Media Annotations Working Group of the W3C is 
working in an OWL-based language for adding metadata to web images and videos 
(Lee et al. 2009).
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Other proposals are targeted at modeling video content at object level (i.e., JDL L1). 
For example, a framework for video event representation and annotation is described 
in François et al. (2005). This framework includes two languages, namely the Video 
Event Representation Language (VERL) and the Video Event Markup Language 
(VEML). VERL defines the concepts to describe processes, such as entities, events, 
time, and composition operations; and VEML establishes an XML-based vocabu-
lary to markup video sequences, such as scenes, samples, streams, etc. VEML 2.0 
has been partially expressed in OWL. Other authors have discussed and improved 
this approach to support the representation of uncertain knowledge (Westermann 
and Jain 2007). Halfway between data and object level is the research work by Kokar 
and Wang (2002), who present a symbolic representation for the data managed by 
a tracking algorithm. In this approach, the data managed by a tracking algorithm 
are represented symbolically to solve the grounding problem and to support further 
reasoning procedures. The low-level ontologies presented in Section 17.4.2 are based 
in this notion. In addition, higher-level knowledge inferred by abductive reasoning is 
also considered in our proposal.

High-level IF issues (i.e., JDL L2 and L3) are being dealt with ontologies as well. 
Little and Rogova (2009) study the development of ontologies for situation recogni-
tion, and propose a methodology to create domain-specific ontologies for informa-
tion fusion based on the upper-level ontology Basic Formal Ontology (BFO), and its 
sub-ontologies SNAP and SPAN, used for endurant (snapshot) entities and perdurant 
(spanning) processes, respectively. In Neumann and Möller (2008), the authors pres-
ent an ad hoc proposal for scene interpretation based on Description Logics and 
supported by the reasoning features of the Renamed Abox and Concept Expression 
Reasoner (RACER) (Häarslev and Möller 2001). The authors also distinguish 
between lower-level representations and higher-level interpretations to avoid the 
grounding problem. The representation of high-level semantics of situations with a 
computable formalism is also faced in Kokar et al. (2009), where an ontology encod-
ing Barwise’s situation semantics is developed. The approach in Aguilar-Ponce et al. 
(2007) defines a multi-agent architecture for object and scene recognition in VSNs. 
In addition, the later authors propose the use of an ontology to communicate infor-
mation between task-oriented agents, in a similar way as the proposal described in 
Section 17.4.1. A practical approach to surveillance is shown by Snidaro et al. (2007), 
who developed an OWL ontology enhanced with rules to represent and reason with 
objects and actors.

All these works focus on contextual scene recognition, but it is also interesting to 
apply this knowledge to refine image-processing algorithms (which corresponds to 
JDL L4), as described in Section 17.1. An approach to this topic is presented in Gómez-
Romero et al. (2011). In this paper, the authors describe an ontology-based framework 
to support scene recognition and fusion process enhancement, and discuss contribu-
tions and drawbacks from an architectural and knowledge management point of view.

17.3  MULTI-AGENT SYSTEMS IN VISUAL SENSOR NETWORKS

Multi-agent systems have been proposed as a solution for distributed surveillance, 
since they naturally support coordination of multiple tasks aimed at the analysis of 
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object behaviors in dynamic and complex situations. Multi-agent systems are argu-
ably well suited for the development of distributed systems in dynamic environments 
as VSNs. Agents have been applied in several approaches to identify faces and adapt 
the segmentation process in monitoring context, as discussed in Lee (2003).

Solving tracking tasks is one of the most studied problems by approaches that 
use agents to monitor objects. It is possible for agents to communicate and coop-
erate to monitor multiple objects simultaneously. A representative example of this 
approach was proposed by Remagnino et al. (2004), where they design the cam-
era agent to calibrate the camera, track objects, and learning their behavior. The 
authors proposed a multi-agent architecture for visual monitoring where the agents 
are dynamically created when a new object is detected in order to cast the concept of 
agent to the detected objects. Similar proposals were later discussed in Garcia et al. 
(2005), which focuses on the communication messages exchanged between agents. 
The work in Castanedo et al. (2010) is also based on the application of multi-agent 
systems in a VSN. Recently, Albusac et al. (2010) also proposed a multi-agent archi-
tecture to incorporate expert domain knowledge into automatic monitoring and to 
provide a scalable and flexible solution tested in an urban traffic scenario.

