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Foreword

I am very pleased to provide the Foreword for this timely work on distributed fusion.
I have been involved in fusion research for the last 15 years, focused on transform-
ing data to support more effective decision making. During that time, I have relied
heavily on the advice of the editors of this book and many of the chapter authors
to help set the directions for Army-focused basic and applied information fusion
initiatives.

I first met the editors about 12 years ago at an Army-sponsored fusion workshop
where it was clear that the issues of increased sensors and data sources, along with
the introduction of web-based information architectures, had finally overwhelmed
the analysis community. Most of the discussions were focused on the problems, but
Dave Hall and Jim Llinas began addressing the solutions. They identified relevant
terms and definitions, outlined algorithms for specific fusion tasks, addressed many
of the evolving architectural issues, pinpointed key technical barriers, and proposed
directions for future research. They clearly were long-time experts in the field; but,
more importantly, they were visionary in their recognition of rapidly evolving trends
in information management and the impact those trends would have on the field of
data fusion. It is, therefore, not at all surprising that this, their latest book (along with
colleagues), would be focused on distributed fusion.

While there are numerous texts and handbooks on data fusion in general (many
written or edited by the editors and authors of this book), there are two major trends
that motivate the need for this work. First, the very concept of defense operations
has dramatically changed. Modern military missions include, for example, coalition-
based counterinsurgency, counternarcotics, counterterrorism, and peacekeeping
operations. In a sense, the questions have become more complex. The focus is less
on detecting the physical aspects of an oncoming tank battalion, and more on detect-
ing networks of operatives or anomalous events, and integrating them with sociocul-
tural concepts. The impact is that historical fusion algorithms, with their reliance on
large-system, sensor data—driven, centralized techniques, must now accommodate
human observers, open source information, and distributed decision-making con-
ducted at lower and lower echelons.

A second key trend is that rapid changes in information technology have enabled
mobile information architectures, changing our concept of where and how fusion
algorithms will be employed. As of February 2012, there are 5.9 billion mobile
subscribers worldwide, 1.2 billion mobile web users, and 10.9 billion application
downloads in place. While implementation of service-oriented architecture (SOA)
and cloud concepts continues to be problematic in the mobile ad hoc network envi-
ronments of the military, this mobile access trend clearly sets the vision for the
future in the Department of Defense.
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The impact of these trends on fusion requirements includes the need for the
following:

¢ Near-real-time computational speed: The traditional concept of having an
individual warfighter disconnected throughout a mission, occasionally con-
tacting analysts for updates, is no longer acceptable. Untethered soldiers
will require ready access to data sources. This means that fusion algorithms
must run at near-real-time speeds and be tailored to the user’s situation if
they are to be effective in supporting tactical operations. In other words, we
must begin replacing the notion of large-scale fusion algorithms with small-
scale user-adaptive fusion applications.

e Accommodation of more varied data sources: Users will have the ability not
only to access data, but to collect and post imagery, voice clips, text mes-
sages, etc., as well. Along with this capability comes increased data volume
and complexity. Fusion algorithms must handle structured, semistructured,
and unstructured data sources alike to support situation awareness. Further,
they must rely on data discovery techniques rather than predetermined
deductively framed data access; otherwise, they may overlook important
new data sources that could prove critical to the decision process.

¢ Incorporation of trust and confidence concepts: As data sources and users
become more widely varied, fusion algorithms must be able to take into
account the uncertainties associated with the use of soft data sources, the
application of data to problems outside the original scope of the collection
effort, and the potential introduction of accidentally or purposefully mis-
leading sources.

So how do we take fusion algorithms, apply them to more complex problems, using
more complex data sources, and still meet near-real-time computing constraints?
Distributed processing holds out a potential solution, and that solution fits nicely
with the concept of cloud computing, where algorithms are automatically distributed
across all available resources. However, in reality we know that our current fusion
algorithms do not readily lend themselves to parallel techniques. And so it is particu-
larly appropriate that this book begins to tackle the difficult problems of designing
and implementing distributed, decentralized information fusion.

Written in a manner that particularly highlights topics of direct relevance to a
Department of Defense reader, this text outlines such critical issues as architectural
design and the associated impact of network-centric and SOA concepts; fundamen-
tals of estimation, classification, tracking, and threat analysis and their extensions
to decentralized implementation; human-centric techniques for visualization and
evaluation; and fundamentals of fusion systems engineering.

As is typical for these editors, the chapters provide a well-organized, thorough
review of the field from both a theoretical and applied research perspective. The
book will most certainly serve as a useful tool for fusion researchers and practitioners
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alike as we continue to grapple with the critical issue of ensuring our data collection
efforts have a clear and positive impact on mission outcome.

Barbara D. Broome, PhD

Chief, Information Sciences Division
U.S. Army Research Laboratory
Adelphi Laboratory Center

Adelphi, Maryland
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1.1  INTRODUCTION

Multisensor data fusion has an extensive history and has become a relatively mature
discipline. Extensive investments in data fusion, primarily for military applications,
have resulted in a number of developments: (1) the widely referenced Joint Directors
of Laboratories (JDL) data fusion process model (Kessler et al. 1991, Steinberg et al.
1998, Hall and McMullen 2004); (2) numerous mathematical techniques for data fusion
ranging from signal and image processing to state estimation, pattern recognition,
and automated reasoning (Bar-Shalom 1990, 1992, Hall and McMullen 2004, Mahler
2007, Das 2008, Liggins et al. 2008); (3) systems engineering guidelines (Bowman
and Steinberg 2008); (4) methods for performance assessment (Llinas 2008); and (5)
numerous applications (see, for example, the Annual Proceedings of the International
Conference on Information Fusion). Recent developments in communications net-
works, smart mobile devices (containing multiple sensors and advanced computing
capability), and participatory sensing, however, lead to the need to address distributed
data fusion. Changes in information technology (IT) introduces an environment in
which traditional sensing/computing networks (e.g., for military command and con-
trol (C?) or intelligence, surveillance, and reconnaissance [ISR]) for well-defined situ-
ation awareness are augmented (and sometimes surpassed) by uncontrolled, ad hoc
information collection. The emerging concept of participatory sensing is a case in
point (Burke et al. 2006). For applications ranging from environmental monitoring
to crisis management, to political events, information from ad hoc observers provide
a huge source of information (albeit uncalibrated). Examples abound: (1) monitoring
of the spread of disease by monitoring Google search terms, (2) estimation of earth-
quake events using Twitter feeds and specialized websites (U.S. Geological Survey
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(http://earthquake.usgs.gov) n.d.), (3) monitoring political events (http://ushahidi.com
n.d.), 4) citizen crime watch (Lexington-Fayette Urban County Division of Police,
see http://crimewatch.lfucg.com n.d.), (5) solicitation of citizens to report newsworthy
events (Pitner 2012), and (6) use of citizens for collection of scientific data (Hand
2010). While ad hoc observers and open source information provide a huge potential
resource of data and information, the use of such data are subject to many challenges
such as establishing pedigree of the data, characterization of the observer(s), trustwor-
thiness of the data, rumor effects, and many others (Hall and Jordan 2010).

Traditional information fusion systems involving user-owned and controlled sen-
sor networks, an established system and information architecture for sensor tasking,
data collection, fusion, dissemination, and decision making are being enhanced or
replaced by dynamic, ad hoc information collection, dissemination, and fusion con-
cepts. These changes provide both opportunities and challenges. Huge new sources
of data are now available via global human observers and sensors feeds available via
the web. These data can be accessed and distributed globally. Increasingly capable
mobile computing and communications devices provide opportunities for advanced
processing algorithms to be implemented at the observing source. The rapid creation
of new mobile applications (APPs) may provide new algorithms, cognitive aids, and
information access methods “for free.” Finally, advances in human—computer inter-
action (HCI) provide opportunities for new engagement of humans in the fusion pro-
cess, as observers, participants in the cognition process, and collaborating decision
makers. However, with such advances come challenges in design, implementation,
and evaluation of distributed fusion systems.

This book addresses four key emerging concepts of distributed data fusion.
Chapters 1 through 3 introduce concepts in network centric information fusion
including the design of distributed processes. Chapters 4 through 8 address how
to perform state estimation (viz., estimation of the position, velocity, and attributes
of observed entities) in a distributed environment. Chapters 9 through 12 focus
on target/entity identification and on higher level inferences related to situation
assessment/awareness and threat assessment. Finally, Chapters 13 through 18 discuss
the implementation environment for distributed data fusion including emerging
concepts of service-oriented architectures, test and evaluation of distributed fusion
systems, and aspects of human engineering for human-centered fusion systems. The
remainder of this chapter provides a brief history of data fusion, an introduction to
the JDL data fusion process model, a review of related fusion models, a discussion of
emerging trends that affect distributed data fusion, and finally a discussion of some
perspectives on distributed fusion.

1.2 BRIEF HISTORY OF DATA FUSION

The discipline of information fusion has a long history, beginning in the 1700s
with the posthumous publication of Bayes’ theorem (1763) on probability and
Gauss’ development of the method of least squares in 1795 to estimate the orbit
of the newly discovered asteroid Ceres using redundant observations (redundant in
the mathematical sense meaning more observations than was strictly necessary for
a minimum data, initial orbit determination). Subsequently, extensive research has
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been applied to develop methods for processing data from multiple observers or sen-
sors to estimate the state (viz., position, velocity, attributes, and identity) of entities.
Mathematical methods in data fusion (summarized in Kessler et al. [1991], Hall and
McMullen [2004], and many other books) span the range from signal and image pro-
cessing methods to estimation methods, pattern recognition techniques, automated
reasoning methods, and many others. Such methods have been developed during the
entire time period from 1795 to the present.

A brieflist of events in the history of information fusion is provided in the following:

e Publication of Bayes’ theorem on probability (1763)

e Gauss’ original development of mathematics for state estimation using
redundant data (1795)

¢ Development of statistical pattern recognition methods (e.g., cluster
analysis, neural networks, etc.) (early 1900s—1940s)

¢ Development of radar as a major active sensor for target tracking and iden-
tification (1940s)

e Development of the Kalman filter (1960) for sequential estimation

e Implementation of U.S. Space Track system (1961)

e Development of military focused all-source analysis and fusion systems
(1970s—present)

¢ First demonstration of the Advanced Research Project Agency computer
network (ARPANET)—the precursor to the Internet (1968)

* First cellular telephone network (1978)

* National Science Foundation Computer Science Network (CSNET) (1981)

¢ Formation of JDL data fusion subpanel (mid-1980s)

e Creation of JDL process model (1990)

e Tri-Service Data Fusion Symposium (1987)

e Formation of the annual National Symposium on Sensor Fusion (NSSDF)
(1988)

* Second generation mobile cell phone systems (early 1990s)

¢ Commercialization of the Internet (1995)

¢ Creation of the International Society of Information Fusion (ISIF) (1999)

¢ Annual ISIF Fusion Conferences (since 1998)

e Emergence of nonmilitary applications (1990s to present), including condi-
tion monitoring of complex systems, environmental monitoring, crisis man-
agement, medical applications, etc.

* Emergence of participatory sensing to augment physical sensors (1990s)

While basic fusion algorithms have been well known for decades, the routine appli-
cation of data fusion methods for real-time problems awaited the emergence of
advanced sensing systems and computing technologies that allowed semi-automated
processing. Automated fusion of data fusion requires a combination of processing
algorithms, computers capable of executing the fusion algorithms, deployed sensor
systems, communication networks to link the sensors and computing capabilities,
and systems engineering methods for effective system design, development, deploy-
ment, and test and evaluation. Similarly, the emergence of distributed data fusion
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systems involving hard (physical sensor) data and human (soft) observations requires
a combination of new fusion algorithms, computing capabilities, communications
systems, global use of smart phones and computing devices, and the emergence of a
net-centric generation who routinely makes observations, tweets, reports, and shares
such information via the web.

1.3 )DL DATA FUSION PROCESS MODEL*

In the early 1990s, a number of U.S. DoD large-scale funded efforts were under-
way to implement data fusion systems. An example was the U.S. Army’s All Source
Analysis System (ASAS) (Federation of American Scientists [www.fas.org/]). The
field of data fusion was emerging as a separate discipline, with limited common
understanding of terminology, algorithms, architectures or engineering processes.
JDL was an administrative group created to assist in coordinating research across the
U.S. Department of Defense laboratories. The JDL established a subgroup to focus
on issues related to multisensor data fusion. The formal name was the Joint Directors
of Laboratories, Technical Panel for Command, Control and Communications (C?)
data fusion subpanel. This subgroup created the JDL data fusion process model (see
Figure 1.1). The model was originally published in a briefing (Kessler et al. 1991) to
the Office of Naval Intelligence and later presented in papers, used as an organiz-
ing concept for books (Hall and McMullen 2004, Liggins et al. 2008), national and

Information fusion domain

Level 0:
Source
pre-
processing
Sources Level 5:
-Sensors Cognitive
-Humans | refinement
-Open

source

Level 2:
Situation
refinement

Level 1:
Object
refinement

Level 3:
Threat
refinement

|/ Database management |
system

!
| Support Fusion |
database. database,

N Y

Process I
refinement

FIGURE 1.1 Top level of JDL data fusion process model. (Adapted from Hall, D.L. and
McMullen, S.A.H., Mathematical Techniques in Multisensor Data Fusion, Artech House,
Norwood, MA, 2004.)

* The Joint Directors of Laboratories data fusion process model has been described in multiple refer-
ences including (1) the original technical report (Kessler et al. 1991) and (2) various textbooks (Waltz
and Llinas 1990, Hall and McMullen 2004, Hall and Jordan 2010), review articles (Hall and Llinas
1997), and revisions of the model (Steinberg et al. 1998, Hall et al. 2000, Blasch and Plano 2002). The
JDL model has been referenced extensively in books, papers, government solicitations, and tutorials.
This section of this chapter is thus not new, but rather a brief summary that paraphrases (and in some
cases duplicates) the author’s previous writings on this subject.
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international conferences, government requests for proposals, and in a few cases
government and industrial research organizations. The original briefing (Kessler
et al. 1991) presented a hierarchical, three-layer model. The top part of the model is
shown in Figure 1.1. For each of the fusion “levels,” a second layer identified specific
subprocesses and functions, while a third layer identified subfunctions and candidate
algorithms to perform those functions. These sublayers are described in Hall and
McMullen (2004).

Since its inception, the model has undergone several additions and revisions. The
initial model included only the first four levels of fusion processing: object refine-
ment (level 1), situation refinement (level 2), threat refinement (level 3), and pro-
cess refinement (level 4). Steinberg et al. (1998) extended the model by adding a
precursor level of fusion and sought to make the model more broadly applicable
beyond military applications. Level O fusion involves sensor-based data processing
and estimation. Level 0 processing recognized the increasing role of smart sensors
and processing at the sensor level. Hall et al. (2000) and, independently, Blasch and
Plano (2002) extended the model to include human—computer interaction involv-
ing cooperative cognition between a human user and a data fusion system. Other
extensions to the data fusion model have been discussed by Llinas, who presents the
case for further consideration of current data fusion issues including distributed data
fusion systems and ontology-based systems.

The six high-level processes defined in the JDL model are summarized as follows:

1. Level O fusion (data or source preprocessing) involves processing data
from sensors (e.g., signals, images, hyper-spectral images, vector quantities,
or scalar data) to prepare the data for subsequent fusion. Examples of data
preprocessing include image processing, signal processing, “conditioning”
of the data, coordinate transformations (to relate the data from the origin
or platform that the sensor is located on to a centralized set of coordinates),
filtering, alignment of the data in time or space, and other transformations.

2. Level 1 fusion (object refinement) combines data from multiple sensors or
sources to obtain the most reliable estimate of the object’s location, charac-
teristics, and identity. The term object is usually meant to indicate physical
objects such as a vehicle or human. However, we could also fuse data to
determine the location and identity of activities, events, or other geographi-
cally constrained entities of interest. The issues of object/entity location
(estimation) are often discussed separately from the problem of object/
entity identification. In real fusion systems, however, these subprocesses
are usually integrated.

3. Level 2 fusion (situation refinement) uses the results of level 1 process-
ing to develop a contextual interpretation of their meaning. This involves
understanding how entities are related to their environment, the relation-
ship among different entities and how they are interrelated. For example,
the motion of vehicles in an environment may depend upon factors such
as roads, road conditions, terrain, weather, and the presence of other vehi-
cles. The actions of a human in a crowd might be interpreted much dif-
ferently, than the same human motion and actions in the absence of other



6 Distributed Data Fusion for Network-Centric Operations

surrounding people. The techniques used for level 2 fusion may involve
artificial intelligence, automated reasoning, complex pattern recognition,
rule-based reasoning, and many other methods.

4. Level 3 fusion (threat refinement/impact assessment) involves projecting
the current situation into the future to determine the potential impact or
consequences of threats associated with the current situation. Level 3 pro-
cessing seeks to draw inferences about possible threats, courses of action
in response to those perceived threats and how the situation changes based
on our changing perceptions. Techniques for level 3 fusion are similar to
those used in level 2 processing but also include simulation, prediction, and
modeling.

5. Level 4 fusion (process refinement/resource management) seeks to improve
the fusion process (more accurate, timelier, and more specific). This might
be accomplished by redirecting the sensors or information sources, chang-
ing the control parameters on the other fusion algorithms or selecting
which algorithm or technique is most appropriate to the current situation
and available data. The level 4 process involves functions such as sensor
modeling, modeling of network communications, computation of measures
of performance, and optimization of resource utilization.

6. Level 5 processing (human—computer interaction/cognitive refinement)
seeks to optimize how the data fusion system interacts with human users.
The level 5 process seeks to understand the needs of the human user and
respond to those needs by appropriately focusing the fusion system atten-
tion on things that are important to the user. Types of functions may include
use of advanced displays, search engines, advisory tools, cognitive aids,
collaboration tools, and other techniques. This may involve use of tradi-
tional HCI functions such as geographical displays, displays of data and
overlays, processing input commands, and the use of nonvisual interfaces
such as sound or haptic (touch) interfaces.

The originators of the JDL model fully recognized that the JDL levels were an
artificial partitioning of the data fusion functions and that the levels overlap. In real
systems, fusion is not performed in a sequential (level O, level 1, ...) manner. Instead,
the processes are interleaved. For example, in level 1 processing, information about
a target’s kinematics can provide insight into the target identification and potential
threat (level 3). However, this artificial partition of data fusion functions has proven
useful for discussion purposes.

1.4 PROCESS MODELS FOR DATA FUSION

There are a number of models that address cognitive and information processes that
are related to data fusion. A survey and assessment of these process models was con-
ducted by Hall et al. (2006). A summary of the models (and additional models) is pre-
sented in Table 1.1, along with references which describe the models in more detail.
Hall et al. (2006) divided the models into two broad categories, data fusion models
and decision making models. To a certain extent, this is an arbitrary partitioning but
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TABLE 1.1

Summary of Data Fusion Models/Frameworks

Model

JDL data fusion process
model

Functional levels of
fusion

Transformation of
requirements to
information
processing (TRIP)
model

Omnibus model

Endsley’s model of
situational awareness
Three-layer hierarchical

model

Behavioral knowledge
formalism

Waterfall model

General data fusion
model (DFA) using
UML

Unified data fusion
(MDL) model

Recognition primed
decision (RPD)
making

Description

A functional model for describing the data
fusion process

An abstraction of input—output functions of
the data fusion process—focus on types of
data processed and associated techniques
appropriate to the data types

Application of the waterfall development
process to data fusion—emphasis on
linking inferences to required information
and data collection

Adaptation of Boyd’s OODA loop for data
fusion
A cognitive model for situational awareness

Three-layer modular approach to data
fusion, integrating data at different
levels: (1) data level (e.g., signal
processing), (2) evidence level (statistical
models and decision making), and (3)
dynamics level

Sequence of basic stages of fusion;
extraction of a feature vector from data,
alignment and association, development of
pattern recognition and semantic labels,
and linking feature vectors to events

Hierarchical architecture showing flow of
data and inferences from data level to
decision-making level

General data fusion architecture model
based on the unified modeling language
(UML), using a taxonomy based on
definitions of data and variables or tasks

Model that seeks to unify situation
awareness functions, common operating
picture, and data fusion

A naturalistic theory of decision making
focused on recognition of perceptual cues
and action

References
Kessler et al. (1991)
Liggins et al. (2008)
Hall and McMullen (2004)
Steinberg et al. (1998)
Hall et al. (2000)
Blasch and Plano (2002)
Dasarthy (1994)

Kessler and Fabien (2001)

Bedworth and O’Brien
(2000)

Endsley (2003),

Endsley et al. (2000)

Thomopoulos (1989)

Pau (1988)

Harris et al. (1998)

Carvalho et al. (2003)

Lambert (1999, 2001)

Klein (1999),
Klein and Zsambok (1997)
Kaempf et al. (1996)

(continued)
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TABLE 1.1 (continued)
Summary of Data Fusion Models/Frameworks

Model Description References
Observe, orient, decide, A process model of military decision Boyd (1987), Brehmer
act (OODA) loop making based on observing effective (2005), Bryant (2006),

commanders; extended by several authors Rousseau and Breton (2004)
for general situation assessment and Grant (2005)
decision making

Salerno’s model A framework that links data sources Salerno (2002),
(categorized by perishability) to Salerno et al. (2004)

perception, comprehension, and projection

reflects how these models are referenced in the literature. In addition, models such
as the observe—orient—decide—act (OODA) loop have several extensions and varia-
tions. Each of these models has advantages and disadvantages related to describing
the fusion and decision making process. They are summarized here to indicate the
potential variations in how to describe or characterize the process of fusing infor-
mation to understand an evolving situation and ultimately result in a decision or
action. A good discussion of higher level models for data fusion (viz., at the situation
awareness and threat assessment levels) is provided by Bosse et al. (2007). It should
be noted that the list of models in Table 1.1 is not exhaustive. There are a number of
additional models related to specific application domains such as robotics and medi-
cine. It should also be noted that these process models do not explicitly consider the
distributed aspect of fusion.