As a matter of fact, the notion of agent suits very well to the concept of intelligent 
camera, since each software agent acquires and processes the visual images. On the 
one hand, nodes in the VSN are autonomous, in the sense that they have processing 
capabilities to acquire and process information in its field of view. On the other hand, 
the social abilities of agents provide the necessary means to share the visual infor-
mation across the network and cooperate in the overall objective of the VSN. In order 
to avoid errors due to local knowledge of the world, nodes (developed as agents) 
establish social relations to build a global fused result depicting a more accurate and 
abstract view of the scenario.

In addition, agent-based standard communication protocols are the support to 
achieve interoperation with other systems at a high abstraction level. Last but not 
least, the existence of several multi-agent frameworks, which hide particular com-
munication details, provides an easy way for developing distributed systems due to 
the loosely coupled architecture of multiple agents.

Ontologies can be used in such architecture to define the content language of 
agents’ messages. The use of a common communication ontology facilitates agent 
interoperability, since the messages are expressed in the same well-defined lan-
guage. This allows systems to be flexible, extensible, and independent of the imple-
mentation technologies. Moreover, sharing and reusing features of ontologies make 
them especially suitable for DIF in VSN. As mentioned before, VSN applications 
are highly context-dependent, but ontologies can be reused or extended to suit spe-
cific domain requirements. The agent communication ontology defines a set of con-
cepts to describe the tracking information interchanged by the agents of the VSN. 
It behaves as an agreed vocabulary that allows tracking data to be represented in an 
abstract, common, and understandable way. Agents manage a local instantiation of 
the ontology, where individual ontologies corresponding to runtime scenario data 
are created. As we explain in the next section, ontologies are used in the architecture 
not only as a message content language but also to represent fused data and contex-
tual knowledge.
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17.3.1  Belief–Desire–Intention Paradigm

Multi-agent systems (Weiss 1999) can be divided into three different types: reactive, 
deliberative, and hybrid. The belief–desire–intention (BDI) paradigm is considered a 
hybrid architecture, since it divides the execution time of the system between delib-
eration and execution. The main difference with respect to the purely reactive archi-
tectures is that hybrid architectures spend more time reasoning to choose the next 
plan for execution. On the contrary, purely deliberative architectures follow a pure 
logic representation that requires an agent to manipulate symbols, and the percent-
age of time spent on the execution of the actions is less than the hybrid ones.

BDI paradigm has an explicit representation of the agent’s notion following 
Bratman’s theory of practical reasoning (Bratman 1987). The knowledge of an agent 
at any given time is based on the state of the BDI data structures. The belief data 
structure stores facts in a belief base acquired from the environment. Desire rep-
resents the final affairs that an agent wants to achieve. Finally, Intention describes 
specific plans that an agent has committed to execute in order to achieve its desires. 
Therefore, intentions should be consistent with the agent’s desires. The BDI reason-
ing cycle must choose those plans for execution that match with the agent’s desires, 
given the current belief. In this sense, the BDI architecture follows a similar reason-
ing process as the rule-based planning systems. However, multi-agent architectures 
also implement the social and communication capabilities required in any distrib-
uted system.

One of the advantages of using a multi-agent architecture is the separation 
between the management of the execution control and the reasoning mechanism, 
and plan execution is clearly separated inside the architecture. Therefore, there is no 
need to have an external management process.

17.3.2  Communication and Coordination

Agent communication in the VSN is the cornerstone to more complex DIF proce-
dures. Communication mechanisms and protocols employed by the agents are usu-
ally based on the speech act theory (Searle 1970). To the speech act theory, spoken 
sentences in natural language are actions that produce changes in the receiver. Thus, 
in agent-based models, utterances are actions that result in changes in the internal 
state of the agents involved in the conversation. The messages sent by the agents are 
labeled using specific intention identifiers (e.g., query or inform). Exchanged infor-
mation may range from essential data to complete acquired sequences, and from raw 
data to processed information. Besides, communication protocols can be based on 
pull messages (ask for information) or push messages (provide information).

The current standards for communication in multi-agent systems are defined 
in the Foundation of Intelligent Physical Agents (FIPA) specifications. Regarding 
message-passing, FIPA defines Agent Communication Language (ACL), a transport 
language that defines the format of the messages’ envelope, a set of communicative 
acts, and a set of interaction protocols. ACL allows specifying the vocabulary to be 
used to encode agent contents. Traditionally, message semantics have been expressed 
in the FIPA Semantic Language (SL), a first-order logic derived language. The main 
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drawback of SL is that it is undecidable in its general form; i.e., it is not guaranteed 
that all the inferences are computable in a finite time. Therefore, there is a growing 
interest in using formal ontologies as content languages (Hendler 2001, Schiemann 
and Schreiber 2006, Erdur and Seylan 2008), since they have appropriate computa-
tional properties and several supporting tools.

Ontologies can be accordingly defined to describe visual information exchanged 
by the agents of the VSN. In the simplest case, a suitable ontology can be created to 
represent tracking information. Such ontology would define a vocabulary including 
a set of concepts, relations, and axioms to describe tracking data. Agents manage a 
local instantiation of the ontology, where individual ontologies corresponding to the 
runtime data provided by the low-level tracking procedure are represented. Thus, 
the agents use the same vocabulary to interchange beliefs, which internally can be 
represented by using the ontology or not. Decoupling internal and external belief 
representations and the use of formal and standard languages facilitate the incorpo-
ration of heterogeneous elements to the VSN. In the most complex case, this ontol-
ogy can include more abstract terms to represent objects, situations, or threats, and 
be the support of more sophisticated high-level fusion procedures, as described in 
the next section.

Besides communication, multi-agents also support the implementation of coor-
dination schemes along communication protocols, in order to promote cooperation 
between agents and achieve better solutions. One of the most employed protocols for 
agent coordination is the contract-net (Smith 1980), which is mainly focused on task 
allocation problems. In a VSN, coordination mechanisms can be used to form smart 
camera coalitions, i.e., groups of sensors able to carry out complex processing tasks 
and collaborate with their neighbors. Another typical example of the application of 
agent cooperation in VSNs is camera handover (Patricio et al. 2007).

17.4  MULTI-AGENT APPROACH TO MANAGE DATA IN VSN

In the multi-agent approach for DDF in VSN, we can distinguish two main types of 
agents: sensor agents and fusion agents. Since the sources are completely distributed, 
but the fusion process is carried out by a centralized process level, a hierarchical and 
partially distributed architecture is proposed as is shown in Figure 17.1.

The figure shows two sensor agents and one fusion agent. However, it is possible 
to deploy several agents of each specific type. The only constraint is that a set of sen-
sor agents are managed by a fusion agent following a hierarchical scheme. That is, 
the whole system has to include fewer fusion agents than sensor agents.

Sensor agents obtain the tracking information from the sensed environment 
through the acquired images and communicate the detected tracks to the fusion 
agent. So the external perception of each sensor agent is based on the processed 
images. The local perception of each sensor agent’s environment is stored in the 
belief base as agent’s beliefs. The obtained images are processed following the pre-
vious steps: object detection, data association, and state estimation. On the other 
hand, the fusion agent receives the track information from sensor agents and fuses 
it to obtain a global view of the scenario. The more comprehensive knowledge 
of the current situation obtained after fusing data can be used to provide sensor 
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agents with additional information, allowing them to correct their local knowledge. 
Communication between each sensor agent and the corresponding fusion agent is 
carried out by using the defined ontology as the content language in the FIPA ACL 
messages. Each agent (both sensor and fusion) is uniquely identified through its agent 
ID, which is composed of the IP address of the computer plus the agent platform and 
agent name. Next, the overall process is described in more detail.

17.4.1  Sensor Agents: Object Tracking

VSN data processing is performed by agents at two logical levels: (1) the tracking 
layer and (2) the BDI layer. First, each camera is associated with a tracking process. 
It sequentially executes various image-processing algorithms to detect and track all 
the targets within the local field of view. The tracking layer is arranged in a pipelined 
structure of several modules, as shown in Figure 17.2, which corresponds to the suc-
cessive stages of the tracking process (Besada et al. 2005): (1) detection of moving 
objects, (2) blob-to-track multi-assignment, (3) track initialization/deletion, and (4) 
trajectory analysis.

The BDI layer uses an ontological model to encode these perceptions acquired 
by the agent. At this level, the purpose of the ontology is to serve as a symbolic 
representation of the numerical estimates from tracking. Therefore, the ontology is 
used for belief representation. This ontology, representing track information, can be 
also used for agent communication, as described in Section 17.3.2. Agent beliefs are 
represented as instances of the ontology, whereas desires and intentions are defined 
as plans following the JADEX format (Pokahr et al. 2005). We identify the following 
beliefs, desires, and intentions of camera-agents in a VSN:

Beliefs: Agent beliefs include information about the outside world, like objects 
that are being tracked (storing the location, size, trajectory, etc.), and geographic 

Tracking layer
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FIGURE 17.2  Sensor agent.
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information about the camera itself, such as location, neighbor cameras, etc. The 
belief base of the agent is updated with the new perceived information. It may also 
be convenient to constrain the stored beliefs in a temporal window, in order to avoid 
the overhead of keeping all past knowledge. Therefore, the ontology will include 
convenient classes to describe tracks and track properties changing in time.