In the domain of military applications and intelligence, the two most utilized mod-
els are arguably the JDL data fusion process model summarized in the previous sec-
tion and Mica Endsley’s model of situation awareness (Endsley 2000, Endsley et al.
2003). Because of its extensive use in the situation awareness and cognitive psychol-
ogy community, it is worth illustrating Endsley’s model in Figure 1.2. Endsley’s model
seeks to line aspects of a cognitive task (illustrated in the top part of the figure) to char-
acteristics on an individual performing the cognition (shown in the bottom part of the
figure). Note that the levels in Endsley’s model do not correspond to the levels in the
JDL model, but rather are meant to model the cognitive processes for situation aware-
ness. Endsley and her colleagues have utilized this model for a variety of DoD appli-
cations, performing extensive interviews with operational analysts and knowledge
elicitation to identify appropriate techniques for the Endsley levels of fusion. Salerno
(2002) and his colleagues (Salerno et al. 2004) have compared the JDL model and
Endsley’s model and have developed a high-level information functional architecture.

1.5 CHANGING LANDSCAPE: KEY TRENDS
AFFECTING DATA FUSION

The context of distributed data fusion involves (1) rapid changes in IT, (2) individual
and societal changes impacted and enabled by IT, and (3) the impact of IT as both
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FIGURE 1.2 Endsley’s situation awareness model. (Adapted from Endsley, M.R. et al,,
Designing for Situation Awareness: An Approach to User-Centered Design, Taylor & Francis
Group, Inc., New York, 2003.)

a cause and solution for global problems. A summary of sample trends is provided
in Tables 1.2 through 1.4. The tables list trends related to three main constructs: (1)
IT, (2) information, and (3) people. Briefly we see the following trends and associ-
ated impacts.

e Information Technology—Very rapid changes are occurring in IT, ranging
from ubiquitous, persistent surveillance of the entire earth via advanced
sensors and human observers, increasingly capable mobile computing
devices (via smart phones, embedded “invisible” computers in everyday
devices, net-books, notebook computers, etc.), ubiquitous network connec-
tivity with increasing access speeds, and improvements in HCI via multi
(human) sensory inputs. This leads to near-universal connectivity among
people, a tsunami of data on the web, and access to virtually unlimited
computing capability. These have impacts on all aspects of human life and
enterprise and certainly affect the concepts and implementation of data
fusion systems. A summary of key areas including data collection, mobile
computing, and network speed and connectivity is provided in Table 1.2.

* Information—The huge increase in available data (including signal, image,
video, and text) via sensors and human input leads to major challenges in
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TABLE 1.2

Examples of Technology Trends Impacting Data Fusion

Area

Data
collection

Mobile
computing

Network
speed and
connectivity

Trends and Issues

o Ubiquitous, persistent surveillance: The capability exists now for worldwide
ubiquitous, persistent surveillance. Resources such as national collection systems,
long duration unmanned aerial vehicles (UAVs); leave-behind and resident
ground-based sensors provide the opportunity for multispectral, multimode
surveillance on a 24 x 7 basis. This allows focused and persistent surveillance about
nearly any area of interest. The challenge is how to address the huge avalanche of
data to sort through the data to find information of use/interest to generate
meaningful knowledge. Such surveillance impacts areas such as environmental
monitoring, understanding the distribution and evolution of disease, and crime and
terrorism.

e New sensors and sensing modalities: Physical sensors continue to be improved with
new modalities of observation, increased sophistication in embedded signal and
image processing, increased modes and agility in operation and control, and
continuing improvements in sensor-level processing such as semantic meta-data
generation, pattern recognition, dynamic sensor performance characterization, target
tracking, and adaptive processing.

Open source information: Websites are available for all sorts of collected
information. For example, sites based on reporting and mapping tools (ushahidi.
com) provide information on emergency events, political uprisings, etc. Google
Street View provides maps and photographs of numerous places around the world
with ground level 360° photographs. The photograph sharing site Flickr (flickr.com)
contains over 5 billion photographs taken by 10 million active subscribers.
Commercial data providers such as DigitalGlobe (digitalglobe.com) provide access
to satellite imagery including standard visual images, stereo images, and eight-band
spectral images. Data regarding weather information, environmental data, detailed
maps, video surveillance cameras, traffic monitoring, and many other types of
information are all readily available.

Mobile computing capabilities are rapidly increasing both in functionality, memory,
speed, and network interconnectivity. New smart phones have typical specifications
that include 4-16 GB memory (expandable to 32 GB), processing speeds in the range
from 1 to 1.2 GHz, fourth generation communications speed, and touch screens with
480x 800 pixels to 960 x 640 pixels. Over 1 million open source applications have
been developed. The result is incredible hand-carried computing/sensing/
communications devices that have proliferated throughout the world.

Internet connectivity is nearing worldwide ubiquity. Original connection via

telephone landlines at 60 kilobits per second has changed to connections via

television cable coax or fiber optics at typical speeds of 4-6 megabits per second,
with additional mobile connection via mobile broadband over terrestrial mobile
phone networks, WiFi hotspots in urban areas, and satellite Internet connections.

While the United States lags behind other countries, some countries provide

connections with speeds of 100 Mbs into homes. Increasingly, mobile devices are

sharing and accessing video data via mobile Internet to the extent that video data
dominates the data content of the mobile Internet. An excellent site that summarizes
the history of the Internet is provided by (zakon.org).
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TABLE 1.2 (continued)
Examples of Technology Trends Impacting Data Fusion

Area Trends and Issues
Cloud Cloud computing involves the delivery of computing resources as a product (sharing
computing resources and information over a network), analogous to the concept of the electric

grid. The ubiquity of Internet capability allows computing resources (large data
storage, sophisticated computer models, large-scale computing capacity, etc.) to be at
anyone’s fingertips for a fee. Ultimately such concepts could eliminate local IT staff
and computers while providing access to unprecedented capability. An example is
Wolfram Alpha (wolframalpha.com) which provides free access to large data sets and
sophisticated physical and mathematical models.

Human Human computing interfaces: Advances in HCI involve increased fidelity in human
computer access to data as well as multi-(human) sensory methods of interaction. Examples
interfaces include full-immersion, three-dimensional interfaces and sonification (Ballora 2010) to

allow visual and aural pattern recognition, haptic interfaces to provide a sense of touch.
The potential exists to create new multisensory, full immersion interfaces that fully
engage the sophisticated ability of humans to recognize patterns and detect anomalies.

TABLE 1.3

Examples of Information Trends Impacting Data Fusion

Area Trends and Issues

Data archiving The exploding digital universe: According to a 2010 Gartner report, the top three

and distribution challenges for large enterprises are data growth, followed by system performance
and scalability (Harding 2010). In 2007, the digital universe was 2.25 x 10?! bits
(281 exobytes); by 2011, it was estimated to grow by a factor of 10. Fast growing
data sources include digital TV, surveillance cameras, sensor applications, and
social networks. Major issues include how to store, archive, distribute, access, and
represent such data (Chute et al. 2008).

Meta-data Meta-data generation: Given the enormous amounts of data (signals, images, video)

generation being collected and stored via the Internet of Things and human data collection, a
challenge involves how to represent the data for subsequent retrieval and use.
Significant advances are being made in automated linguistic indexing of pictures
(viz., machine-generated semantic labels) with anticipated extensions to signal
data and to video data. This would provide the ability to access signal, image, and
video data via emerging advanced search engines (e.g., next generation
CITESEER type engines [citeseer.ist.psu.edu]).

Hard and soft Hard and soft information fusion: An emerging area in data fusion research is the

fusion fusion of hard (traditional physical sensor) data and soft (human observation) data.
This topic was first discussed at a Beaver Hollow workshop held in February 2009,
hosted by the Center for Multisource Information Fusion (CMIF) (see infofusion.
buffalo.edu). The workshop explored issues in the fusion of hard and soft data,
characterization of human source data, architecture issues, and even fundamental
definitions of the terms hard and soft fusion. Since that workshop, special sessions
on hard and soft fusion have been held at the International Society of Information
Fusion (ISIF) FUSION 2010 conference and the FUSION 2011 conference.
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TABLE 1.4

Examples of People Trends Impacting Data Fusion

Area Trends and Issues

Digital Net-generation: The current “net-generation” of people under the age of 30 have
natives grown up with the Internet, cell phones, social networks, global connectivity,

instantly available online resources, and significantly different social outlooks and
cognitive approaches than previous generations (see Tapscott 2009). These “digital
natives” have different expectations for everything from social interactions to
business to problem solving that are having significant impact on all aspects of
society. Shirkey (2010) describes some implications of the new era of collaboration
which results in projects such as the world’s encyclopedia (Wikipedia), shareware
software, PatientsLikeMe, Ushahidi, and other dynamic collaborative efforts.

Participatory Soft and participatory sensing: Several developments and trends have provided the

sensing opportunity for the creation of a new, worldwide, data collection resource. These

include (1) the huge increase in smart phones throughout the world (estimated in
2010 to be greater than 4.6 billion cell phones), (2) the increase in processing
capability and sensor “add-ons” to smart phones (including high fidelity cameras,
video capability, environmental sensors, etc.), and (3) the emergence of the digital
native generation (Palfrey and Gasser 2008) who routinely collect information and
share personal information via Twitter, Facebook, and other social sites. This has led
to the concept of participatory sensing, in which individuals and groups of people
actively participate in the collection of information for purposes ranging from crime
prevention to scientific studies.

storage, access, archiving, distribution, meta-data generation, and issues
such as data pedigree. The ultimate limitation of human attention units (the
limited number of people to access data and their limited ability to pay
attention to data) will lead to both opportunities and challenges in human—
data interaction. Table 1.3 summarizes key areas including data archiving
and distribution, meta-data generation, and hard and soft fusion.

e People—Finally, changes in IT and availability of information lead to
changes in human behavior and expectations. The net-generation (people
younger than 30 years) has always had access to the Internet, cell phones,
computers, and related technologies. These “digital natives” exhibit dif-
ferent ways of addressing problems, viewpoints on collecting and sharing
personal information, ways of establishing distributed social networks, etc.
This in turn has implications for education, collaboration, business, and
information security. Table 1.4 summarizes the potential impacts of a new
generation of digital natives and the emergence of participatory sensing.

1.6 IMPLICATIONS FOR DISTRIBUTED DATA FUSION

As indicated in the previous section, a number of changes in technology, information,
and people are impacting and will continue to impact the design and implementation
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of information fusion systems. Certainly, the proliferation of cell phones (leading to an
avalanche of human observations), ubiquitous, high-speed networks, increased mobile
computing power, cloud computing, new attitudes of users (based on a digital native
outlook), and other factors are impacting data fusion systems. We are seeing the poten-
tial for “everyday” fusion systems supporting improved monitoring and operation of
automobiles, medical diagnosis, monitoring of the environment, and even smart appli-
ances. It is thus necessary to reconsider traditional data fusion technologies, design,
and implementation methods to extend to these new applications and environment.
While the changes in technology, information, and people provide increased oppor-
tunities, they also enable challenges to traditional thinking about fusion systems. As
sensors and sources of information proliferate and new mobile applications become
readily available, new challenges will involve (1) calibration and characterization of
information sources, (2) establishment of methods to automatically determine the
trustworthiness and pedigree of information, (3) the need to automatically generate
semantic meta-data to represent signal, image, and video data, (4) how to establish
the reliability of open-source software and algorithms, (5) meeting the expectations
of increasingly sophisticated users, (6) creation of hierarchies of data and informa-
tion fusion systems, (7) understanding how to utilize sensor-generated meta-data (e.g.,
in situ pattern recognition), and (8) robust architectures that span data to knowledge
fusion, and many more.

It is hoped that this book will provide some additional insights to begin to address
some of these issues.
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2.1 INTRODUCTION

This chapter exposes some of the design concerns associated with distributed data
fusion (DDF) systems and describes how they could be overcome. These concerns
arise from the inherent openness of DDF systems. Open exchange and fusion of
information creates the potential for system degradation as a result of recycling
old information, failing to coordinate multiple information sources under the
ownership of one or more stakeholders, and failing to recognize untrustworthy
information sources. The overarching design concern is how to remove or reduce
these problems without compromising the flexibility and scalability benefits of
DDF systems.

2.1.1 CONTENT

Section 2.2 introduces the DDF system concept on which this chapter is based. This
is a multi-agent system (MAS) in which each agent is a data fusion and decision-
making node situated within some larger information fusion network. Section 2.3
introduces four critical design concerns that must be resolved if a multi-agent DDF
system is to succeed in practice. Section 2.4 describes the resolution of informa-
tion recycling concerns with a technique known as bounded covariance inflation
(BCI). Section 2.5 reinforces the needs for coordinated actions within a DDF system
and describes how this can be achieved with the max-sum algorithm. Section 2.6
describes how the concern of potential selfish actions in a multistakeholder DDF
system can be managed by means of computational mechanism design. Finally,
Section 2.7 raises the issue of trust and reputation in DDF systems. It describes how
a probabilistic model of trust combined with the technique from Section 2.4 can
be used to resolve this concern. Each section is highlighted with an example from
the familiar domain of target tracking and sensor fusion. Section 2.8 concludes the
chapter with some perspectives on the new design challenges that will be raised by
future DDF systems that achieve effect by tightly interleaving human and software
agent endeavors.

2.2 DDF SYSTEM CONCEPT

The DDF system concept explored in this chapter is illustrated in Figure 2.1. It is
composed of autonomous, reactive, and proactive components, referred to as agents.
These agents filter and fuse data to derive situational information. They interact by
exchanging messages over communication links to achieve individual and collec-
tive goals. Within this MAS there may be multiple organizational relationships and
stakeholders.

Our main focus will be decentralized sensor networks. Each sensor agent is
tasked with detecting and tracking multiple targets. Within a region of observation
(ROO) an agent is able to estimate the position of targets by making noisy or impre-
cise measures of their range and bearing. However, in order to better resolve the
uncertainty in these position estimates, the agents must acquire target observations
from neighboring agents and then fuse these observations with their own.
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FIGURE 2.1 DDF system concept.

2.3 DDF DESIGN CONCERNS

The DDF design concerns noted in Section 2.1 are explained in more detail in the
following:

e Information recycling. As DDF networks are dynamic and ad hoc, the infor-
mation could arrive at any agent from multiple routes. Unless the informa-
tion is attached with a record of its provenance to eliminate redundancy,
there is a risk of recycling common information through the agents’ fusion
processes. This can give rise to inconsistent situation awareness throughout
the system and subsequently to spurious decisions.

e Sensor coordination. If each agent in a DDF network determines its next
action (e.g., where to look or what to communicate) without considering the
actions of the other agents, their collective actions could be highly subopti-
mal. Unless the network is fully connected with zero propagation delay, the
agents will need to explicitly coordinate their actions by communicating
with each other until a set of agreed actions is reached.

e Selfish stakeholders. In a heterogeneous DDF system the agents may repre-
sent distinct stakeholders with different aims and objectives. If they are left
to make their own selfish decisions, without any intervention from a system
designer, then the overarching DDF system goals are likely to be compro-
mised as the agents will compete for resources.

e Trust and reputation. One or more agents in a DDF system may not be
trustworthy due to faults, bias, or malice. If these agents are unrecognized,
the open nature of DDF systems would permit their false data to propagate
to other agents and rapidly pollute the whole system. Thus, agents have to
earn their reputations as trustworthy sources as well as estimating the trust-
worthiness of their information suppliers.
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2.4 INFORMATION RECYCLING

Information recycling in a DDF network results in cross-correlation between the
estimates of state variables generated by each agent. Ignoring this cross-correlation
results in over-confident state estimates, but trying to keep track of cross-correlation
requires extra book keeping operations that consume memory and bandwidth. In
practice, bounds on the cross-correlation may at least be calculable and conservative
estimates may be an acceptable trade-off for preserving the flexibility and scalabil-
ity benefits of DDF systems. This section introduces the general theory of bounded
covariance inflation (BCI) as a viable solution to the information recycling design
challenge (Reece and Roberts 2005).

2.4.1 BouNDED COVARIANCE INFLATION

e . E . . .
If fiis an estimate of the state u then P, is a conservative matrix for the covariance
of fi— u if

P, > E[ai"] whereii= fi—u

The symbol > denotes positive semi-definite. When u is composed by stacking two
vectors, x and y say, with corresponding covariance matrices P,, and P,,, respec-
tively, BCI is the procedure by which P,, can be determined from P, and P, when
the cross-covariance, P, between x and y is unknown but bounded

xy?

[P, —D,I" P[P, -D,1<S°P, 2.1)
or, equivalently
Vx,y. |x"R& (P, —D,)R,y <S 2.2)

for unit vectors x and y, some “centered” matrix D

xy?

,» “matrix spread” S and sphering
matrices R,, and R, such that P;' = RiR,, and P,' = R,R,,. When D, =0 then S is
the correlation coefficient. In general, we choose D, so that § is as small as possible
(see Figure 2.2).

Given this setup, it is possible to find a proven conservative covariance matrix

Py for all possible joint covariance matrices, P, defined by

P, P,
P=| ", 2.3)
PX,V P'Yy
Define Pacp:
(1+KS)P,, D,,

P = 2.4
BCI ny (1_'_15;)})” (2.4
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FIGURE 2.2 Family of covariance ellipses (dotted lines) for which P, =2, P, =1, and
0.2<P,,<0.8. The “centered” ellipse is shown as a thick dashed line. Also shown is a con-
servative ellipse (solid line) for the family for which D,,=0.5x (0.2 + 0.8), §=0.3, and K=1.

The positive value K is called the inflation factor and is chosen to minimize the over-
all uncertainty encoded by the covariance matrix. In the remainder of this section we
will be concerned with symmetric correlation bounds (i.e., D,,=0). BCI with D, =0
effectively replaces two correlated random vectors with two uncorrelated random
vectors whose covariance is guaranteed to be conservative with respect to the origi-
nal vectors.

When x, y, and u are state vectors and u is related to x and y by a linear transform

F, thus
X
u=F

then a conservative estimate P,, of the covariance P,, for ii can be obtained from a
conservative covariance matrix P* over X and y:
A “% * * T
Ifu=F| _ |[thenP,=FP F 2.5)
y

P,, is conservative since P, = FP'F" > FPF" = P,,. Both prediction and estima-
tion fusion operations within the Kalman filter are linear operations for appropriate
choices of F. We will now derive the Kalman filter update equation for an inflated
covariance matrix.
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Assume X and y are correlated state estimates over the same state space, P, and
P, are the corresponding covariance matrices and i is an estimate obtained by fus-
ing £ and §. The inflated covariance for X and y is diagonal and the estimates can
be considered to be uncorrelated under the inflated covariance matrix. Therefore a
conservative estimate P,, for iican be calculated by fusing the random vectors using
the Kalman filter and the inflated covariance matrix:

—1A —1A
Pu;l)feu: Pxxx + Pyyy
1+KS 1+(S/K)

Yy

1+KS 1+(S/K)

Pl= Py + Py

Note that when §=0 we recover the information form of the Kalman filter for uncor-
related variables (Durrant-Whyte et al. 2001) and when S=1 and K=o/(1 — ®) (with
o oo [0, 1]) we recover covariance intersection (Julier and Uhlmann 2001). The next
step is to determine upper and lower bounds on cross-correlations.

2.4.2 COUPLING SCALARS

Two correlated estimates X and y for state vector x and y, respectively, can be decom-
posed into orthogonal random vectors &, f3,, and 3, by Gram—Schmidt orthogonal-
ization (Doob 1990)

X=C P 0+B, 26)

y=C,oPy'0+B,

where C,, and C,, are the cross-covariance between x and o and between y and o,
respectively. Since B, and B, are orthogonal then

P, =CuPy'Cy @.7)

Thus, the cross-covariance between two random vectors is the information shared
between the two vectors projected onto the vector spaces.