Desires: Since the final goal of agents is tracking the moving objects correctly, 
they have two main desires: permanent surveillance and temporary tracking. The 
surveillance plan is continuously executed. Sensor agents continuously capture 
images from the camera until an intruder is detected or announced by a warning 
from another agent. In this case, the tracking plan is triggered. The tracking plan 
runs inside a tracking process (implemented at the tracking layer), using the images 
from the camera until it is no longer possible. The tracking plan includes suitable 
actions to update beliefs of the agent, that is, to provide the track estimates to the 
BDI layer.

Intentions: Agents perform two types of actions: internal and external. Internal 
actions are related to video processing and tracking, and involve the issue of com-
mands to the tracking subsystem or the camera. External actions correspond to 
communication acts with other agents. Agents send and receive messages carrying 
beliefs, which are represented with the ontology. Communication between sensor 
agents and fusion agents is performed by interchanging FIPA-compliant messages. 
The use of standard FIPA messages with content represented with the defined ontol-
ogy promotes interoperability in the platform, as well as the incorporation of new 
heterogeneous agents. Two main types of interaction dialogs or conversations can 
happen between agents in the framework.

Update situation knowledge dialog: This interaction dialog sends to the fusion 
agent information about moving objects in the sensor agent field of view. The mes-
sages from the sensor agents include their local perceptions expressed as tracks and 
track properties represented in the communication ontology.

Communicate-fused estimation dialog: This interaction dialog sends to the sen-
sor agent information and feedback about the global situation after data fusion is 
performed, according to the updates provided by the sensor agents.

17.4.2 �F usion Agents: Low- and High-Level Data 
Fusion, Context Exploitation, Feedback

The fusion agent processes the update situation knowledge messages which are sent 
by sensor agents and initiates the fusion process. The fusion agent first extracts suit-
able data from this formal representation and starts a low-level fusion process based 
on existing DIF algorithms. From this formal representation of the low-level fused 
tracks, a high-level fusion process is developed. High-level information fusion in the 
fusion agent has two objectives: (1) to obtain a high-level interpretation of the scene 
from the perceptions of the distributed sensors—i.e., to perform L1 to L3 fusion; 
and (2) to determine how the fusion processes might be changed to improve their 
performance—i.e., to perform L4 fusion.

Essentially, HLIF in the fusion agent is a model-building procedure, which results 
in the construction of an ontological instantiation that abstractly represents the fused 
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scene. We envision a knowledge model structured in five layers, from tracking data 
to impacts and threats:

Tracking data (L1). Output of the basic fusion algorithm represented symboli-
cally. Examples include frames, tracks, and track properties (color, position, 
velocity, etc.)

Scene objects (L1 – L1/2). Objects resulting from making a correspondence 
between existing tracks and possible scene objects. For example, a track 
can be inferred to correspond to a person (possibly by applying CI). Scene 
objects include static elements which may be defined a priori and dynamic 
objects, which may be defined a posteriori. Examples include person, door, 
column, window, etc.

Activities (L2). Description of relations between objects that persist in time. 
Examples include grouping, approaching, picking/leaving an object, etc.

Impacts and threats (L3). Cost or threat value assigned to activities.
Feedback and process improvement (L4). Abstract representation of the sug-

gestions provided to the tracking procedure.

An ontology of an upper abstraction level is based upon an ontology of a lower 
abstraction level. For example, the ontology for scene objects defines a property to 
associate instances of scene objects (e.g., people) to the actual track instances stored 
as agent’s beliefs. Thus, information at this level is described in terms of objects 
instead of tracks, but the association between them is purposely represented. In the 
same way, a more abstract ontology is defined to represent scene situations. These 
situations would be inferred from the relevant objects represented in the lower-level 
scene objects ontology, which in turn is related to the track information ontology. 
Therefore, the communication ontology is the lowest level ontology and allows for 
making a correspondence between cognitive and perceived entities.

The fusion process in the fusion agent is depicted in Figure 17.3. This figure 
represents the information processing flow: first from bottom to top, to interpret the 
scene; and second, from top to bottom, to generate feedback.