To obtain an expression for the minimum cross-correlation bound S in Equation
2.2, first rewrite Equation 2.7

Py =[calr |[eulr]

and use the Cauchy—Schwarz inequality

%' RLP,R,, 3| < \Jmaxeig [RLC,oPs'CorRe]

xJmaxeig [R,C, Py CoyR, ]
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Comparing the aforementioned inequality with Equation 2.2, we observe that the
right-hand side is a known bound for the cross-correlation S. The scalar

Q= \/maxeig [RI.C.oPy'ConRo ]

is called the coupling scalar for x and is independent of y. The coupling scalars can
be calculated locally. Thus, when an agent C receives two messages, one from each
of agents A and B, comprising the information vector, matrix, and coupling scalar, a
bound on the correlation between the estimates in these messages is

S = QAC XQBC

The key point of note is that the cross-correlation between two random vectors can
be bounded by the product of just two scalars. This is crucial for limited bandwidth
communication applications when bookkeeping messages such as the coupling
scalar must be kept to a minimum. The coupling scalar can be interpreted as the
fraction of the covariance matrix, which is the correlated part C ,P;'0 of £ From
Equation 2.6 we see that it would be possible to communicate the correlated part and
the uncorrelated part 3, of the estimate £ separately. The receiving agent would then
be able to fuse £ into its own estimate more efficiently than the method described
earlier, as only the correlated part of £ would have to be inflated prior to fusion.
However, this alternative approach would involve nearly twice the communication
load compared to the coupling scalar approach, which is undesirable in applications
where there is limited bandwidth.

2.4.3 DECeNTRALIZED TRACKING EXAMPLE

In this example three stationary agents track a dynamic process x, and each agent
maintains an estimate of the state of the target using a Kalman filter. All agents
have the same behavior model of the target x,=x,_; + v, with v, ~ N(0, 0.1) and they
are each able to make a measurement of the target at each time step. The ith agent’s
observation model is z;,=x, + W, with W, ~ N(0, ;) where 6= {3, 1, 0.1} for the three
agents, respectively. Both v and [ are uncorrelated in time and independent of each
other and |, and ;, are uncorrelated for all i # j.

The agents communicate intermittently, cycling between agent 1 making contact
with agent 3, then agent 3 with agent 2, and then agent 2 with agent 1. A contact takes
place each five time intervals. This will correlate the agents’ estimates in two ways:
through information recycling and because of the fact the agents are modeling the
same stochastic process.

Figure 2.3 plots the fused track covariance at each agent for various methods: BCI
using both upper and lower cross-correlation bounds, BCI using upper bound only,
covariance inflation, and the best and worst possible cases, namely the centralized
Kalman filter and local Kalman filters without any communication. BCI is clearly a
conservative but consistent performer throughout.
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FIGURE 2.3 Agents calculated variances of the track error over time using a variety of
methods.

2.5 SENSOR COORDINATION

Sensor coordination presents a fundamental design challenge for DDF systems as
often physically distributed devices must act together, under computational and
communication constraints, to meet system-wide goals. Consider a wide-area sur-
veillance application in which the sensors are deployed in an ad hoc manner, for
example, dropped from a military aircraft or ground vehicle. In this case, the local
environment of each sensor, and hence the exact configuration of the network, can-
not be determined prior to deployment. The sensors themselves must be equipped
with capability to self-organize and coordinate sometime after deployment once
the local environment in which they (and their neighbors) find themselves has been
determined.

A common feature of these self-organization problems is that the sensors must
typically choose between a small number of possible states (e.g., which neigh-
boring sensor to transmit data to, or which sense/sleep schedule to adopt), and
the effectiveness of the sensor network as a whole depends not only on the indi-
vidual choices of state made by each sensor, but on the joint choices of interacting
sensors. Thus, to maximize the overall effectiveness of the sensor network, the
sensors within the network must typically make coordinated, rather than inde-
pendent, decisions. Furthermore, this coordinated decision must be performed
despite the specific constraints of each individual device (such as limited power,
communication, and computational resources), and the fact that each device can
typically only communicate with the few other devices in its local neighborhood
(due to the use of low-power wireless transceivers, the small form factor of the
device and antenna, and the hostile environments in which they are deployed).
DDF systems are required to perform coordination without a central coordinator
and ensure that the deployed solution scales well as the number of devices within
the network increases. The max-sum algorithm is an efficient method by which
decentralized sensor coordination can be achieved (Rogers et al. 2011, Waldock
and Nicholson 2011).
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2.5.1 MAax-SuM ALGORITHM

Consider M sensors and the state of each sensor may be described by a discrete vari-
able x,,. Each sensor interacts locally with a number of other sensors such that the
utility of an individual sensor U,,(x,,) is dependent on its own state and the states of
these other sensors (defined by the set x,,). The approach at this stage is generic with
no specific assumptions regarding the structure of the individual utility functions.

In this setting, we wish to find the state of each sensor, X, such that the sum of the
individual sensors’ utilities is maximized:

M
x*:argmaxZU,—(x,-) (2.8)
i=1

Furthermore, in order to enforce a truly decentralized solution, we assume that each
sensor only has knowledge of, and can directly communicate with, the few neighbor-
ing agents on whose state its own utility depends. In this way, the complexity of the cal-
culation that the sensor performs depends only on the number of neighbors that it has
(and not the total size of the network), and thus we can achieve solutions that scale well.

The optimization problem defined by Equation 2.8 is represented as a bipartite
factor graph. Specifically, each sensor is decomposed into a variable node that rep-
resents its state, and a function node that represents its utility. The function node
of each sensor is connected to its own variable node (since its utility depends on its
own state) and also to the variable nodes of other sensors whose states impact its
utility. For example, we show in Figure 2.4 an example in which three sensors, {5,
S,, S5}, interact with their immediate neighbors through the overlap of their sensor
areas. Figure 2.4c shows the resulting bipartite factor graph in which the sensors are
decomposed into function nodes, {U,, U,, Us}, and variables nodes, {x,, x,, x;}. The
overall function represented by this factor graph is given by

U =U(x1,x) + Uy (x1, X5, %3) + Uz (%3, X3)

The max-sum algorithm operates directly on the factor graph representation
described earlier. When this graph is cycle-free, the algorithm is guaranteed to con-
verge to the global optimal solution such that it finds the combination of states that

FIGURE 2.4 Sensor network showing (a) the position of three sensors whose fields of
view overlap, (b) the sensor interaction graph, and (c) the resulting factor graph with sensors
decomposed into function and variable nodes.
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maximizes the sum of the sensors’ utilities. When applied to cyclic graphs (as is the
case here), there is no guarantee of convergence but extensive empirical evidence
demonstrates that such family of algorithms generate good approximate solutions.
The max-sum algorithm solves this problem in a decentralized manner by specifying
messages that should be passed from variable to function nodes and from function
nodes to variable nodes. These messages are defined as

e Fromvariable to function

gisj(x) =0 + Z Tei (%) 2.9)

ke M\j

where
M, is a vector of function indices, indicating which function nodes are con-
nected to variable node i
0,; is a normalizing constant to prevent the messages from increasing
endlessly in cyclic graphs

e From function to variable

() = x| U, ()% D gy (x0) (2.10)

ke Nj\i

where M is a vector of variable indices, indicating which variable nodes are
connected to function node j and x\i = {x;:k co N;\i}.

The messages flowing into and out of the variable nodes within the factor graph
are functions of a single variable that represent the total utility of the network for
each possible value of that variable. At any time during the propagation of these
messages, agent i is able to determine which state it should adopt such that the sum
over all the agents’ utilities is maximized. This is done by locally calculating the
function, z,(x,), from the messages flowing into agent i’s variable node:

)= ) hx) @1

JeM;

and hence finding argmax,, z;(x;).

The messages described earlier may be randomly initialized, and then updated
whenever a sensor receives an updated message from a neighboring sensor; there
is no need for a strict ordering or synchronization of the messages. In addition, the
calculation of the marginal function shown in Equation 2.11 can be performed at any
time (using the most recent messages received), and thus sensors have a continuously
updated estimate of their optimum state. When the underlying factor graph contains
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cycles there is no guarantee that the max-sum algorithm will converge; nor that if it
does converge it will find the optimal solution. However, extensive empirical evalu-
ation on a number of benchmark coordination problems indicates that it does in fact
produce better quality solutions than other state of the art approximate algorithms
but at significantly lower computation and communication cost.

Finally, we note that if messages are continuously propagated, and the states of
the agents are continuously updated, then the algorithm may be applied to dynamic
problems where the interactions between agents, or the utilities resulting from these
interactions, may change at any time. For example, within tracking problems where
the decentralized coordination algorithm is being used to focus different sensors
onto different targets, then the utilities of each sensor are continually changing due
to the changing position of targets, and the actions of other sensors. Thus, by con-
tinually propagating messages each agent is able to maintain a continuously updated
estimate of the state that it should adopt in order to maximize social welfare in this
dynamic problem.

2.5.2 TARGET TRACKING EXAMPLE

In this section the max-sum algorithm is applied to the target tracking example illus-
trated in Figure 2.5. The system involves three stationary sensors, each of limited
observation range shown by the gray areas bounded by the dashed lines. The sensors
are initialized with a weak prior over the target positions as well as the targets (fac-
tors) they are responsible for maintaining in the factor graph. System performance is
measured by the total information in the target tracks.

Three sensor management strategies were implemented: local, centralized, and
decentralized. The local strategy selects the sensor (pointing) control parameter that
maximizes the total information given by local observations only. The centralized

Sensor 3 Target A

@ @)

® O

@™ g

Sensor 2 Sensor 1

FIGURE 2.5 Example target tracking scenario with three sensors (of limited observation
range indicated by the gray shaded areas) and three targets.
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FIGURE 2.6 Performance profile for local, centralized, and decentralized sensor manage-
ment strategies.

strategy selects control parameters for each sensor based on a brute-force search
through all combinations to find the one that yields maximum information. The
decentralized strategy solves each of the factors using a brute-force approach and
then uses the max-sum algorithm to derive the optimal sensor control parameters
that maximize the utility function.

Figure 2.6 displays the performance profile for each strategy. As both targets
pass through the center of the environment, each sensor must handover a target to
another sensor. The two handover points occur roughly at time steps 18 and 34. At
these times the performance of the local strategy degrades since it cannot resolve the
conflict that prevents the sensors selecting the same target.

The performance of the max-sum algorithm depends on the time allowed to
exchange the variable and factor messages. Figure 2.7 compares performance with
the centralized strategy as the period to exchange messages (negotiation time) is
adjusted from 50 to 1000 ms (the experiment was conducted 20 times for each nego-
tiation time). As the negotiation time is increased the performance of the decentral-
ized strategy converges on the centralized performance.

2.6 SELFISH STAKEHOLDERS

In the previous section it was implicit that the local objectives of the sensor agents
were aligned with the global objective. This situation is best modeled as a coop-
erative MAS problem in which the agents are designed to work toward the global
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FIGURE 2.7 Performance of max-sum sensor coordination approach as negotiation time
is varied.

objective of the system. This can be achieved, as we have seen, through the max-sum
algorithm. In this section we consider the situation in which different stakeholders
may be responsible for each sensor (or group of sensors). For example, in a disaster
relief application, different governmental and nongovernmental organizations must
share information gathered by their sensors to help coordinate an effective response.
The sensors are now operating in a competitive rather than a cooperative environ-
ment. As such, they will attempt to optimize their own gain at a cost to the overall
performance of the system. Given this, the challenge is to design a system such that
desirable system-wide properties emerge from the interaction between its constituent
(selfish) agents (Dash et al. 2005, Rogers et al. 2006).

Computational mechanism design offers a principled framework with which to
design systems that exhibit desirable global properties, despite the selfish actions and
goals of the constituent parts. It is an extension of the economic field of mechanism
design and addresses the additional challenges imposed by a computational setting (i.e.,
agents that are computationally limited, communication that is not cost or error free,
and settings that are open and dynamic). At its core, is the notion that agents hold
or require valued items, and are seeking to maximize their own utility through the
exchange of these items. In the real world, these items may be goods or services, and
thus they will have real monetary value. In the sensor network scenario, information
offers a principled currency or valuation metric. It can be applied in any context where
sensors make and exchange imprecise observations and thus must deal with uncertainty.
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2.6.1 PROBLEM DESCRIPTION

We consider a scenario where a number of sensors are tasked with detecting targets.
The sensors each have a partial and inaccurate view of the world and need to com-
municate with each other in order to increase this accuracy. The “view of the world”
in this case is a view of the target passing in the region that the sensors are monitor-
ing. The communication network that the sensors use is constrained by a limited
bandwidth. Thus, there is a need to globally decide on how to optimally allocate this
bandwidth in order to best satisfy the sensors’ overall goal of forming an accurate
view of the world.

In more detail, each sensor has two regions that they consider. There is a ROO
in which they can observe targets and a region of interest (ROI) they wish to moni-
tor. Figure 2.8 depicts a typical instance of a scenario where the ROI of sensor 1
is shown and there is a target within this ROI. We can observe that agent 1 can
already know about this event in its ROI since this overlaps (as it usually does)
with its ROO. However, due to noise inherent in the measurement process, agent
1 will have some uncertainty in its observation (e.g., the position, type or speed of
the target may be described by a probability distribution rather than an absolute
value). Agent 1 can however decrease this uncertainty by gaining data about the
target from other agents, namely agents 3 and 5 (which also have the target in their
ROO). However, if agent 1 can only receive data from one of these two agents due to
bandwidth limitations, it will then have to decide as to which agent to gain the data
from. This decision making process is further complicated if the other agents also
have to make similar decisions. Thus, different flows of data (i.e., descriptions of
which sensors will transmit data and along which path this data will flow) will yield
different results in terms of the total reduction of the uncertainty (or the equivalent
increase of information). Given this, the high level representation of our problem is
then to allocate the flow of data within the bandwidth constraints imposed by the
communication network so as to optimize the overall gain in information each sen-
sor has about its ROL.

7y ROO
O rot

B Sensori
X Target

FIGURE 2.8 A multisensor network target tracking scenario.
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We tackle this problem by first modeling it as a MAS. Each sensor is then viewed as
an agent 7, within a set of agents 7, which has data and a function x; that characterizes
the accuracy of this data. The data have a size and thus a bandwidth requirement of
bw;. We consider the simplest communication protocol that exhibits a bandwidth con-
straint, and thus we assume a broadcast protocol whereby any sensor can simultane-
ously transmit to all other sensors. The total bandwidth available for the transmission
of the data is such that only a subset of the sensors can actually transmit their data.

In order to characterize this problem, we first need to make a few assumptions
about the scenario:

e The time taken in calculating the allocation of data and in communicat-
ing between agents is small compared to the time taken for another tar-
get to appear. This allows us time frames where the mechanism can be
implemented.

¢ The agents have perfect and common knowledge about the sensor-network
topology and their neighbors. This removes the problem of neighbor
discovery in communication systems. These assumptions thus permit us
to concentrate solely on the issue of allocating the flow of data under
the bandwidth constraints. We now need a way for each agent to value
the data received from different agents based around the measure of data
accuracy, X;.

2.6.2 VaLuatioN FUNCTION

We develop a suitable valuation function based on the information form of the
Kalman filter. Now, in the standard Kalman filter, observations are of the form
2(=H(@)y(®) + n(t), where y(f) is the state of the system at time ¢, H(f) is the linear
observation model and n(f) is a zero mean random variable drawn from a normal
distribution with variance R. The covariance update component, P-!(l7), of the infor-
mation form of the Kalman filter for N observations is

N
Pt =P (¢l t—l)+2HT(j)R"(j)H(j) (2.12)
j=1

The summation in the above expression represents the decrease in covariance and
thus the gain in information at time ¢ when all the N observations are fused. In the
case of our problem, the value of receiving data from another agent can thus be rep-
resented by the gain in information resulting from this observation.

In order to achieve an efficient allocation, this gain in information must be calcu-
lated from the measure of the data prior to fusion. Thus, we can represent the mea-
sure of accuracy of data X;, as its covariance, which is calculated from the covariance
of its observation R(j):

x; =H"(HR(HH()) 2.13)



32 Distributed Data Fusion for Network-Centric Operations

Thus, the gain in information of agent i, when all relevant data are transmitted to it
and fused, can be expressed as a sum of this measure of accuracy provided by each
of the other agents:

vi(X) = x; +zxj 2.14)

je—i

where —i=1\i

Equations 2.13 and 2.14 thus cast our valuation function. However, we need to mod-
ify this so as to incorporate the characteristics of our scenario. This is because all
observations may not fall in an agent’s ROI and furthermore an agent may not be
able to receive all the data as a result of the bandwidth constraints of the commu-
nication network. Defining a; as the probability that the data observed by agent j is
relevant to agent 7, and a vector f as describing the flow of data in the network, then
the expected valuation is

) =5+ Y 0%,

Jje—i

By slight abuse of notation, we shall hereafter refer to the expected valuation v,(.)
as v().

From the valuation function, we can observe that the valuation of an agent i
depends on x;, which are signals measured by other agents. There are two conditions
that are necessary in order to achieve an efficient allocation when considering selfish
agents (Jehiel and Moldovanu 2001). Firstly

Wi, f) _ 0 VijeT
a)Cj
and secondly
i(x, f) S (% f) Vi,jeI,i#j
ax,- a'xi

The first condition is automatically satisfied in our case since new data cannot
decrease information. In the case of the second condition, it implies that we need
to restrict an agent’s ROI to its ROO. Otherwise, there may be an event outside its
ROO that falls in its ROI such that data from another agent has a greater effect on
its utility than its own data. This condition is necessary because otherwise selfish
agents may profitably lie about their observed data and derive from it positive utility.
Furthermore, the overlap between the agents, ROOs must be such that this condition

is satisfied (i.e., z ‘0; <1). This means that the ROO of any agent cannot be
je—i
entirely overlapped by the ROO of other agents (i.e., no agent is redundant).
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2.6.3 MECHANISM

The aim is to ensure that the global bandwidth resource is used efficiently, that is,
ensure that given the limited bandwidth, the information gain of the entire network is
maximized. Thus, a mechanism is imposed whereby sensors are called upon to pri-
vately reveal the information content of observations to an auctioneer. This auctioneer
then allocates the limited bandwidth of the communication network to those sensors
whose observations will yield the highest system-wide information gain. However,
since each sensor is individually attempting to maximize its information regarding
its own ROI, with a simple mechanism there is an opportunity for a sensor to behave
strategically (e.g., by understating the information content of its own observations, in
an attempt to ensure that bandwidth is allocated to other sensors whose observations
it can make use of or by overstating it, in order to deny bandwidth to other sensors).

Such strategic behavior is generally undesirable since it reduces the overall effi-
ciency of the network and is computationally expensive for the individual sensors.
Thus, we focus onto a subclass of mechanisms that are said to be strategy-proof or
incentive compatible (Dash et al. 2003). That is, within the mechanism, the sensors
have a dominant strategy (one which they should adopt regardless of the behavior
of other sensors) to truthfully reveal their private information regarding the value of
observations to the auctioneer. The mechanism proceeds as follows:

» Each agent i transmits to a central auctioneer its valuation function v,( f, x)
for all the possible allocations of the information flow f € 7, where F is the
set of all feasible flows.

e Each agent i also transmits its observed signal X;.

* The center then computes the optimal allocation f; which is calculated as

Jo = arg max Zvi (f.x)

iel

* The center also calculates the payment r; made by each agent i. To do this,
the center first finds the m next best allocations as the signal x; is decreased
until the presence of i makes no difference to the allocations. That is, find

allocations f; ... f,, and the signal values z; such that

Zil =inf{y :zvi(fl*’yhx—i) =zvi(ﬁ*+l’yi>x—i)

ieT el

(where each allocation £ is different) until

7" =infQy; :Zvi(fm*—lvyivx—i) = Zvi(frjnyiv-x—i)

i€l i€l
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where the allocation f;, is the optimal allocation when i does not exist, that is

S = arg max z v;(f,X)

JjeI\i

Then the payment to buyer i is

m—1

L= Vj(ﬁ*azz{’x—i)_ Vj(ﬁj—lazz{’x—i)
2|2 >

1=0 | jeZ\i jeZ\i

The earlier scheme rests upon making an agent derive a utility equal to the marginal
contribution that its presence makes to the whole system of agents. Thus the addi-
tional part of this mechanism is to take into account the effect that an agent’s signal
x; has on the overall utility of the system. This mechanism is general in that it can
also be applied to the case of independent valuations. In our scenario, such valua-
tions arise when the ROOs of the sensors do not overlap, and the agents are simply
collecting, rather than combining, observations.

2.6.4 ExampLE

The mechanism was applied to a simulated sensor fusion problem which allowed the
allocation of bandwidth and results of the auction process to be tracked. Figure 2.9
shows the system running.