Scene interpretation is a paradigmatic case of abductive reasoning, in contrast 
to the Description Logics classical deductive reasoning. Abductive reasoning takes 
a set of facts as input and finds a suitable hypothesis that explains them (sometimes 
with an associated degree of confidence or probability). This is the case of scene 
interpretation: the objective is to figure out what is happening in the scene from 
the observations and the contextual facts. In terms of the fusion agent architecture, 
scene interpretation is an abductive transformation from instances of a lower-level 
ontology (representing perceived or contextual entities) to instances of a higher-level 
ontology. Abductive reasoning is not directly supported by ontologies (Elsenbroich 
et al. 2006), since monotonicity of ontology languages forbids adding new knowl-
edge to the models while reasoning. Nevertheless, it can be simulated by using 
customized procedures or preferably by defining transformation rules in a suitable 
query language. The RACER inference engine, presented in Section 17.2.3, allows 
abductive reasoning, and therefore it may be a good choice to implement the reason-
ing procedures within the ontologies.
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In the proposed architecture, abductive rules formally represent contextual, heu-
ristic, and common sense knowledge to accomplish HLIF and low-level tracking 
refinement. Accordingly, we have two types of rules: bottom-up rules and top-down 
rules. On one hand, bottom-up rules are used in scene interpretation and obtaining 
instances of an upper-level ontology from instances of a lower-level ontology. For 
instance, some rules can be defined to identify objects from track measurements, 
i.e., to obtain instances of the scene objects ontology from instances of the tracking 
data ontology. An example rule may be: “create a person instance when an unidenti-
fied track larger than a predefined size is detected inside a region of the image.” On 
the other hand, top-down rules create suggested action instances from the current 
interpretation of the scene, the historical data, and the predictions. These actions are 
used to adapt hypothesis at a lower-level to interpretations of a higher-level, which 
means the creation of instances of a lower-level ontology from instances of an upper-
level ontology.

Eventually, top-down rules may create instances of the feedback ontology, 
which can be asynchronously returned to the sensor agent to update its knowledge. 
As a result of reasoning with the scene interpretation, active fusion information 
can be asynchronously returned to the sensor agent by starting a communicate-
fused estimation dialog. These active fusion messages are also transmitted with 
the FIPA protocol and encoded with the communication ontology presented in 
Section 17.4.1.

17.5  APPLICATION EXAMPLE: INDOOR SURVEILLANCE

In this section, we will show how the framework presented in Section 17.4 is imple-
mented in a specific application domain. Let us suppose an indoor surveillance 
system inside the university facilities aimed at tracking people and detecting inter-
esting situations. We will focus on the computer laboratory, where three cameras 
are installed to cover the room area (see Figure 17.4). In this example, we have three 
sensor agents and one fusion agent. For the sake of simplicity, we will not consider 
additional cameras located at the nearby corridor. However, they can easily be incor-
porated to the framework and provide support for information handover when an 
individual enters the computer laboratory.

Before starting the processing, the framework must be configured. More precisely, 
the fusion agent must be informed of the positions of the cameras and provided with 
contextual information to be used in the fusion procedure. Once the framework has 
been configured, sensor agents start the execution of the continuous surveillance 
plan; i.e., agents process frames until the tracker detects a moving person in the 
room. Tracking data are encoded in the communication ontology and sent to the 
fusion agent by starting an update situation knowledge dialog. The fusion agent pro-
cesses the tracking data obtained by the three cameras and combines them by apply-
ing a classical low-level fusion algorithm. This procedure results in updating the 
track data ontology, which triggers higher-level and contextual fusion procedures. 
Scene interpretation may lead to feedback generation to the sensor agents, which is 
returned back by starting a communicate-fused estimation dialog.
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In the remainder of this section, we describe in more detail how these proce-
dures are performed in the framework. This is not a comprehensive explanation of 
the implementation of such a system. Instead, we will make several assumptions to 
simplify the explanation of the system features in order to provide a general over-
view of the benefits of the approach and the open problems that remain to be solved 
in the future.

17.5.1 �F ramework Configuration: Camera 
Calibration and Context Definition

Camera calibration is achieved by applying the Tsai technique (1987). We manu-
ally mark some distinct points on the ground plane situated inside the overlapping 
area of the cameras. The homography matrix is calculated from the position of the 
distinct points in global and local coordinates. Linear optimization techniques are 
used to numerically calculate the values of the matrix. The homography matrix is 
used by the agents to transform from camera coordinates (as seen by sensor agents) 
to global coordinates (as seen by the fusion agent). Dynamic calibration techniques 
can be also applied, but for the sake of simplicity we will assume pre-calibration of 
the cameras (Figure 17.5).

After defining the common reference space, we use the ontological model to rep-
resent CI applicable to the scenario. Positions of the contextual entities are defined in 
global coordinates. To do this, we develop a specific ontology for surveillance based 
on the generic model presented in Section 17.4.2 to represent interesting entities of 
the surveillance domain, namely, the Surv ontology. This ontology defines the exten-
sional knowledge of the application (i.e., concepts and relations). The intensional 

(0.0)
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FIGURE 17.4  Computer laboratory scenario and cameras.
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knowledge (i.e., instances) will be created as a result of the fusion procedure. The 
Surv ontology in this example imports the sub-ontologies of the generic model and 
specializes them, for instance, with additional

•	 Concepts:
Objects: Door, Person, Table, CopyMachine, MeetingArea
Scenes: Approach, Meeting

•	 Relations:
inMeeting

•	 Axioms:
Person ⊑ DynamicObject (a person is a dynamic object)
CopyMachine ⊑ OccludingObject (a copy machine is an occluding object)
Table ⊑ OccludingObject (a table is an occluding object)

The Surv ontology is used to annotate the scenario. Annotating the scenario means 
to create instances of the ontology describing static objects. Therefore, we initially 
insert instances in the ontology to indicate the position of the door, the tables, 
the copy machine, and the meeting area. Figure 17.6 depicts the correspondence 
between ontology instances and scenario information. We also show the OWL code 
corresponding to the definition of copymachine1 as an instance of CopyMachine 
at position (695, 360) in global coordinates. Unfortunately, annotation must be per-
formed manually. Further tools to support scenario annotation should be developed 
and learning procedures could be considered. These are interesting directions for 
future work.

After initialization, the Surv ontology is loaded into the reasoning engine (e.g., 
RACER). Contextual rules (abductive and deductive) must also be created in this 
step. Some simple example rules, expressed in plain text, are presented in the follow-
ing. These rules are represented in a suitable rule language such as the previously 
mentioned nRQL.

•	 Object association:
[Rule 1] If a track is bigger than (50 × 50) pixels, then it corresponds to a person

•	 Activity recognition:
[Rule 2] If there are more than one person inside the meeting area for a 
while, a meeting is being held

FIGURE 17.5  An example of point correspondence in the three different views employed 
for the offline camera calibration phase.
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•	 Process enhancement and feedback:
[Rule 3] If a person is close to an occluding object, sensor agents must be 
warned about a possible future occlusion
[Rule 4] If a meeting is being held, do not care about the tracks associated 
to the people in the meeting to avoid confusion

17.5.2 L ow-Level Information Fusion

Figure 17.7 depicts a scenario in which we have an individual moving around the follow-
ing a predefined path (the ground truth is known a priori). The picture show the frames 
captured by the cameras at time t = 200 s and the result of the background subtraction 

DoorA

Copymachine1
(695, 360)

MeetingArea1

<!-- copymachine1 instance -->
<owl:�ing rdf:about="#copymachine1">

<rdf:type rdf:resource="#CopyMachine"/>
<scob:hasObjectSnapshot rdf:resource="#osn_copymachine1"/>

</owl:�ing>

<!-- object snapshot of copymachine1 -->
<owl:�ing rdf:about="#osn_copymachine1">

<rdf:type rdf:resource="&scob;SceneObjectSnapshot"/>
<scob:hasObjectProperties rdf:resource="#copymachine1_props"/>
<tren:isValidInEnd rdf:resource="&tren;unknown_frame"/>

</owl:�ing>

<!-- properties of copymachine1 snapshot (position) -->
<owl:�ing rdf:about="#copymachine1_props">

<rdf:type rdf:resource="&scob;ObjectSnapshotProperties"/>
<scob:OhasPosition rdf:resource="#copymachine1_position"/>

</owl:�ing>

<!-- copymachine1 position -->
<owl:�ing rdf:about="#copymachine1_position">

<rdf:type rdf:resource="&scob;OPosition"/>
<scob:OpositionValue rdf:resource="#p1"/>

</owl:�ing>

<!-- copymachine1 position value -->
<owl:�ing rdf:about="#p1">

<rdf:type rdf:resource="&tren;2DPoint"/>
<tren:y rdf:datatype="&xsd;float">695</tren:y>
<tren:x rdf:datatype="&xsd;float">360</tren:x>

</owl:�ing>

(0.0)
cam2

+x

+y

cam1
cam3

(xmax, ymax)

FIGURE 17.6  Scenario annotation.
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procedure. The frames also include the bounding box calculated by each sensor agent 
as a result of the tracking procedure based on the local data in its field of view.

It can be seen that the results obtained by sensor agent 1 are not very accurate at 
this frame. Regarding sensor agent 1, while the x position of the center of the track 
is correctly calculated, the y position is moved up (in local coordinates). Regarding 
camera 3, both x and y positions of the track are misplaced, but this has no effect on 
the projection, since the individual’s feet are correctly detected and positioned on the 
floor. The projection of the track position to the ground plane clearly shows this mal-
functioning (Figure 17.8). The graphs depict the (x, y) positions in global coordinates 
estimated at each frame of the sequence with respect to the ground truth. Positions 
corresponding to the frames at t = 200 s are highlighted with a square.