At the specific instance in time shown in Figure 2.9, the bandwidth is severely lim-
ited. Thus, although a target falls into the ROI of both sensors 2 and 3, there is insuf-
ficient bandwidth for these sensors to exchange observations (allocated bandwidth
is indicated by the thick lines between sensors). The value of information that each
sensor receives from other sensors and the payments that they receive in exchange
for transmitting their own observations are shown in the bar-graph at the bottom
right of the display (note that sensors 1 and 4 both have negative payments since they
are currently receiving more information than they are transmitting; indeed, sensor 4
is transmitting no information at all). When sensors truthfully reveal the information
content of their observations, they maximize their individual information gain and
maintain their budget of currency (shown on the right of the display). However, a sen-
sor that does not adopt this strategy (due to faulty, strategic, or malicious behavior),
will not achieve these aims and its budget will gradually be depleted. Such sensors
can be recognized and removed from the network, thus incentivizing the truthful
reporting that is necessary to ensure that the constrained bandwidth of the sensor
network is allocated to achieve the system-wide goal of maximizing the information
gain of the entire sensor network.

2.7 TRUST AND REPUTATION

The role of computational models of trust, within MAS in particular and open dis-
tributed systems in general, is generating a great deal of research interest. In such



Distributed Data Fusion 35

I Argus I Pemo
Fir  Yiew  Smilabion T’aypg?c Demonstration Help
BandWidech
Region of y_a — 73 =
observation , st —————— e
\ 25
\ / ‘ |
o- %
: W 16 B 25 %
a - |
T — Mauirmurm — Currant —Limh]
-~ ™ f Information
/ N\ - n at B
& u e
|
i * gensar 4 50 | L
i \\ r— I ,_‘_
25

Fus#d covariance @ VA
eIIips\es ><Jﬂm O y O T B 25 “an B3
§ e
I\ g [ 7
Allo X © Budgét
cated /‘ % ,
commupicatio S Sl Ay // \

bandwidth ~

BT \Bem B
\ \\/ / \ﬁo_ -

_

3 ; z s 7
@ 'b Aggnts
Senso. 3 Sensol 2  Auctisifivafue and PEyment
. 7
\ E T
25
5 [ i Ban a |
/ 25, l
N . / / N 1 z 3 7 3
“._Unfused covariance g <1 Ageits
coliipses e _ Cepmsas
 Eandwdthlmk
- [AMechansm
;
a o

FIGURE 2.9 Example sensor network system showing the auction allocation in process and
the resulting communication allocation.

systems, agents must typically choose between interaction partners, and in this con-
text trust can be viewed to provide a means for agents to represent and estimate
the reliability with which these interaction partners will fulfill their commitments.
Effective trust models should allow agents to (a) estimate the trustworthiness of a
supplier as they acquire direct experience, (b) express their uncertainty regarding
this estimate, (c) exchange their estimates as reputation reports, and (d) filter and
fuse these reputation reports with their own direct experience to yield more accurate
estimates (Reece et al. 2007a,b).

This section develops a probabilistic model of computational trust that allows
agents to exchange and combine reputation reports over heterogeneous, correlated
multidimensional contracts. Specifically, it considers the case of an agent attempting
to procure a bundle of services (e.g., audio, video, and data services) that are subject
to correlated quality of service failures (e.g., due to use of shared resources or infra-
structure), and where the direct experience of other agents within the system consists
of contracts over different combinations of these services.

2.7.1 ExpecteD UTiLITY OF A CONTRACT

Consider an agent attempting to procure a bundle of services from a single supplier.
In order to make a rational decision, or to negotiate a price for this bundle, the agent
must estimate the expected utility of a contract with this supplier. Thus, we denote
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the outcome of a contract as a vector, X, that indicates whether or not each service
within the bundle was successfully delivered (e.g., X={0,=1, 0,=0, 0,=0, ...} indi-
cates that service a was successfully delivered, while services b and ¢ were not). If
u(o,=1) is the marginal utility that the agent derives if service a is successfully deliv-
ered, then the expected utility of the agent will depend on the probability that this
happens, p(o,=1). However, neither the probabilities nor the correlations between
them are known to the agent and thus it must use observations of previous contract
outcomes to determine a distribution over their possible values. It can then determine
an expectation of the expected utility of the contract:

E[E[U]] = p(X) UX) 2.15)

and a variance, describing its uncertainty:

var(E[U]) =UX)" P(X)U(X) (2.16)
where
u(o, =1)
UX) = u(o, =1)

u(o. =1)

Thus, the agent’s estimate of the expected utility is dependent on a trust estimate
composed of two expressions: a vector estimate of the probability that each service
is successfully delivered

plo,=1)
a0 <| PO =D

plo.=1)

and a covariance matrix that describes the uncertainty and correlations in these
estimates:

‘/a Cab Cac

c, V, G,
PO=" o
ac be c
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where
the diagonal terms, V,, V,, and V_, represent the uncertainties in p(o,=1), p(o,=1),
and p(o,=1)
the off-diagonal terms C,,, C,., and C,. represent the correlations between these
probabilities

A formalism using the Dirichlet distribution allows an agent to calculate both
p(X) and P(X) from its direct experience of previous contract outcomes (Reece et al.
2007b). Within this formalism an agent that has observed N contract outcomes in
total simply records, for each pair of services (e.g., a and b), the number of times

that both were successfully delivered, n,",h , the number of times both were deliv-
ered unsuccessfully, ngé’ , and both combinations in which one was delivered suc-

cessfully, and the other unsuccessfully delivered, ngy and niy. These counts over
contract outcomes can be communicated as reputation reports, and these reputation
reports can be combined by simply aggregating the counts. However, this formalism
is limited to the case that contract observations are homogeneous (i.e., all agents
observe contracts over the same dimension). Thus, we next consider two formalisms
that address the more general case where contract observations are heterogeneous: a
simple benchmark formalism using independent beta distributions (with covariance
inflation) and a full formalism that uses the Kalman filter.

2.7.2  HETEROGENEOUS CONTRACTS: INFLATED
INDEPENDENT BETA DISTRIBUTIONS

We can provide a reasonable benchmark formalism for dealing with heterogeneous
contracts through a simple extension of a single dimensional trust model. That is, we
do not explicitly represent the correlations between the services within the bundle,
but rather, we use independent beta distributions to represent each individual service.
Thus, if an agent has direct experience of N previous contract outcomes, in which
service a was successfully delivered n, times, then the trust estimate, p(X), can sim-
ply be calculated using the standard result from the beta distribution that

A n,+1
L =D="%"" 2.17
plo, =1) NT2 (2.17)

Similarly we can calculate the diagonal terms of the covariance matrix, P(X), by
again using the standard result from the beta distribution that

_ (n+1D)(N=n,+1)

: 2.18)
(N+2)%(N+3)

a

Finally, rather than explicitly calculating the off-diagonal elements of the covariance
matrix, we can employ the covariance inflation method from Section 2.4 to derive a
conservative covariance matrix by simply setting the off-diagonal elements to zero,
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and multiplying the diagonal variance terms by the number of dimensions in the
state vector, X. Thus in the case of two services we have

P = 2V, 0
1o 2y

We now develop a more sophisticated approach using the Kalman filter to fuse het-
erogeneous estimates containing correlation information.

2.7.3 HETEROGENEOUS CONTRACTS: A KALMAN FiLTER TRUST MODEL

The Kalman filter trust model operates by fusing an agent’s prior trust estimate (cal-
culated from an agent’s own direct experience of previous contract outcomes) with
reputation reports that are received from other agents in order to give a posterior trust
estimate. As described earlier, these trust estimates are represented by a vector, p(X),
and a covariance matrix, P(X), and the standard form of the Kalman filter provides
two equations to update these:

pposterior = pprior + K(O - pprior)

Pposterior =~ K)Pprior
where K is the Kalman gain

K= Pprior (Pprior + R)_l

and o is an observation with covariance R, that together represent the reputation
reports received from other agents.

Now, when we have heterogeneous contracts, one or more dimensions of either
the prior estimate or the reputation reports may be missing. Within the Kalman filter
framework we can simply represent these missing contract observations by setting
the corresponding diagonal elements of the covariance matrix to infinity. By doing
this we are effectively saying that the estimate for this contract part has no certainty.

In fact, performing these matrix operations involving infinity can be problematic.
We can avoid this by using the information form of the Kalman filter whereby an
estimate is represented by its precision, ¥, which is the inverse of the correlation
matrix (i.e., Y=P(X)™"), and its information estimate, §, which is the product of the
precision and the state estimate (i.e., = P(X)~'p(X)).

In this case, the missing information can be represented by inserting zeros into
the precision matrix, and as before, the Kalman filter allows us to combine reputation
reports with prior beliefs to yield a posterior information estimate and precision matrix:

yposterior = yprior + Yo

Yposterior = Yprior + YO
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where Y,=R™!' and §,=R'o. The information form of the Kalman filter is particu-
larly useful within MAS since reputation reports from multiple agents are simply
added (in any order) to an agent’s prior estimate. However, the two forms are exactly
equivalent, and we can easily switch between the two.

Thus, having presented the Kalman filter in the context of a computational trust
model, we describe how an agent’s prior estimate is calculated from its own direct
experience, and how other agents can communicate reputation reports calculated
from their own direct experience.

The prior belief of the agent is represented by a trust estimate, p(X), and a covari-
ance matrix, P(X). These can be calculated from an agent’s direct experience using
the Dirichlet formalism noted earlier. More specifically p(X) and the diagonal ele-
ments of P(X) are calculated from the counts of contract outcomes (as per Equations
2.17 and 2.18), while the full details of the Dirichlet distribution are required to
calculate the off-diagonal terms of P(X) (Reece et al. 2007a). The prior explicitly
represents the correlations over the subset of services for which the agent has directly
observed previous contract outcomes. When the agent has no direct experience of
some services, it may simply insert infinity into the relevant diagonal element of
P(X) to reflect this lack of information (or alternatively insert zero into Y if the infor-
mation form of the Kalman filter is being used).

The Kalman filter fuses a prior estimate with an observation, o, whose covariance
is R. In our computational trust model, o and R together represent a reputation report
and are calculated from the direct experience of the originating agent. This calcula-
tion is different from that which generates p(X) and P(X), since the covariance R
describes the variability of o about the true probabilities, p(X), while the covariance
P(X) describes the variability of p(X) about the estimate p(X). This is a subtle but
important difference. Calculating o is straightforward since it is a vector estimate of
the probability that each service is successfully delivered (i.e., 0={0,, 0, 0, ...}). It
is calculated from an agent’s previous contract outcomes, and thus if the agent has
observed N contracts in total, and service a was successfully delivered in n, of these,
then o,=n,/N. Note that due to the reasons described earlier, this expression is dif-
ferent from that shown in Equation 2.17.

Calculating R is more complex. Since we are using the Kalman filter with a
Dirichlet distribution (rather than the more common Gaussian distribution), the cova-
riance, R, is itself dependent upon the probabilities that each service is successfully
delivered, p(X). These probabilities are not known; indeed, these are what we are
attempting to estimate. However, the beauty of the Kalman filter lies in its flexibility
and we need not worry about finding R exactly. Provided that we can find a conserva-
tive matrix, R", to use in place of R, we can guarantee that our estimates will remain
consistent. We can build such a conservative covariance matrix for R from an agent’s
direct experience and the method of covariance inflation described in Section 2.4.

2.7.4 EmprIRICAL EVALUATION

To evaluate the effectiveness of the trust formalisms just described, we present simu-
lation results in which ten agents, each with their own direct experience of a supplier
that provides two services, participate within a reputation system. We assume that one
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of these agents is attempting to evaluate the trustworthiness of the supplier in order
to calculate the expected utility of interacting with it. As such, the agent must fuse
its own direct experience with reputation reports received from the other nine agents.

In each simulation run, contract outcomes are drawn from an arbitrary joint
distribution that induces correlations between the services. The contract outcomes
are randomly allocated such that some agents observe both services, while others
observe just one service. We apply the trust formalisms to calculate posterior trust
estimates and then calculate two metrics. The first is a scalar measure of the infor-
mation content of the trust estimate; a standard way of measuring the uncertainty
encoded within the covariance matrix (Bar-Shalom et al. 2001). More specifically,
we calculate the determinant of the inverse of the covariance matrix

I =det(P(X)™)

and note that the greater the information content, the more precise p(X) will be. The
second metric measures the normalized error of the estimate:

E=[pX)-px)] PCO™[HX) - p(X)]

We perform 1000 repeated simulation runs and calculate the expectation of these two
metrics (and the standard error in these expectations). We note that the expectation of the
normalized error is commonly termed the normalized standard error and it describes
the consistency of the estimate. A consistent estimate has a normalized standard error
less than the cardinality of the trust estimate; two in this case. A normalized standard
error much less than this value indicates that the covariance matrix is too conservative.

In Figure 2.10 we present these results (with the standard error in the expected
values shown as error bars) as the number of contract observations ranges from 10
to 400. We note that the information content of the trust estimates generated by the
Kalman filter formalism far exceeds that of those generated using inflated indepen-
dent beta distributions (typically by a factor of 3). By explicitly representing the
correlations between the services, our formalism generates more precise trust esti-
mates. This increased precision is not realized at the cost of producing inconsistent
estimates; the normalized standard error of both formalisms is less than two, and
thus they both generate consistent estimates. Finally, we note that as the number of
contracts increases, the Kalman filter encodes more precise correlation information,
and the difference between the formalisms also increases.

Table 2.1 illustrates the effect that the precision of the trust estimate has on an
agent’s estimate of the expected utility of a contract (calculated using the relation-
ships shown in Equations 2.15 and 2.16 in an example setting where u(o,=1)=2 and
u(o,=1)=06). While both formalisms generate estimates of expected utility close to
the true distribution, the more precise covariance matrix of the Kalman filter results
in a better estimate of the standard deviation of the expected utility (while that of the
inflated independent beta distribution is approximately double the true value).

In summary, we have developed a trust formalism based on the Kalman filter
that represents trust as a vector estimate of the probability that each service will
be successfully delivered, and a covariance matrix that describes the uncertainty
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TABLE 2.1

Estimated Expected Utility and Its
Standard Deviation Calculated from an
Agent’s Posterior Trust Estimate

E[E[U]]+ Var(E[U])

Method
True distribution 5.80 £0.27
Inflated independent beta 5.86 £0.53

Kalman filter 5.82+0.34
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and correlations between these probabilities. We have described how the agents’
direct experiences of contract outcomes can be represented and combined within
this formalism, and we have empirically demonstrated that the formalism provides
significantly better trustworthiness estimates than the alternative of using sepa-
rate single-dimensional trust models for each separate service (where information
regarding the correlation between each estimate is lost).

2.8 FUTURE DESIGN CONCERNS AND OPPORTUNITIES

As cheap sensing and computation increasingly pervades the world around us, it
will profoundly change the ways in which we work with computers. Rather than
issuing instructions to passive machines, we will increasingly work in partnership
with highly interconnected computational components (agents) that are able to act
autonomously and intelligently. Humans and software agents will continually and
flexibly establish a range of collaborative relationships with one another, forming
human-agent collectives (HACs) to meet their individual and collective goals.

This vision of people and computational agents operating at a global scale raises
a very significant design concern that must be faced as we shift to becoming increas-
ingly dependent on systems that interweave human and computational endeavor. As
systems based on HACs grow in scale, complexity, and temporal extent, we will
increasingly require a principled science that allows us to reason about the computa-
tional and human aspects of these systems if we are to avoid developments that are
unsafe, unreliable, and lack the appropriate safeguards to ensure societal acceptance.

2.8.1 HAC DesiGN CONCERNS

The global scale and decentralized nature of HACs mean that control and informa-
tion will be widely dispersed between a large number of potentially self-interested,
actors with different aims, objectives, and availabilities. These features of HAC raise
the following design challenges:

e Understand how to provide flexible autonomy that will allow agents to
sometimes take actions in a completely autonomous way without reference
to their human owner, while at other times being guided by much closer
human involvement in key decisions

¢ Discover the means by which groups of agents and humans can exhibit
agile teaming and come together on an ad hoc basis in order to achieve a
goal that none of the individuals can achieve in isolation and then disband
once the cooperative action has been successful

e Elaborate the principles of incentive engineering in which actors’ rewards
are designed in such a way that the actions that the participants are encour-
aged to take, when amalgamated, generate socially desirable outcomes

* Design and develop an accountable information infrastructure that can pro-
vide a step change in situational awareness by blending sensor and crowd
generated content in a robust and reliable way, and developing mechanisms
that allow its veracity and accuracy to be confirmed and audited
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How to solve these challenges and establish the new science needed to understand,
build, and apply HACs in the real world is still very much a subject in its infancy.
It is sure to draw on the DDF methods described in this book, but they will need to
be enriched with insights, understanding, and methodology resulting from a broader
multidisciplinary approach involving artificial intelligence, agent-based computing,
machine learning, decentralized information systems, participatory systems, and
ubiquitous computing.

2.8.2 HAC OPPORTUNITIES

If these challenges can be solved they will help us meet some of the key societal
challenges of sustainability, inclusion, and safety that are crucial to our future. To
conclude, let us consider three application domains that are expected to be signifi-
cant beneficiaries:

Disaster response: Effective disaster response requires rescue services to make
critical decisions in the face of an uncertain and rapidly changing situation. We aim
to develop systems that allow first responders and software agents to work effec-
tively together in such situations to collect the best possible information from the
environment (though diverse sources such as CCTV feeds, UAVs, and crowd gener-
ated content), in order to most effectively manage and coordinate the various rescue
resources available. Key technologies to achieve these aims include (i) decentralized
coordination algorithms that can effectively allocate resources in the absence of cen-
tralized control, (ii) methodologies to flexibly handle autonomy so that the decisions
that are autonomously made by software agents can be continuously changed as
needs arise, and (iii) the ability to track the provenance of information and decisions
such that previous decisions can be updated as new information comes to light.

Smart grid: Developing a modern electricity grid where information flows in both
directions between consumers and producers is critical to achieving worldwide car-
bon reduction targets. HACs are an essential part of this vision, for example, the use
of agents (or “energy avatars”) that are capable of continuously monitoring, predict-
ing, and feeding back information about energy generation and consumption within
the grid, in order to satisfy individuals’ preferences for cost, carbon, and comfort.
Some requirements in support of these aims are (i) coalition formation algorithms
that allow multiple self-interested parties such as renewable generators to come
together with consumers to create virtual power plants that can more effectively
manage the intermittent nature of these energy sources, (ii) algorithms to generate
effective short term predictions of demand and supply to allow the optimization of
energy use, and (iii) accountable information infrastructure to ensure the informa-
tion provided to users on their smart meters is easily understandable, credible, and
auditable for billing purposes.

Citizen science: Scientific research projects are increasing turning to citizen
scientists to help solve problems that defy conventional computational approaches,
for example, the Zooniverse projects in astronomy (zooniverse.org). These projects
require approaches that allow such problems to be solved at scale, making full use
of the skills, preferences, and capabilities of the volunteer participants. To make
effective use of volunteer participants within these settings there is a need to develop
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(1) algorithms to model and predict the accuracy and trustworthiness of citizen gen-
erated content, (ii) methodologies and data models that allow us to track and reason
about the provenance of information collected in this way, and (iii) mechanisms
that allow us to target which volunteers are asked which questions based on learned
models of their capabilities.
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3.1 INTRODUCTION

The history of network-centric concepts in the United States can be said to go back
at least to the mid-1980s when the U.S. Defense Department was reorganized under
the Goldwater—Nichols Act of 1986 that imputed the notions of “jointness” onto U.S.
defense and military operations. Ten years later U.S. Admiral William Owens, in a
paper for the Institute of National Strategic Studies at the National Defense University,
wrote on the concept of “The Emerging U.S. System of Systems” (Owens 1995) as
the foundation of the “Revolution in Military Affairs,” involving the extensive use of
(and dependency on) information in a layered system framework connecting various
military operational functions. A sequence of publications evolved that introduced
the notions of net-centricity and eventually the military notion of network-centric
warfare (NCW), in which the strong informational dependency persisted. In the
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networked case, which allows (or should allow) extensive sharing of information, the
argument was that NCW enabled the following operational advantages:

¢ A robustly networked force improves information sharing.

¢ Information sharing enhances the quality of information and shared situ-
ational awareness.

e Shared situational awareness enables collaboration and self-synchronization
and enhances sustainability and speed of command.

e These, in turn, dramatically increase mission effectiveness.

In these arguments, combat power is seen to be dependent on information. Related
to these ideas, Evans and Wurster (2000) introduced the concepts of information
richness and seek to explain how the Internet has changed the economics of informa-
tion reach and the ability of information to create value. In this work, they defined
information richness as an aggregate measure of the quality of information and
information reach as an aggregate measure of the degree that information is shared.
Alberts et al. (2001) add the parameter of “quality of interaction” to these factors
as influencing the ability to create value, in this case combat value. So it can be
argued, following these developments, that combat power and mission effectiveness
depend on information quality, information “share-ability,” and the nature of interac-
tion among people using information. In a network environment, every node has an
opportunity to create information but also to modify it (say, improve its quality), send
it forward to other nodes (expedite the sharing of that information), and the people at
that node can interact with the information in a way that exploits it for task purposes.
Thus, there is the potential for a “chain” of effects that impacts the overall combat
value in such a system of systems; i.e., a “value chain” is a latent construct in any
information network.

3.2 VALUE CHAIN CONCEPTS

The term “value chain” is cited in the various open works on NCW or network-
enabled capability (Alberts et al. 2001), but other sources suggest the term was coined
by Michael Porter in 1985 (Porter 1985). The concept is an abstraction related to
business processes that operate on a product as part of the product development, and
the notion that each process should add value to the product. It seems to be a concept
primarily useful for strategic planning that exposes the cost and value drivers at each
stage of product development as a basis for analyzing and discerning the best trade-
off choices to make toward optimization of value and minimization of cost.

The term has been extended by the business community to apply to broadly
based, multi-organizational processes under the phrase “value network,” which
seems to be particularly applicable to service industries and processes involving
nontangible components and products. It is generally presumed in the discussions
about value networks that there is a dedicated and altruistic intent among the col-
laborators to fully cooperate through synchronized interactions toward the single
purpose of product value optimization. Clearly, inter-agent communication is crucial
to realizing the benefits of a value network (as argued in Alberts et al. [2001], where
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the “quality of interaction” parameter is introduced, as previously noted), and the
overall system can be and usually is complex and exhibiting a variety of inter-agent
dependencies, not unlike the complexities in a social network.

The value chain in the NCW case is descriptive of the interdependencies
among, and value contributions of, the links from network-centric organizations
and improved (value-adding) information processes—and information products—
to more effective mission outcomes. As will be discussed later, there are two core
assertions that underlie this concept: (1) that the collaborative framework that the net
infrastructure provides will improve the quality of organic (individual-node) infor-
mation, and (2) that the same net infrastructure will provide for improved share-
ability of information, in turn leading to more creative, agile, and timely situation
assessments and decision making. As noted earlier for the business case, here too
there is an assumption of an altruistic imperative and that the network nodes are
cooperatively working toward a common goal. This is not unreasonable as an ideal
goal but its realization is likely to depend on the specifics of given mission applica-
tions and the usual effects of the “fog of war,” and mission risks and urgencies in the
defense or military context. Even among friendly forces, it is not always the case that
the entire force is pulling in the same direction due to localized and random factors.

Also, no small part of the realization of the potential of NCW and the promise
of the value chain process will be the willingness of the military to commit to the
underlying open, cooperative, and proactive degree of information-sharing that these
concepts depend on. As pointed out by Alberts and Hayes (2003), it was not too long
ago that the phrase “Knowledge is Power” was employed to convey the notion that
possession and control of information (i.e., making it scarce and not sharing it) was
a means to achieve power and control. This paradigm thus argues for the control and
caching of information, rather than sharing it and generally making it available. In
part, these contrasting views relate to the economics of information availability in
the general sense as well as the cost of sharing it. With the emergence of the web and
the dramatic reductions in the availability-costs of extensive amounts of informa-
tion and in the marked reductions of all types of networking costs comes the push
for a new paradigm that factors sharing into the value-adding processes rather than
purposefully resisting it. Of course, this will require a degree of revolution in the
way “information-age forces” are structured and in the way they interoperate and
in particular how they share information. Military organizations will need to go
well beyond the current centralized planning-decentralized execution paradigm to
the structures discussed in Alberts and Hayes (2003) to realize much more organi-
zational agility and to empower those at the edge of organizations to decide about
information sharing and action-taking.

3.3 VALUE CHAIN PROCESS

Determination of whether the asserted benefits of the tenets of NCW and in particu-
lar those of the value chain can be realized begins with understanding the degree to
which a force is in fact networked or connected. As is well known, connectivity at
the information level is the result of a multilayered process; it begins with the physi-
cal connection layer (wires, fiber, transmitters/receivers) but goes well beyond that
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layer and in the military environment of course involves multilayer security issues
and accessibility controls to information. We note the important requirement that to
exploit and fuse shared information one must have to have been sent it from some-
where in the network, which in turn depends on what we call “information-sharing
strategies (ISS),” those protocols or policies that define who sends what to whom,
how often, and in what format. And as has been mentioned earlier, effective and effi-
cient collaboration also presumes the unified focus and altruistic intentions of those
nodes in a network that can contribute to the improved problem solution actually
doing so, even under combat duress and confusion.

The NCW literature has various diagrammatic representations of the value chain;
here we use a simple construct in Figure 3.1 depicting the process and its important
components and functions, showing how value is built up in the course of “good”
network operations. The figure shows that the first requirement to enable NCW is
connectivity via some type of network infrastructure. Shared observational data,
data fusion, and information management, done well, lead to significantly improved
situational awareness, which when properly shared and integrated into a (possibly-
new paradigm of) command and control (C2) and decision-making environment
have the potential to yield measurable improvements in mission effectiveness.
Closely related to the concept of the value chain is the “conceptual framework™ of
NCW, depicted here again using the diagram from the Network Centric Operations
Conceptual Framework report prepared by Evidence Based Research, Inc. (2003)
as Figure 3.2.

Most of Figure 3.2 is, first of all, all about information and its flow in the network
but it is (toward the bottom) also about the use of the information in decision-making
and action-taking. Important themes in this framework revolve around a few special
words and the implied functions: quality—sharing—degree—synchronization. Also
a new term appears: “sense-making.” Notice also that many of these terms and the
associated functions happen to “a degree,” and ideally should be measurable through
the development of relevant metrics; more is said on this in Chapter 17. Finally, not
shown here but important to note in any case is that certain functions are in certain
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domains, across the physical, informational, cognitive, and social categories; some
involve more than one domain. Everything begins here with improvements in the
quality of information at some node; nothing of quality can happen across nodes if
the individual nodes have nothing to offer.

3.4 VALUE OF INFORMATION IN DECISION-MAKING

One way to measure the quality of information at a node is by its contribution to
both the local and team or network-level decision-making and action-taking that
results from employing that information. Usually, the outcomes of actions taken in
the context of estimated situational states may be assigned values or utilities, which
represent the relative desirability of outcomes. This type of approach is typical for
cases where rational decision-making and choice-making is appropriate. However
there are many modern-day problems, e.g., asymmetric problems, that do not lend
themselves to the rational choice, rational decision-making paradigm. If we denote
a possible situation state as s, as an instance of S, and utility of action a, given s as
U(a,s), we can describe the expected utility as

E{U(s)} = ZP(S)U(a,S) 3.1)

scS
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where P(s) is the probability of any situation s. The situation, s, however is typi-
cally unobservable in a direct sense and can be treated here as being estimated by
a fusion process on the basis of observable evidence e (of all possible observational
data or other evidence, E). That is, the fusion process, assuming that it has a multi-
hypothesis capability, produces the distribution of estimated situations P (sle). If the
maximum utility is that associated with taking the optimal action, then we have the
maximum of the expectation as follows:

Max[E{U(S | €)} ] = maxa c Az P(s | e)U(a,s) (3.2)

scS

If we want to gauge the value of any observable evidence or information e, assuming
that what is being shared in the network is observational data or measurements, then
we can marginalize over the possible values of e as

Max[E{U(S I B)}] = z P(e)Max[E{U(Sle)}] 3.3)

ecE

The value of any observable informational element can then be computed as the
difference in maximum utility when the information is included in the above vice
excluding it. A similar calculation could be done if what are shared are situational
estimates by using slight variations of these equations, using the marginal value of
any situational estimate s. The viability and ability to implement calculations of
this type will vary from case to case, but some type of quality measures are needed
to drive the value-chain process; as footnoted previously, the Network Centric
Operations Conceptual Framework report (Evidence Based Research, Inc. 2003) has
a rather thorough characterization of a holistic approach to measuring the various
“ilities” associated with the value chain process.

3.5 ROLE OF FUSION (1)

It is important here to make a “fusion” remark in light of the implications of Figure
3.2. Any fusion node can only fuse two things: that information which is available
to it organically—i.e., information over which it has control, such as locally man-
aged sensor devices—and that information which comes to it somehow from the
network. Notice the emphasis on “somehow”; it is only through the aforementioned
ISS that some type of information flows to a node from the network. Such flows
can be the result of a multiplicity of interwoven ISSs such as broadcasts from some
nodes, responses to service requests from other nodes, and flows from nodes that the
receiving node subscribes to, or yet other flow patterns driven by specified protocols.
But it is emphasized that the nature of “non-organic” fusion that can happen at a
node is only the result of the synthesis of any such directed or requested (and respon-
sive) information flows, which in turn are the result of defined protocols and policies.
A related remark is that fusion can be (should be, if well designed) a contributor to the
quality of information and quality of sense-making and understanding, both at the
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individual or nodal level as well as at the shared level. It could be also argued that the
“Level 4: Process Refinement” function of the fusion process could contribute to the
nature of the information sharing and other inter-nodal interactions in a positive way,
depending on the control authority aspects of how the network is managed.

Further, fusion process design is often spoken of as impacted by “push”
requirements—those requirements driven by the input-side, and “pull” require-
ments, driven by the user-side. The network environment influences both of these
requirements-sets in possibly many ways. It can be said that the information flow in
the network can be characterized as both delayed and out-of-observation-time-order,
and probably Poisson in arrival-rate distribution, all of which could potentially affect
fusion algorithm and process operations. New user patterns involving self-organizing
and self-synchronizing organizational dynamics will also likely affect how fused
information products should optimally be constructed and delivered for use.

3.6 SENSE-MAKING

Following the flow of Figure 3.2, “sense-making” is a process and desired capability
at both the individual node level and at the network level. It can be individualized
to a person in which case the process would be largely cognitive with some degree
of automated support at the individual level. For any netted level of sense-making
capability whether within a sub-network at a node or across nodes, the sense-making
process relies largely on patterns of collaboration and information exchange. As
might be expected, the sense-making term seems to have a number of nominated
definitions; a few are offered here to give a sampling:

e Sense-making as making sense of uncertainties in environments through
interaction (Weick 1969).

* Sense-making encompasses the range of cognitive activities undertaken by
individuals, teams, organizations, and indeed societies to develop aware-
ness and understanding and to relate this understanding to a feasible action
space (Alberts 2002).

e Sense-making is defined as the process of creating situation awareness in
situations of uncertainty (Leedom 2001).

* Sense-making consists of a set of activities or processes in the cognitive and
social domains that begins on the edge of the information domain with the
perception of available information and ends prior to taking action(s) that are
meant to create effects in any or all of the domains (Alberts and Hayes 2006).

One common theme through the definitions seems to be the notion of dealing with and
clarifying an estimated world view while dealing with uncertainty, anomalies, and
contradictions. Sieck et al. (2007) depict individualized sense-making as a six-step
frame-building process (frames associated to mental representations in this approach),
involving sub-processes that seek a frame, and elaborate, question, compare, reframe,
and preserve the frame in an iterative process. Each step involves some type of adjudi-
cation or reconciliation process to deal with classes of complexity or uncertainty and
ambiguity. In this process then, the drive to reduce uncertainty may not be immediately
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helpful since part of the sense-making process can be to understand the implications of
uncertainty and ambiguity. The problem spaces addressed by sense-making processes
involve an incomplete understanding of reality and are thus ontologically incomplete;
they are also epistemologically incomplete in that available knowledge models are not
adequate to describe the observed phenomena. Table 3.1 from Zack (1999) offers a
characterization of types of ignorance that sense-making must deal with.

As pointed out in the sense-making literature (McCaskey 1982), the sense-
making process is not constrained by the usual models and assumptions of rational
decision-making, and a generalized maximization of a type of a utility-type function
on the part of the decision-maker. Modern-day adversaries can be expected to act
“irrationally” at least by certain standards, and certain arguments suggest that
friendly decision-makers need to be equally “irrational” in their decision-making
processes. Uncertainty reduction and optimization methods work well in support of
the rational choice/rational decision-making model but may warrant reexamination
as part of a sense-making process involving a collaborative situation assessment
process that is constructing a subjective view of an unknowable, dynamic world and
largely dealing with overt deception, equivocal information and the reconciliation of
alternative views among the networked decision-making team. The use of bounded
rationality models helps in this regard but such models are not the same as the typical
descriptions of sense-making. In the sense-making case, it could be said that the
networked group is constructing an interpretation of some complex reality sufficient
to achieve a state of commitment to that interpretation and the decisions and actions
that may result from it. This notion interacts with the concept of self-organizing
teams in that the sense-making process is a logical precursor to a team setting its
own goals and objectives for both action-taking and information-seeking. It could
be said that a team can only be labeled as self-organizing if it dynamically sets its
own goals and objectives. Commanders then need to limit themselves to presenting
the team with an ambiguous challenge rather than defining terms of reference, etc.;
whether traditional militaries can adapt to this process is to be seen. Moreover, most
fusion processes operate on what could be called explicit information and to varying
degrees may not exploit tacit knowledge and contextual information.

McCaskey (1982) offers the list shown in Table 3.2 of types of problems and ques-
tions that sense-making type processes are intended to address. It could be said that
these are problems involving degrees of bewilderment for analysts or decision-makers.
The term “wicked” has also been used to typify such problems involving contradict-
ing information, discrepancies, etc., and the need for problem-solvers to significantly
change their mindsets and shed historical preconceptions; see Rittel and Webber (1973).

3.7 NATURE AND PROCESSES OF SENSE-MAKING

Sense-making is sometimes labeled as ‘“constructive reality” and a process that
is action-centered and retrospective. This is similar to what some in the fusion
community have called “stimulative intelligence,” which involves taking actions to
stimulate an adversary to an action that is either observable or that aids in clarifying
a hypothesis. Such strategies will generally be more successful at the physical level,
e.g., when trying to cause actions that manipulate physical objects, but both harder
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TABLE 3.1

Forms of Ignorance

Form of Ignorance

Uncertainty

Complexity

Ambiguity

Equivocality

Definition

Uncertainty is defined as not having
sufficient information to describe a
current state or to forecast future states,
preferred outcomes, or the actions
needed to achieve them. Uncertainty
can be defined in degrees (e.g., in terms
of probability); however, the context of
uncertainty is well-defined and
meaningful to decision-makers.

Complexity is defined as being faced
with a situation made of an inter-related
set of variables, solutions, and
stakeholders — each individually
understood, but together with exceed the
processing capacity of the individual,
the team or organization to synthesize.
Complexity is defined relative to
available experience and expertise: what
is complex for one individual might be
easily understood by another.

Ambiguity is defined as the inability to
make sense out of a situation, regardless
of available information. Ambiguity
arises when faced with novelty or
situations that do not correspond to past
experience. Here, what is lacking is not
information but the experience and
expertise to correctly frame and
interpret the information.

Equivocality is defined as having
multiple —equally plausible-
interpretations of the same information.
Here, interpretations may differ along
one or more dimensions; descriptive
criteria, problem boundary, relevance of
specific underlying factors, multiple
stakeholders who each have a vested
interest in characterizing the current
situation, forecasting its implications,
and developing response actions.

Source: Zack, M. H., Knowledge Directions, 1, 36, 1999.

Corrective Response

Uncertainty can be reduced be
acquiring additional information
relevant to the problem context.
Uncertainty can be tolerated by
using assumptions to fill in
missing information, or by
developing agile responses that
can accommodate critical areas
of uncertainty.

Complexity can be
accommodated by breaking
problems down into manageable
pieces (division of labor).
However, this requires the
addition of management
overhead and the means to bring
together the appropriate experts
to synthesize the various pieces
back into an integrated whole.

Ambiguity can be resolved by
acquiring new sources of
expertise and/or allowing
iterative cycles of collaboration
among experts and
stakeholders to create new
interpretations of the situation.
Such collaboration requires
well-established social
networks for success.

As with ambiguity, equivocality
can be resolved through
iterative cycles of
interpretation, discussion, and
negotiation among experts and
stakeholders. This process can
occur either democratically or
in authoritative fashion,
depending upon the relative
influence of each stakeholder
and the presence/absence of an
overall decision authority.
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TABLE 3.2

Sense-Making Problem Characteristics

Category Characteristics

Nature of the The nature of the problem has shifted from the known (e.g., simple problem) to the
problem unknown (e.g., wicked problem)

Opverall guidance and directions received from functional experts and stakeholders
does not set forth a clear and consistent set of goals that address the present
operational situation

Time and other resource constraints necessitate trade-offs among competing goals
and operational requirements

Nature of the The ability to effectively collect, interpret, and organize information becomes
information problematic because of the volume of available information or the reliability of
this information

There exist multiple, conflicting interpretations of the available information as
different experts or stakeholders each apply their unique perspectives and
expertise

The operational situation appears to present decision-makers with a seemingly
inconsistent pattern of features, relationships, or demands

Functional experts and stakeholders employ symbols and metaphors to articulate
their perspective, but these symbols and metaphors are not consistently
understood by others

Nature of the Functional experts and stakeholders differ in terms of the underlying values,
decision-makers political goals, or emotional reactions
and stakeholders  Various relevant players lack a clear and consistent assignment of roles and
responsibilities

Decision-makers lack a clear and consistent set of success measures for judging
operational progress and adjusting future decisions and actions

Key decision-makers, functional experts, and stakeholders change as a function of
the evolving operational situation

Source: Adapted from McCaskey, M.B., The Executive Challenge: Managing Change and Ambiguity,
Pitman Publishers, Marshfield, MA, 1982.

to define and execute and likely less successful at the informational and cognitive
levels which are both fundamentally more difficult to manipulate and to observe. The
sense-making processes are emergent and adaptive but are trying to be kept within
a linear inferencing framework. It is also characterized by the problem-solvers’
reluctance to simplify interpretations and a reluctance to dispense with information
that doesn’t fit nominated hypotheses; these teams are also characterized by having
a commitment to resilience. With the process involving frequent adaptation, it
can also be appreciated that most characterizations of sense-making describe the
need for a knowledge management function that keeps track of the dynamics in
nominated hypotheses and associated knowledge models to prevent thrashing and a
failure to converge. Leedom (2004) shows the diagram of Figure 3.3 to convey the
hybrid combination of linear and emergent processes working together in a mission/
operational-tempo-based temporal context.
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FIGURE 3.3 Sense-making dynamics. (From Leedom, D.K., The analytic representation of
sensemaking and knowledge management within a military C2 organization, Air Force Research
Laboratory Human Effectiveness Directorate Report AFRL-HE-WP-TR-2004-0083, 2004.)

Weick (1995) depicts the sense-making process as having four functional compo-
nents as shown in Table 3.3.

Positional arguing involves disparate functional experts coming together in a
“community of interest” to develop a shared understanding of the problem space and
to nominate actions that will aid in confirming current hypotheses or in aiding the
inferencing process. Plausible expectations from the decided actions are formed by
the key leaders of the team in the form of projected outcomes or events. Behavioral
commitment, as indicated earlier, is action-based and is in a sense a way to help
focus the sense-making process on particular components of the problem space for
which a leader is committed to a course of action (reflects “commander’s intent’).
Environmental manipulation is about those actions that are taken to help develop the
“constructed reality” that forms the framework of interpretation of the group.