Tracking information obtained by sensor agents is sent to the fusion agent, which 
performs a low-level fusion procedure to combine the tracks and correct sensor 
errors. We have used the algorithm presented in Castanedo et al. (2007). As explained, 
tracking information is encoded with the communication ontology and wrapped in 
FIPA-compliant messages. In this case, the results of the Fusion Agent outperform 
the local estimates, as depicted in Figure 17.9 where fused (x, y) positions on global 
coordinates at each frame are shown.

Fused tracking information is inserted into the HLIF knowledge model as 
instances of the tracking sub-ontology. This update may trigger further reasoning 
processes in the contextual layer, as described in Section 17.5.4. In addition, after 
detecting a deviation between local and fused estimates, the fusion agent may initi-
ate an active fusion process and send appropriate feedback to sensor agents.

17.5.3  Contextual Enhancement to Tracking

In the previous example, estimation errors were the consequence of the limited infor-
mation available. Thus, fusion significantly increased the accuracy of the system. 

Camera 1 Camera 2 Camera 3

FIGURE 17.7  Local tracking results obtained by sensor agents (t = 200 s).
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Nevertheless, in other cases classical data fusion procedures are insufficient to solve 
local tracking errors due to the inherent limitations of statistical tracking methods to 
adapt to complex situations.

For example, in Figure 17.10 we show the frames captured by the cameras at 
time t = 180 s and the (x, y) positions estimated at this frame in global coordinates. 
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FIGURE 17.8  Local tracking results obtained by sensor agents compared to the ground-
truth positions. (a) Sensor agent 1 (camera 1) (b) Sensor agent 2 (camera 2) (c) Sensor agent 
3 (camera 3).
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FIGURE 17.9  Fused tracking results obtained by fusion agent (from t = 0 to 200 s).
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It can be seen that there is a significant error in the estimates of the three sensor 
agents. In this case, besides the previous difficulties (the individual is outside the 
field of view of cameras 2 and 3), there is an additional issue: a partial occlusion 
in camera 1. Partial occlusions result in track discontinuity, since hidden parts of 
the moving entities are not considered by the tracker and, therefore, track positions 
are misplaced.

Representation and reasoning with context knowledge in the fusion agent are 
applied to handle these situations. Scenario annotation is used to identify poten-
tial occlusive objects, contextual rules are fired when the conflictive situation is 
about to happen, and feedback is provided to the sensor agents to handle errors 
appropriately.

As a matter of example, let us suppose that the individual is being correctly 
detected by the tracker before t = 180 s. Fused information corresponding to this 
track would be consequently inserted into the HLIF knowledge model as instances 
of the track information sub-ontology. Rule 1 is triggered, and the track is identified 
as a person object by creating a proper instance in the object sub-ontology. In the 
next few frames, as the individual approaches the copy machine, the corresponding 
track information is updated, and eventually rule 3 is triggered. Consequently, an 
expected occlusion situation is created as an instance of the feedback sub-ontology. 
Subsequently, low-level fusion procedures and sensor agents may be notified about 
the situation by initiating a proper communicate fusion estimate dialog. If necessary, 
fused track information, encoded in the communication ontology, is sent back to the 
sensor agents by using FIPA-compliant messages. Low-level fusion procedures and 
sensor agents are responsible for handling the information properly. For instance, 
an appropriate action will be to incorporate track information to correct the Kalman 
filter matrix in order to avoid misplacing of the track position when the occlusion 
happens.

Camera 1 Camera 2 Camera 3

FIGURE 17.10  Local tracking results obtained by sensor agents (t = 180 s).
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17.5.4  Scene Interpretation

Let us suppose a situation in which we have an individual working on a desk of the 
computer laboratory (see Figure 17.11a). Tracking updates for these individuals are 
not sent to the fusion agent, because slight movements are not considered by the 
sensor agents. Next, one of the individuals (person1) stands up and moves into the 
meeting area. During this trajectory, sensor agents send information to the fusion 
agent, which updates the scene model. Some abductive and deductive reasoning pro-
cedures may be triggered as a result of ontology instance assertions, as explained 
before. Similarly, a second individual (person2) enters the room and moves to the 
meeting area. At this point, the current situation reflected in the ontological model 
is the one depicted in Figure 17.11b: we have two individuals labeled as persons who 
have entered the meeting area.

Consequently, rule 2 is triggered. A new Meeting instance is created in the activ-
ities sub-ontology, with person1 and person2 associated through the inMeeting 
property. This new Meeting instance fires rule 4. The aim of the rule is to prevent 
the agents from missing tracks corresponding to people who are close and probably 
overlapping. This feedback can be sent back to the sensor agents, which can handle 
this recommendation by stopping tracking in this area and storing track identi-
fier and additional interesting track properties (e.g., predominant color), in order to 
identify tracks coming out of the meeting area.