3.8 ROLE OF FUSION (2)

Understanding sense-making and the role for computer-based information fusion
processing requires in part an understanding of the various types of information
and knowledge involved with sense-making. In Leedom (2004), the knowledge
sources described are codified information and knowledge, tacit knowledge, and
social knowledge. Clearly, the knowledge coming from the output of an informa-
tion fusion process falls into the codified knowledge domain. Information sources
that are employed by a fusion process will mostly fall into the codified information
domain. Among such sources, it can be argued that one particular important infor-
mation source in this paradigm is that of contextual information. It has been said that
“Sense-making is about contextual reality. It is built out of vague questions, muddy
answers, and negotiated agreements that attempt to reduce confusion” (van Laere
et al. 2007). Context is also a slippery word and has varying interpretations; it can be
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TABLE 3.3

Sense-Making Process Characterization

Sense-Making
Process

Positional arguing

(belief-based)

Plausible
expectation
(belief-based)

Behavioral
commitment
(action-based)

What This Process Entails

Various functional experts and/or
stakeholders within the team or
organization present their perspectives
or positions in an attempt to shape the
constructed problem framework

As part of this collaborative process,
each individual attempts to change or
expand the knowledge state of others
until there exists a commonly shared
understanding of how each of the
relevant problem elements and
potential solution paths fit together in
a cohesive whole

Sometimes referred to as debative
cooperation

Key leaders express their expectation of
certain outcomes, events, or future
states in order to focus the attention
and thinking of their supporting team
or organizational members

Expectations link belief to action in as
much as constructed futures implicitly
require certain actions or
accomplishments that must be planned
and executed by the team or
organization

Expectations reflect constructed futures
that evolve over time to conform with
unfolding events and states

Key leaders demonstrate explicit,
public, irrevocable commitment to
specific plans and actions in order to
further shape and focus the attention
and thinking of their supporting team
and organizational members

Commitment is expressed in the form
of approved plans and orders issued to
subordinate elements

Why This Is an Essential Component
of Sense-Making

Whenever teams or organizations face
wicked problems, the major
challenge is constructing an
appropriate problem framework
within which to shape the resulting
decisions

Wicked problems—including their
relevant threats and opportunities—
will often be viewed differently by
each expert or stakeholders,
dependent upon their roles and tacit
knowledge

The efficiency of sense-making within
a team or organization depends upon
its leaders focusing the attention and
thinking of its members

Part of the responsibilities of a leader
are to construct a vision for the team
or organization out of many possible
futures

Linking thoughts, teams, and
accomplishment is a powerful
motivational mechanism for shaping
the decision behaviors of others

Individuals, teams, and organizations
try hardest to build meaning and
understanding around those actions
to which they are committed to

Prior to leaders expressing
commitment, all types of perceptions,
experiences, and positions within the
team or organization are loosely
coupled to an evolving situation



Network-Centric Concepts

59

TABLE 3.3 (continued)
Sense-Making Process Characterization

Sense-Making
Process

Environmental
manipulation
(action-based)

What This Process Entails

Commitment serves to provide a team
or organization with purpose, order,
and value

Teams and organizations selectively act
within their operational environment
to conform that environment to their
constructed reality

Manipulation reflects the role of the
team or organization in actively
shaping the future

Manipulation can take the form of
pre-emptive actions taken to shape the
problem space even before that
problem space is completely
understood

Why This Is an Essential Component
of Sense-Making

Commitment transforms unorganized
perceptions, experience, and
positions into a more orderly and
purposeful team

Sense-making is more than merely the
passive interpretation of the
operational environment as given; it
involves the active constitution of a
workable reality within which a team
or organization operate

Sense-making links beliefs and action
together within an understandable
framework; hence, the construction
of a reality can involve both
hypothesis building and action taking

Source: Weick, K.E., Sensemaking in Organizations, Sage Publications, Thousand Oaks, CA, 1995.

difficult to distinguish it from “‘situation” and tricky to discuss the interplay of situa-
tion and context. Contextual information, necessary to the determination of a context,
can be seen to have two roles: (1) an “a priori” role where it is proactively designed
into some fusion-based estimation algorithm—in this case the algorithm designed is
able to prespecify what contextual information is relevant to the estimation process,
and integrate it into the algorithm design (using terrain information in ground target
tracking is one example), and (2) an “a posteriori” role, where contextual information
is drawn upon to clarify or constrain an estimate that has been separately developed,
i.e., contextual information is used after the fact of an externally asserted inference
for the purpose of improved interpretation. In the latter case a type of “relevance fil-
ter” has to be designed to select, retrieve, and employ the pertinent contextual infor-
mation for clarification purposes. The employment of contextual information, which
can be relatively static but also dynamic (weather, e.g.), in the sense-making process
adds a layer of complexity and also opens the process to various biasing effects.

What seems to be needed to support the sense-making process is a type of non-
monotonic logic; one appealing model is the abductive process, which pursues plau-
sibility rather than accuracy (Lundberg 2000). Another way to view this is that we
apply abduction when there is a lack of dependable causal models as typically driven
by the traditionally deductive data fusion frameworks, i.e., when only “symptoms”
are available and plausible causes have to be developed. However, there is likely no
single inferencing process that can be argued as the foundation of sense-making; an
inferencing toolkit is probably a better model.
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There are various important messages for the information fusion community in
reviewing the characterizations of sense-making:

e One is that sense-making and rational decision-making will in many cases
need to coexist—they are each appropriate to different problem classes,
and will very likely require different data fusion processes to support them.

e Another is that the fusion community needs to make a determination of
whether it is possible for fusion processing as it is known today to fit into or
be extended in some way to support the sense-making process.

e But the fusion community also needs to reflect on and develop a new model
for fusion as supportive of sense-making per se, and what the new func-
tional model of that process should be and what the technological chal-
lenges are toward implementing that model.

3.9 SELF-ORGANIZATION AND SELF-
SYNCHRONIZATION IN THE VALUE CHAIN

The problem framework that gives rise to the need for a sense-making process can be
said to form one of the drivers that fosters the need for self-organization of an operating
unit: a sense of tension or difference, misunderstanding, or under-determination where
meaning is in dispute. This tension necessarily or at least naturally leads to a need for
communication and the new type of social dynamic that sense-making is. Hammond
and Sanders (2002) argue that the dialogic creation of meaning (one could say sense-
making) is a self-organizing process. They suggest that it is the tension between disor-
der created by randomness and order imposed by shared meaning that drives the need
to communicate. However, while communicative activity aids in creating meaning and
order in the face of equivocal information, the communication processes create disor-
der at the same time. What happens is that as the group begins converging on a problem
solution, new directions begin to emerge in a kind of convergent-emergent tension. This
engenders a bit of a twist on the sense-making process characterized as only convergent
to a consensus; it is likely that in the confusing, equivocal environments that sense-
making is designed for that divergent factors will enter into the process. Wheatley
(1992) describes this as a productive localized “chaos” that enables the opportunity
for participants to let go of previous assumptions and seek “out of the box” solutions.

As regards self-synchronization, the mostly widely quoted definition of
self-synchronization related to NCW comes from Cebrowski (Cebrowski and
Garstka 1998): “Self-synchronization is the ability of a well-informed force to
organize and synchronize warfare activities from the bottom-up. The organizing
principles are unity of effort, clearly articulated commander’s intent, and carefully
crafted rules of engagement. Self-synchronization is enabled by a high level of
[knowledge of] one’s own forces, enemy forces, and all appropriate elements of the
operating environment. It overcomes the loss of combat power inherent in top-down
command directed synchronization characteristics of more conventional doctrine
and converts combat from a step function to a high-speed continuum.” A simpler
definition of self-synchronization (Costanza 2003) is “the ability of a well-informed
force to organize and coordinate complex warfare from the bottom up.”
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It is usually considered that the “self” in “self-synchronization” implies the
ability of an agent to arrange the timing aspects of its own activities without the
influence or control of other agents, implying a sense of independence. In terms of
analysis and decision-making style, to be independent an agent needs to be proactive
in his actions otherwise he may be captive to the reactions driven by the adversary.
Other factors necessary for enabling self-synchronization include maintaining an
awareness of commander’s intent at all times, i.e., operating within that mind-set,
and being able to dynamically prioritize activities. It is of course not usual that an
agent acts strictly alone, so the notion of “self” in realistic cases relates to a kind of
collective self-synchronization, and each agent in such collectives must be thinking
synergistically, having a willingness to share resources and power. It also implies
that such agents are synergistic communicators—empathetic listeners that under-
stand the basic needs of a collaborator that enable achieving actions which are truly
helpful to both agents, rather than compromises coming from negotiation-type com-
munications. In the end, the self-synchronizing collective molds itself to the tasks
and operations at hand; the molding forces are a kind of shaping context of people,
problems, and resources. These factors are not unlike the “seven habits of highly suc-
cessful people” that Covey (1990) sets as imperatives, e.g., being proactive, operating
with an end in mind (e.g., commander’s intent), having priorities, thinking synergisti-
cally, and seeking first to understand.

3.10 COMPLEXITY IN SENSE-MAKING AND
COMMAND AND CONTROL

Self-organization and self-synchronization are easy to talk about but very difficult
to execute in the best way. Part of the rationale regarding the need for such agile
behavior comes from the “Law of Requisite Variety” of Moffat (2003), where it
follows from cybernetic arguments that to properly control a complex system (the
dynamic asymmetric battlefield), the variety of the controller function (the number
of accessible states which it can occupy) must match the variety of the combat
system itself. In other words, the control system itself, here the C2 (human-based)
organization, has to be complex. This Law of Requisite Variety implies that the
control system must exhibit great agility in dealing with the dynamics and com-
plexity of combat involving hybrid teams. But that agility must be controlled to
some degree else it can result in chaotic behavior. According to Moffat (2003),
“the representation of the C2 process must reflect two different mechanisms. The
first is the lower level interaction of simple rules or algorithms, which generate
the required system variety. The second is the need to damp these by a top-down
C2 process focused on campaign objectives.” In a broad sense, the relationships
between complex concepts and the behavior of an “information age force” are char-
acterized as shown in Table 3.4.

Thus, it is not surprising to see considerable literature discussing the NCW
sense-making and C2 processes as modeled by a complex adaptive system (CAS).
If a CAS model is appropriate, then there is a need to understand CASs well enough
to predict their macro-level behavior, a result of nonlinear micro-level behaviors.
A related goal is to design and construct a CAS-based C2 process having a desired,
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TABLE 3.4
Relations between Complexity Factors and Force Factors

Complexity Concept Information Age Force

Nonlinear interaction ~ Combat forces composed of a large number of nonlinearly interacting parts

Decentralized control ~ There is no master “oracle” dictating the actions of each and every combatant

Self-organization Local action, which often appears chaotic, induces long-range order

Nonequilibrium order ~ Military conflicts, by their nature, proceed far from equilibrium. Correlation of
local effects is key

Adaptation Combat forces must continually adapt and coevolve in a changing environment

Collectivist dynamics ~ There is continual feedback between the behavior of combatants and the
command structure

Source: Moffat, J., Complexity Theory and Network Centric Warfare, CCRP Press, Washington,
DC, 2003.

or perhaps bounded, emergent behavior with a theoretical understanding that the
emergent behavior will be most fit for a particular C2 or mission objective. The
CAS/C2 literature speaks of the C2 process as ideally operating “on the edge of
chaos”; i.e., within the favorable, predictable macro-behavioral bounds of the inher-
ent CAS C2 process, but not tipping into chaotic behavior.

Since information fusion processes are information-providing processes into such
decision-making and C2 operations, it is then important for fusion process designers
to understand that they are supplying information into this nonlinear decision-sup-
port environment. One way to study such interdependencies is via the multi-agent
systems construct, and probably the most research in CAS for C2 has been along
these lines. Some of the notable examples of using intelligent agents to study emer-
gent behavior in warfare are the Irreducible Semi-Autonomous Adaptive Combat
(ISAAC) works, and the Enhanced ISAAC Neural Simulation Toolkit (EINSTein),
from the U.S. Marine Corps Combat Development Command (MCCDC) as part of
their Project Albert research (Ilachinski, 1999). There are yet other efforts that have
employed the agent paradigm for such research (Hummel et al., 2005, Yang et al.,
2005, Lauren 2000). These test beds have been used for a wide variety of research
studies that have aided in developing insights into the behaviors and performance
of CASs. Other methods have been applied to explore the CAS-data fusion inter-
dependency, but overall, the research and thus design knowledge is limited; this is
considered a robust area for needed research.

Regarding other methods, Urken (2011) has studied “error-resilient data fusion”
(ERDF) processes, in which the contributors to the formation of a composite situa-
tional estimate employ voting procedures. In the ERDF approach, the properties of the
systems used to represent and aggregate votes produce a high probability of producing
what Urken calls “error resilient collective outcomes” (ERCOs). When such a voting
process produces a reliable ERCO, neither outstanding votes or data, nor unelapsed
time, will change the collective inference, yielding a robust result or situational inter-
pretation. So ERCO results provide a basis for ignoring uncollected critical data and
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enabling agents to take immediate action to adapt to changes in their environment.
Alternate approaches to dealing with CAS aspects for both fusion and network design
have been put forward in a limited body of work, such as the biologically inspired
strategies described in Urken (2011) and Ferro and Pioggia (2009). However, by and
large, the information fusion community has not developed an organized research
strategy to explore the nature of fusion functions and processes in the context of CAS.

3.11  SUMMARY

It is anticipated that not only the military but extensive business and civil systems
will be operating in a network-centric context from the point of view of the under-
lying informational infrastructure. There are clearly advantages to employing net-
worked systems but there is little doubt that there are also system design trade-off
issues regarding the formation of the physical network and perhaps the even more
important issue of how the network is used. In the value chain characterization,
one can to some degree build in ways to improve information quality and sharing
through mandated processes and protocols, but the intermodal interactions and
human inputs and controls also play into the overall effectiveness equation. If the
sense-making and CAS paradigms indeed apply toward modeling such interactions,
the information fusion community will need to better study and understand how
to design fusion processes to operate in these highly adaptive and nonlinear user
environments. The implications of these new models of “sense-making,” consensus-
formation, convergent—emergent interpretation dynamics, productive local chaos,
etc., on the requirements for data fusion process design and development are likely
to be rather revolutionary.
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4.1 INTRODUCTION

There are many practical situations in which one is faced with a decision-making
problem. Based on observations regarding a certain phenomenon, a particular course
of action needs to be employed from a set of possible options. Decision-making
structures are found in many real-world situations that include financial institutions,
air-traffic control, oil exploration, medical diagnosis, military command and con-
trol, electric power networks, weather prediction, and industrial organizations. In
conventional decision-making scenarios, a sensor transmits its raw observation to
a processor where optimal detection is carried out based on conventional statistical
techniques. The branch of statistics dealing with these types of problems is known

65
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as statistical decision theory or hypothesis testing. In the context of radar and com-
munication theory, it is known as detection theory [1-4]. More recently, the trend
is to employ multiple sensors to observe a phenomenon. For decision making, raw
observations from all the sensors can be transmitted to a central processor where
an optimum decision rule can be designed based on conventional detection theory.
However, centralized processing based on raw observations from multiple sensors
is neither efficient nor necessary. It may consume excessive energy and bandwidth
in communications and may impose a heavy computation burden at the central
processor.

In distributed detection [1,5,6], multiple detectors (sensors) work collaboratively
to distinguish between two or more hypotheses. In a binary distributed detection
problem, the objective might be the determination of the absence or presence of a sig-
nal of interest, or in a multiple hypothesis testing problem, the objective might be the
classification of multiple signals or targets. Local sensors can carry out preliminary
processing of data and only communicate with each other and/or the central process-
ing unit called the fusion center with the most informative information relevant to
the global objective. As we describe later in the chapter, the global objective might
be the minimization of detection error probability or maximization of probability
of detection given a fixed false alarm rate constraint. Deployment of multiple sen-
sors for signal detection improves system survivability, results in improved detection
performance or in a shorter decision time to attain a prespecified performance level.
From the signal processing perspective, two inherently different problems need to be
considered for the distributed detection system: the design of the decision rule at the
fusion center (often referred to as the fusion rule), which strives for an optimal sys-
tem performance using compressed input from distributed sensors, and the design of
local sensor signal processing algorithms. These two problems are intertwined with
each other and they need to be jointly solved to optimize a prescribed performance
criterion.

Recently, wireless sensor networks (WSNs) have gained much attention and inter-
est and have become a very active research area. Due to their flexibility, enhanced
surveillance coverage, robustness, mobility, and cost effectiveness, WSNs have
found wide applications in areas such as military surveillance, and environmental
monitoring. Usually, a WSN consists of a large number of low-cost and low-power
sensors, which are deployed in the environment to collect observations from an event
of interest. Each sensor preprocesses and extracts information from the raw observa-
tions and has the ability to communicate with other sensor nodes or the fusion center
via wireless channels. The fusion center processes all the sensor data and arrives at a
global inference. The detection ability of a WSN is crucial for various applications.
As an example, in a surveillance scenario, the presence or absence of a target is usu-
ally determined before its attributes, such as its position or velocity, are estimated.
For WSNss, the classical distributed detection framework needs to be reconsidered by
taking into account the important features and limitations of sensors and the wire-
less channels between the sensors and the fusion center. Since a WSN has stringent
resource availability in terms of power and/or bandwidth, the design of appropriate
distributed detection algorithm should satisfy the resource constraints of the WSN.
Furthermore, error-free transmission of sensor measurements to the fusion center
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over wireless channels may require high transmission power and/or powerful error
correction codes which might be prohibitive for sensors with limited power and pro-
cessing capabilities. Therefore, channel impairments should be taken into account
in the design of distributed detection systems. A recent survey [7] summarizes the
results on distributed detection, estimation, and tracking in WSNs with a special
emphasis on solutions that take into account the communication network connecting
the sensors and the resource constraints at the sensors.

The remainder of the chapter is organized as follows. In Section 4.2, under the
conditional independence assumption, we first introduce the conventional design
of decision rules at the local sensors and at the fusion center to optimize detection
performance, under the Bayesian and Neyman—Pearson (NP) criteria. In many
practical scenarios, it may be difficult to obtain the optimal decision rules which
require information about the performance of individual sensors. Hence, decision
rules that do not require this information are desirable. Later in this section, we
discuss false discovery rate (FDR)-based decision fusion which does not require
the knowledge of the local sensor parameters while employing nonidentical deci-
sion thresholds at each sensor. In Section 4.3, we investigate the decision fusion
problem, where the channels between the sensors and the fusion center are subject
to fading and noise. We review channel aware decision fusion algorithms with dif-
ferent degrees of channel state information. Finally, in Section 4.4, a summary of
the chapter is presented and some open challenging issues for distributed detection
are addressed.

4.2 DISTRIBUTED DETECTION OVER IDEAL
COMMUNICATION CHANNELS

When there are two possible sets of action, the problem is a binary hypothesis testing
problem. We label the two possible choices as H, and H,. Hypothesis H,, usually rep-
resents the absence of an object or event and Hypothesis H, corresponds to its pres-
ence. If there are M hypotheses with M>2, it is a multiple hypothesis testing problem
or M-ary detection problem. In this chapter, we focus on the binary hypothesis test-
ing problem. More detailed treatment for the multiple hypothesis testing problem can
be found in the literature [8—13].

In the hypothesis testing problem, the source or event of interest is not directly
observable. Corresponding to each hypothesis, an observation (a set of observations),
which is a random variable (vector) in the observation space is generated according
to some probabilistic law. Let us assume that there are K sensors in the WSN and the
observation at each of the K sensors, z,, corresponds to either of the two hypotheses

Hy ~ p(0)

H, ~ p,(0)

@)

where p(0) and p,(0) are the pdfs under H, and H,, respectively. More specifically, if
the problem is to detect the absence or presence of the signal of interest, the received
observation at each sensor has the form
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ny Under H,
k= { (42)

0+n, Under H,

where
0 represents the parameter vector that characterizes the hypothesis H,
n, represents the noise

By examining the observation, we try to infer which hypothesis is the correct one
based on a certain decision rule. Usually, a decision rule partitions the observation
space into decision regions corresponding to the different hypotheses. The hypoth-
esis corresponding to the decision region where the observation falls is declared true.
Whenever a decision does not match the true hypothesis, an error occurs. To obtain
the fewest errors (or least cost), the decision rule plays an important role and should
be designed according to the optimization criterion in use.

Parallel configuration, as shown in Figure 4.1, is the most common topological
structure that has been studied quite extensively in the literature. In parallel topol-
ogy, the sensors do not communicate with each other and there is no feedback
from the fusion center to any sensor. Sensors either transmit their measurements
z,’s directly to the fusion center or send a quantized version of their local measure-
ments defined by the mapping rule u, =Y, (zp)k € {1, 2, ..., K}. Based on the received
information u={[u,, ..., ux], the fusion center arrives at the global decision u,="y,(u)
that favors either H, (decides u,=1) or H, (decides u,=0). The goal is to obtain the
optimal set of decision rules I'=(y,, v;, --., Yx) according to the objective function
under consideration which can be formulated according to Bayesian formulation or
NP formulation. For general network structures, the optimal solution to the distrib-
uted detection problem, i.e., the optimal decision rules (y,, ..., Yx), is NP-complete
[14-16]. Nonetheless, under the conditional independence assumption the optimum
solution becomes tractable.

Sensor Sensor | Sensor
1 2 K
ul \U2 \ ul(
[ Fusion center ]

|t

FIGURE 4.1 Parallel configuration.
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The conditional independence assumption implies that the joint density of the
observations obeys

K
PGz H) = [ [P ), for j=0.1 @43)

k=1

Consider a scenario in which the observations at the sensors are conditionally inde-
pendent as well as identically distributed. The symmetry in the problem suggests
that the decision rules at the sensors should be identical. But counterexamples have
been found in which nonidentical decision rules are optimal [16—19]. In the follow-
ing sections, the decision rules at local sensors and the fusion center are designed
according to Bayesian and NP formulations for the parallel configuration.

4.2.1 BAYESIAN FORMULATION

Let the vector of sensor decisions be denoted as u=[uj, ..., u] so that the conditional
densities under the two hypotheses are p(ulH,) and p(ulH,) respectively. The obser-
vations are generated from these conditional densities which are assumed known.
The a priori probabilities of the two hypotheses denoted by P(H,) and P(H,) are
assumed to be known. In the binary hypothesis testing problem, four possible actions
can occur. Let C; ;, i € {0, 1}, j € {0, 1} represent the cost of declaring H, true when H;

ij°

is present. The Bayes risk function is given by

1 1
R = z Z C,; ;P(H;)P(Decide H; | H; ispresent)

i=0 j=0

- z zlic,,jp(H,)L pul H))du (@.4)

i=0 j=0

where U, is the decision region corresponding to hypothesis H; which is declared true
for any observation falling in the region /.. Let ¢/ be the entire observation space so
that =4, U U, and U, N U, =Q.

If Cyp=C,,=0and Cy,=C, ,=1, we have the minimum probability of error crite-
rion, i.e., R=P,=P(u,=11H,)Py+ P(u,=01H,)P,. The probability of error is given by

P, = P(Ho)Pr + P(H,)(1-Pp) “.5)

where
P.=P(u,=11H,) denotes the probability of false alarm
P,=P(u,=11H,) denotes the probability of detection

Given the vector of local sensor decisions, u, the probability of error is expressed as

P, = P(H)P(uy =11 Hy)+ P(H )1 = P(uy =11 H,)) 4.6)
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which can be written as
P, =P(H))+P(u, =11)[P(Hy)P(ul| Hy)—P(H,)P(ul H)]
P, is minimized if
P(uy=11u)=0 when[P(Hy,)P(ulH,)—P(H)P(ulH;)]>0

@.7)
P, =11u)=1 when[P(H,)P(ulH,)—P(H,)P(ul H,)]<0

The earlier property leads to the following likelihood ratio test (LRT) at the fusion
center [1]:

K -
PulH) _11 P! H) " P(Hy)

= 4.8
PulHy) L X pGu 1 Hy) 2o P(H)) @9

The quantity on the left-hand side is known as the likelihood ratio and the quantity
on the right-hand side is the threshold. Let

ui :[uh"'auifhui-#l""’ul(]?
A') =Py =11u") = P(uy =11u")
uij:[ula"',ui*hui:j?ui-f-l"",ul(]’ ]:0’1

and C.=Py(Cy, — Cyp), Cp=(1 = Py)(Cy; — C,). Then, the LRT at each sensor has the
form

. K
p(z; 1H,)) “g‘ Zui CrA(u )I Ik:Lk#iP(uk I'Ho)
. K
PN cpa@)H][ ], P tHY
u =Lk#i

Conditional independence assumption and establishing the optimality of LRT at
local sensors does not completely solve the problem. Note that the LRT thresholds at
the sensors are coupled with each other which affect the system performance in an
interdependent manner. Almost invariably used for finding the local sensor thresh-
olds is the so called person-by-person optimization (PBPO) approach, where each
sensor’s threshold is optimized assuming fixed decision rules at all other sensors and
the fusion center [20]. Unfortunately, the PBPO algorithm does not necessarily lead
to a global optimal solution and may only lead to a local minimum of the solution
space. Multiple initializations may be needed to obtain global optimum.

fori=1,...,.K 4.9)

4.2.2 NEYMAN—PEARSON FORMULATION

The NP formulation of the distributed detection problem can be stated as fol-
lows: Let o be a prescribed bound on the global probability of false alarm such
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that P.=P(u,=11H,) < o. Then the problem is to find (optimum) local and global
decision rules that maximize the probability of detection P,,=P(u,=11H,) given
P,=Pu,=1H,) < o.

Under the conditional independence assumption, the mapping rules at the sen-
sors as well as the decision rule at the fusion center are threshold rules based on the
appropriate likelihood ratios [21,22]:

> 1, then u, = 1
PETHD I, thenu, =1 with probability ¢, 4.10)
p(z; 1 Hyp)

<t, thenuk =0

for k=1, ..., K, and

X I > Ao, decideH,orsetu, =1
H% =Xy, randomlydecide H, withprobabilitye ~ (4.11)
wer o <Mhg, decideHjorsetu, =0

If the likelihood ratio in (4.10) is a continuous random variable with no point
mass, then the randomization is unnecessary and €, can be assumed to be zero
without losing optimality. The threshold A, in (4.11) as well as the local thresholds
t,in (4.10) need to be determined so as to maximize P, for a given P, =o.. This can
still be quite difficult even though the local decision rules and the global fusion
rule are LRTs [1]. Since (4.11) is known to be a monotone fusion rule, one can
solve for the set of optimal local thresholds {#,, i=1, ..., K} for a given monotone
fusion rule and compute the corresponding P,. One can then successively
consider other possible monotone fusion rules and obtain the corresponding
detection probabilities. The final optimal solution is the one monotone fusion
rule and the corresponding local decision rules that provide the largest P,. An
iterative gradient method was proposed in [23] to find the thresholds satisfying
the preassigned false alarm probability. Finding the optimal solution in this
fashion is possible only for very small values of N. The complexity increases with
N, because (1) the number of monotone rules grows exponentially with &, and
(2) finding the optimal {z,, i=1, ..., K} for a given fusion rule is an optimization
problem involving an N — 1 dimensional search (it is one dimension less than N
because of the constraint P.= ).

4.2.3 DesigN of FusioN RuULEs

Given the local detectors, the problem is to determine the fusion rule to combine
local decisions optimally. Let us first consider the case where local detectors make
only hard decisions, i.e., u, can take only two values O or 1 corresponding to the two
hypotheses H, and H,. Then, the fusion rule is essentially a logical function with
K binary inputs and one binary output. There are 2" possible fusion rules in general
and an exhaustive search strategy is not feasible for large K.
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Let P;; and P,, denote the probabilities of false alarm and detection of sensor
k, respectively, i.e., P;,=P(u,=1H,) and P,,=P(u,=1H,). According to (4.8) and
(4.11), the optimum fusion rule is given by the LRT:

HM Y be @.12)
P(uy, |H0)u0 =0

Here, A is determined by the optimization criterion in use. The left-hand side of
(4.12) can be written as

ﬁ Pl | Hy) _ ﬁ( P(u, =11H,) j‘k (P(uk =0IH,) j“k

k=1 P(l/lk |H0) k=1 P(uk =11 Ho) P(I/lk =01 Ho)

T( e Y (1-Pa )"
=H —Lk - @.13)
k=t \ Prac | (1= Pra
Taking the logarithm of both sides of (4.12), we have the Chair—Varshney fusion
rule [24]

K

Py —-P;,;
I Erd=u)l > logA “4.14)
Z[uk 0g—— Pfk (I—u) Ogl Pfk:| 0og

k=1 up=0

This rule can also be expressed as

K
P,,(1-P o=l -P

E log—=——== ax( fk) > Z logh+ E log Lk @.15)
P p(1- Pdk) 0 1-P;

k=1 o=

Thus, the optimum fusion rule can be implemented by forming a weighted sum of
the incoming local decisions and comparing it with a threshold. The weights and
the threshold are determined by the local probabilities of detection and false alarm.
If the local decisions have the same statistics, i.e., P;;=P;, and P, ,=P,, for k # [,
the Chair—Varshney fusion rule reduces to a T-out-of-K form or a counting rule, i.e.,
the global decision u,=1 if T or more sensor decisions are one. This structure of the
fusion rule reduces the computational complexity considerably.

So far, we have assumed that the parameters characterizing a hypothesis, 0, are
fixed and known leading to the conditional independence assumption. In many situ-
ations, these parameters can take unknown values or a range of values. Such hypoth-
eses are called composite hypotheses and the corresponding detection problem is
known as composite hypothesis testing. If  is characterized as a random vector with
known probability densities under the two hypotheses, the LRT can be extended to
composite hypothesis testing in a straightforward manner:
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[ pwiaHpaniag,
2 = 4.16)
p(ul . Ho)p(ql Hy)dg =0

©p

Aua) =

If 0 is nonrandom, i.e., fixed but unknown constant, one would like to be able to
obtain uniformly most powerful (UMP) results for an optimum scheme based on an
NP test. If a UMP test does not exist, we can use the maximum likelihood estimates
of its value under the two hypotheses as the true values in an LRT, resulting in the
so-called generalized likelihood ratio test (GLRT):

=1
maneG)lp(u I q’Hl) 2 n (417)

Au) =
maxgeo, P(0 1 g, Hy) =0

Note that the optimum NP or Bayesian detectors involve an LRT as in (4.12).
Although the NP and Bayesian detectors are optimum in the sense of maximiz-
ing P, for a fixed P, and minimizing the Bayes risk, the associated LRTs require
the complete knowledge of the pdfs p(ulH,) and p(ulH;) which may not always
be available in a practical application. Also, there are many detection problems
where the exact form of the LRT is too complicated to implement. Therefore, sim-
pler and more robust suboptimal detectors are used in numerous applications [25].
For some suboptimal detectors, the detection performance can be improved by
adding an independent noise to the observations under certain conditions which
is known as stochastic resonance (SR) noise [26]. The work in [27] first discusses
the improvability of the detection performance by adding SR noise given a sub-
optimal fixed detector. If the performance can be improved, then the best noise
type is determined in order to maximize P, without increasing P,. The work in
[28] discusses variable detectors.

In this chapter, we have focused on fixed-sample-size detection problems for the
parallel architecture. Solutions for arbitrary topologies such as serial [1,29-31] and
tree have been derived and are discussed in [32-34]. In fixed-sample-size detec-
tion, the fusion center arrives at a decision after receiving the entire set of sensor
observations or decisions. Sequential detectors may choose to stop at any time and
make a final decision or continue to take additional observations [35-39]. Moreover,
in consensus-based detection [40—42], which requires no fusion center, sensors first
collect sufficient observations over a period of time. Then, subsequently they run the
consensus algorithm to fuse their local log likelihood ratios.

4.2.4 AsymptoTIC REGIME

In this section, we describe some results when the number of sensors becomes very
large, i.e., we discuss some asymptotic results. It has been shown that identical
decision rules are optimal in the asymptotic regime where the number of sensors
increases to infinity [16,43]. In other words, the identical decision rule assumption
often results in little or no loss of optimality. Therefore, identical local decision
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rules are frequently assumed in many situations, which reduces the computational
complexity considerably.

For any reasonable collection of decision rules I, the probability of error at
the fusion center goes to zero exponentially as the number of sensors K grows
unbounded. It is then adequate to compare decision rules based on their exponential
rate of convergence to zero:

LA 4.18)
K—e K

It was shown that for the binary hypothesis testing problem, use of identical local
decision rules for all the sensor nodes is asymptotically optimal in terms of the error
exponent [43]. In [44], the exact asymptotics of the minimum error probabilities
achieved by the optimal parallel fusion network and the system obtained by impos-
ing the identical decision rule constraint was investigated. It was shown analytically
that the restriction of identical decision rules leads to little or no loss of performance.
Asymptotic regimes applied to distributed detection are convenient because they
capture the dominating behaviors of large systems. This leads to valuable insights
into the problem structure and its solution.

In the asymptotic regime, it has been shown in [45] that if there exists a binary
quantization function Y, whose Chernoff information exceeds half of the informa-
tion contained in an unquantized observation, then transmitting binary decisions
from sensors to the fusion center becomes optimal. The requirement is fulfilled
by many practical applications [46] such as the problem of detecting determinis-
tic signals in Gaussian noise and the problem of detecting fluctuating signals in
Gaussian noise using a square-law detector. In these scenarios, the gain offered by
having more sensor nodes outperforms the benefits of getting detailed information
from each sensor.

4.2.5 CouUNTING RULE

Most of the results discussed so far on distributed detection are based on the assump-
tion that the local sensors’ detection performances, namely, either the local sensors’
signal to noise ratio (SNR) or their probability of detection and false alarm rate, are
known to the fusion center. For a WSN consisting of passive sensors, it might be very
difficult to estimate local sensors’ performances via experiments because sensors’
distances from the signal of interest might be unknown to the fusion center and to
the local sensors. Even if the local sensors can somehow estimate their detection per-
formances in real time, it can be still very expensive to transmit them to the fusion
center, especially for a WSN with very limited system resources. Hence, the knowl-
edge of the local sensors’ performances cannot be taken for granted and a fusion rule
that does not require local sensors’ performances is highly preferable. Without the
knowledge of local sensors’ detection performances and their positions, an approach
at the fusion center is to treat every sensor equally. An intuitive solution is to use the
total number of “1”’s as a statistic since the information about which sensor reports
a “1” is of little use to the fusion center. In [47-49], a counting-based fusion rule is
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proposed, which uses the total number of detections (“1”s) transmitted from local
sensors as the statistic,

K 1

Au) = Zuk P 4.19)

- ug —0

where T is the threshold at the fusion center, which can be decided by a prespeci-
fied probability of false alarm P,. This fusion rule is called the counting rule. It is
an attractive solution, since it is quite simple to implement, and achieves very good
detection performance in a WSN with randomly and densely deployed low-cost sen-
sor nodes.

The performance of a distributed detection system that is the probability of false
alarm and the probability of detection at the fusion center needs to be calculated
from

Py = Puy =11 Hy) = P(A(u) > 1| Hy)
4.20)

which requires the probability density function of the test statistic A(u). For the
counting rule as in (4.19), under hypothesis H,, the total number of detections

K
A= Z u; follows a binomial distribution. For a given threshold 7, the false alarm
rate can be calculated as follows:

K
K Nk
= - 4.21
P Z(k]Pfa P) @21
k=T
where P;=---=P; =P, For the sensing model in (4.2) where 0 is fixed and known,
the detection probability can be obtained from
K
K
Py = Pi(1-P)N* 4.22
2 kz ( k] 4= B) @22)

where all the sensors use identical decision thresholds. In many practical scenarios,
while computing P, decisions are not independent of each other under hypothesis
H,, since the decisions are all dependent on the target and sensors coordinates which
can also be random variables. For such cases, several approximations for computing
the distribution of A(u) under H, can be found in [47—49].

The calculation of P, and P, may become difficult since it requires the prob-
ability density function of the decision rule A(u). Deflection coefficient is a useful
performance measure when the statistical properties of the received measurements
are limited to moments up to a given order as
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(E[A|H\]-E[A | Hy])

D(A) =
Var(A | Hy)

4.23)

which requires the first two moments of the decision test statistic A.

Our previous survey [50] also summarizes the decision fusion results based on
identical decision rules at each sensor. Next, we summarize FDR-based decision
fusion which uses nonidentical decision thresholds at each sensor.

4.2.6 FaLse Discovery RATE—BASED SENSOR DEcisiION RULES

Let us consider a detection scenario where the sensors which are located within
the target’s finite radius of influence receive identical target signal and the rest of
the sensors do not receive any target signal. This “disk” target signal model may
be applied to scenarios such as oil or chemical leaks [51] or to approximate more
general electromagnetic or acoustic target models. Though this is a very simple
model, it clearly captures the scenario where the sensors in the network receive
nonidentical target signals (all sensors receive identical target signal has been the
primary assumption in the distributed detection literature). As mentioned earlier,
design of the optimum local and global decision rules for such problems is very
difficult. Earlier related work [47,49] assumes that all the sensors use an identi-
cal local threshold for an LRT to obtain a local decision. Since the probability
of detection of each sensor is unknown due to unknown target and sensor loca-
tion, the optimal Chair—Varshney fusion rule cannot be used for this problem. An
intuitive choice is to constrain the fusion center decision statistic to be linear in
the total number of local detections, i.e., employ the “count” as the statistic, and
perform a threshold test to obtain the global decision. This approach may also be
viewed as performing multiple hypotheses tests (each sensor performing a binary
hypothesis test locally)* and the fusion center using the results of these tests (i.e.,
the outcome of the local hypotheses tests) to come up with a global decision.
Therefore, the detection problem essentially reduces to obtaining the optimal set
of the two design parameters, the local and global decision thresholds. Hence,
from here on we will use the terms “decision rules” and “decision thresholds”
interchangeably in this article. Note that optimization of distributed detection
systems where the local sensor SNRs may be unknown has been investigated in
[52-54]. However, the optimization techniques in [52-54] require the knowledge
or an estimate of the local sensor SNRs. Note that, the estimation of the local
sensor SNRs is very difficult as it is a function of the sensor and target loca-
tion which is generally unknown. In [55], the authors propose a detection scheme
based on the control of FDR, which employs nonidentical local sensor decision
rules without increasing the total number of design parameters. Also, the FDR-
based detection strategy proposed in [55] does not require an estimate of the local
sensor SNRs. The FDR-based scheme is discussed in some detail in this section.

* Note that in this section, multiple hypotheses tests indicate multiple binary hypothesis tests and a
formal definition is provided in the next section. In the previous sections, we use multiple hypotheses
testing to indicate M-ary tests.
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Since FDR was first proposed in the context of multiple hypotheses problems (also
known as multiple comparison problems [MCPs]) in statistics, we next provide a
brief review of MCPs.

4.2.6.1 Review of Multiple Comparison Problems in Statistics

Multiple comparisons refer to multiple simultaneous hypothesis tests. When a fam-
ily of tests is conducted, it is often meaningful to define an error measure for the
family instead for the individual tests. One of the most common measures is the
family-wise error rate (FWER) [56], defined as the probability of committing any
type I error or false alarm. If the error rate for each test is o then the FWER o for
k tests is given by

or=PWV2D=1-(1-) 4.24)

where V is defined in Table 4.1. As can be seen from Equation 4.24 for a single
comparison, o,-=0.. When the number of comparisons increases, 0. remains constant
but o increases. This is a fundamental problem of MCPs and classical multiple
comparison procedures aim to control this error measure. A method to control
FWER, known as the Bonferroni procedure, controls the FWER in the strong sense,
i.e., under all conditions. The method is based on the Bonferroni inequality, which
says that the probability of the union of a number of events is less than or equal to
the sum of their individual probabilities:

k
P(AUA, U---UA) < ZP(Ai) 4.25)

i=1

Hence, if each individual test is performed at the probability of false alarm o* = o,-/k,
the FWER for the family of tests is maintained at 0. But this procedure is very
conservative and results in significantly reduced probability of detection (reduced
power). A radically different and more liberal approach proposed by Benjamini and
Hochberg [57] controls FDR, defined as the fraction of false rejections among those
hypotheses rejected. Table 4.1 defines some terms leading to the definition of FWER
and FDR for a binary hypothesis testing problem involving two hypotheses H, and H,.

FDR is defined as the expected ratio of the number of false alarms (declared H,
when H, is true) to the total number of detections (consisting of both true and false

TABLE 4.1
Notations to Define FDR

Declared H, Declared H, Total
H, True U Vv K,
H, True T s K-K,
Total K-R R N
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detections). The fraction of false alarms to the total number of detections can be
viewed through the random variable defined as

14 , ifV+S#0
0=4V+S 4.26)

0, ifV+S§=0

FDR (Q,) is defined to be the expectation of Q,

Q. =EQ) 4.27)

Along with this metric, Benjamini and Hochberg [57] also proposed the following
algorithm to control FDR for multiple comparisons.

4.2.6.2 Algorithm to Control FDR

Suppose py, ps, ..., px are the p-values for K tests and py, pa), ..., Py denote the
ordered p-values. The p-value for an observation s, is defined as

Pr = jfo(s)ds @.28)

where f,(s) is the probability density function of the observation under H,,.
The algorithm by Benjamini and Hochberg [57] which keeps the FDR below a
value v, is provided as follows:

1. Calculate the p-values of all the observations and arrange them in ascend-
ing order.

2. Let d be the largest k for which p, < ky/K.

3. Declare all observations corresponding to p, k=1, ..., d, as H,.

Under the assumption of independence of test statistics corresponding to the true
null hypotheses (H,), this procedure controls the FDR at 7. It has also been proved
later in [58], that this same procedure also controls the FDR when the test statistics
have positive regression dependency on each of the test statistics corresponding to
the true null hypothesis. Note that the FDR-based decision-making system looks
for the largest index k=d such that p, < dy/K. There may be other indices k=1,
where /<d for which the condition p;, < [y/K may be true, but the FDR-based
decision system looks for the largest value of k for which this is true. The reason
behind this, as discussed in [57], is to achieve the largest probability of detection
while constraining the FDR to less than or equal to y. A detailed proof for the
control of FDR by this algorithm is provided in [57]. It should also be noted that
the assumption of independence of the test statistics corresponding to the false
null hypotheses (H,) is not needed for the proof of the theorem.

As the ordering of p-values is required for the FDR control procedure described in
[57], the procedure conventionally needs centralized processing. For the distributed
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detection problem considered earlier, the sensors can only send one bit to the fusion
center and hence a distributed ordering scheme is necessary. A decentralized FDR
procedure has been proposed in [55] which requires only one-bit communication
capability for each sensor and achieves the same performance as the centralized
Benjamini—-Hochberg procedure. The maximum communication cost for the entire
network is less than or equal to K bits per detection round, where K is the total num-
ber of sensors in the network.

An important property of FDR is now presented in the following proposition [57].

Proposition 1

If all MCP hypotheses are true H,s, i.e., K,=K, control of FDR is equivalent to
the control of FWER. However, if some of the MCP hypotheses are true Hs, i.e.,
K, < K, the FDR is smaller than or equal to FWER.

As seen from Proposition 1, FDR is the expectation of a ratio and hence the con-
trol of FDR is more liberal compared to the control of FWER in general, and as
the number of true H;s increases, the local detection probability increases. Also, as
seen from the algorithm provided earlier, the control of FDR results in a data depen-
dent rejection region (decision region) unlike conventional statistical tests where the
rejection region is fixed a priori. This characteristic of FDR, as illustrated next, is
the primary motivation behind the control of FDR for distributed detection to design
local decision thresholds.