17.6  SUMMARY AND FUTURE DIRECTIONS

More research works and implementations of general frameworks for visual DIF 
are needed to foster the creation of competitive solutions while cutting develop-
ment costs in critical application areas. The first step toward domain-independent 
frameworks is to develop operational prototypes and to test them with existing data 
sets. The architecture proposed in Section 17.4 presents the overall picture of the 

Person 1 initial position(a) (b) Person 1 track Person 2 track

MeetingArea 1 MeetingArea 1

(0.0) (0.0)
cam2 cam2

+x +x

+y +y

cam1 cam1

cam3 cam3

(xmax, ymax) (xmax, ymax)

FIGURE 17.11  An example of detecting a meeting situation. (a) Person 1 is working with-
out generating tracking updates and (b) activity in the meeting area results in a new detected 
situation.
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system, but real implementations will have to deal with several specific problems 
that are identified in the description. In Llinas (2010), the author envisions a pos-
sible approach to a general IF multi-layer framework with a front-end that manages 
hard and soft sensor inputs; an initial layer for detection, semantic labeling, and flow 
control, based on an intelligent repository of pluggable algorithms; a fusion layer, 
composed of several interrelated fusion nodes that process information at different 
JDL levels and incorporate CI to the process; and a presentation layer to convey 
the results through appropriate visualization interfaces. Such IF frameworks should 
provide an adaptable infrastructure where specific procedures can be easily reused 
and/or integrated, especially those based on artificial intelligence techniques, which 
are likely to play a key role in the next-generation fusion applications. We strongly 
believe that the multi-agent paradigm and ontologies as representation formalisms 
can be the theoretical support of such frameworks.

As for the specific design of the presented architecture, it is important to notice 
that we have proposed a hierarchical schema for DIF. We have limited data align-
ment at tracking level, but it should be possible to combine estimations performed by 
fusion agents at different levels in such a way that the system will be able to obtain 
a combined view of the scenario from the detected objects or the recognized situa-
tions, instead of only the track data. This will require further investigations both at 
data and process level, since it involves the formation of local coalitions of coordi-
nated agents. Reputation mechanisms should also be taken into account to measure 
the confidence in the data provided by different sources, in order to achieve conflict 
resolution.

Another interesting research area is the incorporation of uncertain and vague 
information representation formalisms and reasoning procedures into the frame-
work for visual HLIF. Classical ontologies do not provide support for this kind 
of knowledge, which is inherent to vision applications, and extensively, to IF 
applications. There are three main sources of uncertainty and imprecision in 
HLIF applications. Firstly, we have errors due to the imprecise nature of sensor 
data. They can be statistically modeled, but are affected by physical conditions. 
Secondly, there is uncertainty resulting from scene interpretation procedures; for 
example, when there is more than one object in the scene or the situation cannot 
be clearly discerned. Finally, there is uncertainty resulting from fusion proce-
dures; for instance, data combination may be trusted to a certain degree. In addi-
tion, it may be interesting to add imprecise knowledge management features to 
the reasoning model in order to deal with vague spatiotemporal relations such as 
close, far, before, after, etc.
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leads to distributed data fusion of network-centric operations. ... The list of authors in this book reads like a ‘Who’s 
Who’ in the �eld ... [and] includes theoreticians as well as practitioners ... . This provides the reader with the best
of both worlds and some very unique perspectives.”
—Raja Suresh, General Dynamics Advanced Information Systems, Vadnais Heights, Minnesota, USA

“This book provides a comprehensive introduction and detailed design descriptions of the methods for distributing
the data fusion functions within grid, distributed, and cloud computing architectures.”
—Ed Waltz, BAE Systems, Chantilly, Virginia, USA

With the recent proliferation of service-oriented architectures, cloud computing technologies, and distributed-
interconnected systems, distributed fusion is taking on a larger role in a variety of applications, from environmental 
monitoring and crisis management to intelligent buildings and defense. Drawing on the work of leading experts  
round the world, Distributed Data Fusion for Network-Centric Operations examines the state of the art of 
data fusion in a distributed sensing, communications, and computing environment.

Contributors tackle critical issues and solutions, covering dynamic data sharing within a network-centric enterprise, 
distributed fusion effects on state estimation, methods to optimize fusion performance, human engineering factors, 
and more. Bringing together both theoretical and applied research perspectives, this is a valuable reference for
fusion researchers and practitioners. It offers useful insight for those working on the complex challenges of
designing and implementing distributed, decentralized information fusion.
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