4.2.6.3 Design Guidelines for Distributed Detection Systems

Based on the earlier discussion on MCPs, if K sensors employ an identical decision
threshold equal to T (or p-value threshold of Q(t)*), the FWER is controlled at a
value of NQ(t) under all conditions. However, an FDR-based threshold selection
scheme, with FDR parameter 7, will result in control of the FWER to y when there
is no target in the RO, i.e., all MCP hypotheses are true H,s. In the presence of a
target, i.e., when some MCP hypotheses are true H,s, as seen from Proposition 1,
the FWER is greater than the FDR. Thus, when there is no target, an FDR-based
scheme may be designed to control the FWER at any arbitrary level. But the same
scheme, in the presence of a target, is more liberal (in the sense of permitting more
local detections) at the cost of higher FWER. Hence, the total number of detections
(irrespective of whether they are true or false local detections) over the sensor field,
increases significantly in the presence of a target compared to an identical threshold
scheme. Thus, the control of FDR provides better separation of the probability mass
functions (pmfs) of the “count” under the global hypothesis G, (target absent in ROI)
and the global hypothesis G, (target present in ROI) compared to a scheme that
controls the FWER. Here by “better separation” it is implied that for the FDR-based

* The Q function is the complementary distribution function of the standard Gaussian, which is defined
as Q(y) = 1/\/2nj exp(=z*/2)dz.
y
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detection scheme, it is likely that the distance (quantifiable in terms of metrics such
as the deflection coefficient) between the pmfs of the “count” under hypotheses G,
and G, will be more compared to an identical threshold approach.

As discussed earlier, the two* design parameters for the distributed detection sys-
tem are the local sensor decision threshold parameter (y for FDR-based strategy) and
the global decision threshold parameter, denoted by 7. For any observed count A €
Z (Z denotes the set of integers [0, ..., K]), the binary hypotheses testing problem at
the fusion center is given by

Gy : P(A=1i;Gy) = py(A): Targetabsent
4.29)
G,: P(A=i;G,)= p/(A): Target present

If T(A) is the decision statistic, the optimal test under the NP criterion is given by a ran-
domized decision rule which chooses the hypothesis G, with probability 6,(A), where

L, ifTA)>T
S (A)=1x, ifTA)=T 4.30)
0, if T(A)<T

where
T is the global threshold
K is the randomization parameter
T(A) is the likelihood ratio

However, for the problem considered here, the optimal NP detector is very complex.
Hence, a simplified detector is adopted in which the test statistics is linear in “count,”
i.e., T(A)=A. The threshold T and the randomization constant K are chosen such that
the system-wide probability of false alarm is controlled. The system-wide probabil-
ity of false alarm P, for this simplified detector is given by

Pey = P(A>T;Gy)+xP(A=T;Gy) .31
The system-wide probability of detection P, for this simplified detector is given by

Pp=P(A>T.G)+xP(A=T:;Gy) @.32)

For the FDR-based detector, for any arbitrary FDR parameter 7, the parameters
T and x are selected such that the system-level probability of false alarm is con-
strained. The system-level probability of false alarm for a threshold 7 and random-
ization constant K is given by [55]

K K k'Y k k'y K—k—1 K k’Y T k’Y K-T-1
o= ) 1—v>(K)(1—KJ ol (H)(KMI—KJ (4.33)

k=T+1

* Note that due to discrete global test statistics, a third design parameter is the randomization constant.
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Also, for any arbitrary FDR parameter vy, T and x, the system-wide probability of
detection is given by [55]

K
P, :ZP(A:k;GI)H(P(A:T;GI) 4.34)

T+1

where P(A=k; G,) is the probability of observing “count” k for a target present in the
ROI [55]. For large K [55], the system-wide probability of detection may be approxi-
mated by

T-Kpy

VK pa1=pa)

where p; is the average probability of detection for a sensor.

The choice of the optimum FDR parameter v, where optimality is with respect to
system-level detection performance, is a difficult problem. Receiver operating char-
acteristic (ROC)-based optimization procedures to obtain the best y or T is computa-
tionally prohibitive. A computationally less intensive approach is to obtain y or T via
optimization of the deflection coefficient. Under Gaussian assumptions, it is known
that maximizing the deflection coefficient maximizes the detection performance [59]
in terms of the ROC. Though, under non-Gaussian conditions, there is no general
result showing that larger deflection coefficient achieves better performance in terms
of ROC curves. It is, however, intuitive that increased deflection coefficient gener-
ally implies greater separation between P(A; G,) and P(A; G,) and hence is likely to
lead to better detector design. Hence, the FDR parameter 7y is set at a value such that
the deflection coefficient is maximized. A comparative detection performance for an
FDR-based scheme and an identical threshold scheme is shown in Figure 4.2. It is
observed that the FDR-based detection approach shows significant improvement in
performance over the classically used identical decision threshold approach.

Py~0 4.35)

4.2.7 CORRELATED DEcISIONS

An important result in distributed detection is that for the classical framework,
LRTs at the local sensors are optimal if observations are conditionally independent
given each hypothesis [16]. This property drastically reduces the search space for
an optimal set of local decision rules. Although the resulting problem is not neces-
sarily easy, it is amenable to analysis in many contexts. In general, it is reasonable
to assume conditional independence across sensor nodes if the uncertainty comes
mainly from device and ambient noise. However, it does not necessarily hold for
arbitrary sensor systems. For instance, when sensors lie in close proximity of one
another, we expect their observations to be strongly correlated. If the observed signal
is random in nature or the sensors are subject to common external noise, conditional
independence assumption may also fail. Without the conditional independence
assumption, the joint density of the observations, given the hypothesis, cannot be
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FIGURE 4.2 Detection performance comparison of FDR-based scheme and identical
threshold scheme.

written as the product of the marginal densities, as in (4.3). The optimal tests at the
sensors are no longer of the threshold type based solely on the likelihood ratio of
the observations at the individual sensors. In general, finding the optimal solution
to the distributed detection problem becomes intractable [14]. Distributed detection
with conditionally dependent observations is known to be a challenging problem in
decentralized inference.

One may restrict attention to the set of likelihood ratio—based tests and employ
algorithms to determine the best solution from this restricted set. The resulting
system may yield acceptable performance. This approach has been adopted in [60]
where detection of known and unknown signals in correlated noise was considered.
For the case of two sensors observing a shift-in-mean of Gaussian data, Chen and
Papamarcou [61] develop sufficient conditions for the optimality of each sensor
implementing a local LRT. Aalo and Viswanathan [62] assume local LRTs at mul-
tiple sensors and study the effect of correlated noise on the performance of a dis-
tributed detection system. The detection of a known signal in additive Gaussian and
Laplacian noise is considered. System performance deteriorates when the correlation
increases. In [63], two correlation models are considered. In one, the correlation
coefficient between any two sensors decreases geometrically as the sensor separa-
tion increases. In the other model, the correlation coefficient between any two sen-
sors is a constant. Asymptotic performance with Gaussian noise when the number of
sensors goes to infinity is examined. In [64], Blum et al. study distributed detection
of known signals in correlated non-Gaussian noise, where the noise is restricted to
be circularly symmetric. Lin and Blum examine two-sensor distributed detection
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of known signals in correlated f-distributed noise in [65]. Simulation results show
that in some specific cases the optimum local decision rules are better than LRTs.
A distributed M-ary hypothesis testing problem when observations are correlated is
examined from a numerical perspective in [66]. Willett et al. study the two detector
case with dependent Gaussian observations, the simplest meaningful problem one
can consider, in [67]. They discover that the nature of the local decision rules can
be quite complicated. The recent work presented in [68] proposes a new framework
for distributed detection under conditionally dependent observations which builds
a hierarchical conditional independence model. Through the introduction of a hid-
den variable that induces conditional independence among the sensor observations,
the proposed model unifies distributed detection with dependent or independent
observations.

Constraining the local sensor decision rules to be suboptimal binary quantiz-
ers for the dependent observations problem, improvement in the global detection
performance can still be attained by taking into account the correlation of local
decisions while designing the fusion rule. Towards this end, design of fusion rules
using correlated decisions has been proposed in [69,70]. In [69], Drakopoulos and
Lee have developed an optimum fusion rule based on the NP criterion for correlated
decisions assuming that the correlation coefficients between the sensor decisions
are known and local sensor thresholds generating the correlated decisions are given.
Using a special correlation structure, they studied the performance of the detection
system versus the degree of correlation and showed how the performance advantage
obtained by using a large number of sensors degrades as the degree of correlation
between local decisions increases. In [70], the authors employed the Bahadur—
Lazarsfeld series expansion of probability density functions to derive the optimum
fusion rule for correlated local decisions. By using the Bahadur—Lazarsfeld expan-
sion of probability density functions, the pdf of local correlated binary decisions can
be represented by the pdf of independent random variables multiplied by a correla-
tion factor. In many practical situations, conditional correlation coefficients beyond
a certain order can be assumed to be zero. Thus, computation of the optimal fusion
rule becomes less burdensome. When all the conditional correlation coefficients are
zero, the optimal fusion rule reduces to the Chair—Varshney rule. Here, the imple-
mentation of the fusion rule was carried out assuming that the joint density of sen-
sor observations is multivariate Gaussian, which takes into consideration the linear
dependence of sensor observations by using the Pearson-correlation coefficient in
the covariance matrix. An implicit assumption is that individual sensor observations
are also Gaussian distributed.

In many applications, the dependence can get manifested in many different
nonlinear ways. As a result, more general descriptors of correlation than the Pearson
correlation coefficient, which only characterizes linear dependence, may be required
[71]. Moreover, the marginal distributions of sensor observations characterizing their
univariate statistics may also not be identical. Here, emphasis should be laid on the
fact that multivariate density (or mass) functions do not necessarily exist for arbitrary
marginal density (or mass) functions. In other words, given arbitrary marginal
distributions, their joint distribution function cannot be written in a straightforward
manner.
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An interesting approach for the fusion of correlated decisions, that does not
necessarily require prior information about the joint statistics of the sensor
observations or decisions, is described next. Its novelty lies in the usage of
copula theory [72]. The application of copula theory is widespread in the fields of
econometrics and finance. However, its use for signal processing applications has
been quite limited. The authors in [73,74] employ copula theory for signal detection
problems involving correlated observations as well as for heterogeneous sensors
observing a common scene. For the fusion of correlated decisions, copula theory
does not require prior information about the joint statistics of the sensor observations
or decisions and constructs the joint statistics based on a copula selection procedure.
Note that the copula function—based fusion will fail to perform better than the Chair—
Varshney rule if the constructed joint distribution using a particular parametric
copula function does not adequately model the underlying joint distribution of the
sensor observations. Therefore, training is necessary in order to select the best
copula function. The topic of copula function selection for the distributed detection
problem is considered in [75].

4.3 DISTRIBUTED DETECTION OVER NONIDEAL
COMMUNICATION CHANNELS

For systems employing high SNR and/or effective channel error correction coding,
communication may have extremely low error rates and can be assumed lossless,
meaning that the local decisions can be transmitted to the fusion center without
errors. On the other hand, the lossless communication assumption should be sub-
ject to careful scrutiny in WSNs. Increasing power and/or employing powerful error
correction codes may not always be possible because of the stringent resources of
WSNs. Furthermore, in a hostile environment, the power of transmitted signal should
be kept to a minimum to attain a low probability of intercept/detection (LPI/LPD).
Therefore, it may be necessary in many situations to tolerate the loss during data
transmission to some extent. To overcome this loss, it is highly desirable to integrate
the communication and decision fusion functions intelligently to achieve an accept-
able system performance without spending extra system resources. This motivates
the study of fusion of local decisions corrupted during the transmission process due
to channel fading/noise impairment.

The model for a distributed detection system in the presence of fading channels is
illustrated in Figure 4.3. Decisions at local sensors, denoted by u, for k=1, ..., K, are
transmitted over parallel channels that are assumed to undergo independent fading. In
this section, we consider a discrete-time Rayleigh flat fading channel with a stationary
and ergodic complex gain of e’* between the kth sensor and the fusion center. Note
that /2, and ¢, denote the fading envelope and the phase of the channel, respectively.
It is assumed that the channel gain remains constant during the transmission of a
decision and channels are independent of each other. We further simplify the analysis
by assuming binary signaling and replace u, € {0, 1} by s, € {1, 1}, so that the
effect of the fading channel reduces to a real scalar multiplication for phase coherent
reception. The phase coherent reception can be either accomplished through limited
training for stationary channels, or, at a small cost of SNR degradation, by employing
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FIGURE 4.3 Parallel fusion model in the presence of fading and noisy channels between
local sensors and the fusion center. i, is the binary decision made by the kth sensor, /4, is the
fading channel gain, n, is a zero-mean Gaussian random variable with variance 62, and y, is
the observation received by the fusion center from the kth sensor, where k € {1, ..., K}.

differential encoding for fast fading channels which results in the same signal model.
The received signal model for sensor k is illustrated as

Vi = e s+ vy 4.36)

where Vv, is a zero-mean complex Gaussian noise with independent real and imagi-
nary parts having identical variance ol ie., CN(0,262). Note that the notation CN
represents complex Gaussian distribution. Without loss of generality, we make the
assumption of Rayleigh fading channels with unit power, i.e., ie’* ~ CN(0,1), there-
fore E[h;]= 1. Using the knowledge of the channel phase at the receiver, the observa-
tion model at the fusion center for the kth sensor can be obtained as

Vi = hysg 4.37)

Since v, follows a circularly symmetric complex Gaussian distribution, the noise
term n, = Re{v,e'*} is real WGN with variance o3, i.e., n, ~ N(0,6%).

Optimal Likelihood Ratio—Based Fusion Rule: By assuming instantaneous chan-
nel state knowledge regarding the fading channel and the local sensor performance
indices, i.e., the P,, and Py, values, the optimal likelihood ratio (LR)-based fusion
rule has been derived in [76], with the fusion statistic (LR) given by
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p(y I Hp)
Py eXP(_(yk -y’ /20, ) +(1 —Pd,k)eXP(_()’k + hk)Z/ZGi)

K
-V iog (4.38)
2 Py rexp(—(ye =)’ /20, )+ (1= Py ) exp(~(yi + 1) 1207

k=1

where y=[y,, ..., yl7 is a vector containing data received from all the K sensors.
Note that, this fusion rule requires both local sensor performance indices and instan-
taneous CSI. Given exact channel state information and under conditional indepen-
dence assumption under both hypotheses, the distribution of the optimal LR-based
fusion statistic is given in [77]. Several suboptimum fusion rules that relax the
requirements on a priori knowledge have also been proposed in [76].

Chair-Varshney Fusion Rule: In [76], the Chair—Varshney fusion statistic [24]
has been shown to be a high-SNR approximation to (4.38)

Pdk 1_lek
A= log ~k 4 log - ¢ (4.39)
! 2 Py Z 1-P;,

sign (y) =1 sign (yr)=—1

where A, does not require any knowledge regarding the channel gain but does require
P, and Py for all k. The probability distribution of the Chair-Varshney statistic,
which is very helpful for performance analysis, has also been shown in [78]. This
approach may suffer significant performance loss at low to moderate channel SNR.

Maximum Ratio Combining (MRC) Fusion Rule: It has been shown in [76] that
for small values of channel SNR, A in (4.38) reduces to

K

/A\z = z(Pd,k - Pf,k)hkyk (4.40)

k=1

Further, if the local sensors are identical, i.e., P, =P, and P, =P, for all ks, then A
further reduces to a form analogous to an MRC statistic:

K
1
A, = - z Iy @.41)
k=1

A, in (4.41) does not require the knowledge of P, and P, provided P, — P;>0.
Knowledge of the channel gain is, however, required.

Equal Gain Combining (EGC) Fusion Rule: Motivated by the fact that A, resem-
bles an MRC statistic for diversity combining, a third alternative in the form of an
EGC has been proposed, which requires minimum amount of information:

1
Ay=— Z 0 4.42)
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Interestingly enough, A, outperforms both A, and A, for a wide range of SNR in
terms of its detection performance [76].

4.3.1 DisTRIBUTED DETECTION WITH PARTIAL CHANNEL STATE INFORMATION

The optimal LR-based fusion rule presented in Equation 4.38 requires instantaneous
CSI, i.e., b, and ¢, for all the sensors in the WSN. However, for a WSN with very
limited resources (energy and bandwidth), it is prohibitive to spend resources on
estimating the channel gain every time a local sensor sends its decision to the fusion
center. Thus, it is imperative to avoid channel estimation and conserve resources at
the possible cost of relatively small performance degradation. This is the reasoning
behind the exploration of new fusion rules that do not require instantaneous channel
gains, h,. In many WSN scenarios, the statistics of the fading (random) channel
and the additive Gaussian noise can be estimated in advance, and used as prior
information. It is the goal to develop a new LR-based fusion rule with only the prior
information regarding the channel statistics instead of the instantaneous CSI.
Under hypothesis H;, we have

PO TH ) = D [pGa L H)p(y 152)]

= P =1|Hj)P(yk I'sp =1)+ P(uy =O|Hj)l7()7k l's, ==1)

and
PO 1s0) = jp O Uneos) f () “4.43)
0

By assuming a Rayleigh fading channel with unit power (i.e., E[h}]=1), the pdf
of h, is

p(h) =2me™, B >0 (4.44)
and
1 — s’
PO N ys6) = N exp(—(y" 26’;“”‘) J 4.45)

Then, the log LR based on the knowledge of channel statistics and local detection
performance indices is expressed as [78]

f(y'Hy)
Ay =log| L)
: Og|:f(y|Ho):|

K _ (aye)* 12
— Zlog 1+[Pd,k Q(ayk)]\/ﬁayke o (446)
e 1+[ Py — Q(ay )N 2maye ™
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FIGURE 4.4 ROC curves for various fusion statistics for the Rayleigh fading channel with
average channel SNR=4dB. There are k=8 sensors with P,,=0.6 and P, =0.05.

where a = 1/(0,,\/1 +202 ) As shown in Figure 4.4, the optimal LR-based fusion rule

provides the best detection performance, however it requires instantaneous gain of
the channel. On the other hand, its performance can be approached closely by the
LRT fusion rule with partial channel knowledge (LRT-CS). The performance of the
LRT-CS fusion rule is slightly worse than the optimal LR-based fusion rule with
instantaneous channel gains and is better than the three suboptimal schemes.

4.3.2 DistriBUTED DETECTION WITH NO CHANNEL STATE INFORMATION

Acquiring phase information of transmission channels can be costly as it typically
requires training overhead. This overhead may be substantial for time-selective fad-
ing channels when mobile sensors are involved or the fusion center is constantly mov-
ing. Thus, incoherent-detection-based decision fusion rule has been introduced in Ref.
[79]. In the incoherent case, the fusion statistics are based on the received envelope,
or equivalently, the received power from each sensor. Denoting r,=ly,[%, given the
channel state information #,, the signal power for the kth channel output is given by

2
n 26}1

1 hk h]f+rk
il =1)=——= 1| —+/n lexp| —
P Loty =1) 26, 0(02 k) p( 20,

1 7
P N e, =0) = — exp(—k )
20
@.47)

n n
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where /,(.) is the zeroth-order modified Bessel function of the first kind. Given p(h,)
as in Equation 4.44,

20, 20,

P Lu, =0) zlexp( i )
4.48)

1 17
lu, =1)= -
Pt =D = g eXp( 1+202 J
Then the LLR (log-likelihood ratio) can be given as

A =1 p(rlHo]
® Og{pmHo)

i | Pasr+ 262))exp(—n/(1+267) )+ (1= Py, )(1126} ) exp(—n./257 )
= (0]
®| P11+ 262 ) exp (- /(1+262))+ (1= Py (11202 exp(-n /267

k=1

4.49)

For the case of known fading statistics, Ricean and Nakagami fading channels have
also been considered in [79]. In this section, we have investigated channel aware
decision fusion algorithms with different degrees of channel state information for
single-hop networks [76—79]. Extensions to multi-hop WSNs can be found in [80,81],
while channel-optimized local quantizer design methods are provided in [82—84]. To
counter sensor or channel failures, robust binary quantizer design has been proposed
in [85]. Channel aware distributed detection has also been studied in the context of
cooperative relay networks [86,87].

4.4 CONCLUSIONS

In this section, we summarize and further discuss distributed detection and decision
fusion for a multi-sensor system. In a conventional distributed detection framework,
it is assumed that local sensors’ performance indices are known and communication
channels between the sensors and fusion center are perfect. Under these assump-
tions, the design for optimal decision fusion rule at the fusion center and the optimal
local decision rules at sensors was discussed under Bayesian and NP criteria. For a
WSN consisting of passive sensors, it might be very difficult to estimate local sen-
sors’ performance indices and it can be very expensive to transmit them to the fusion
center. Counting rule is an intuitive solution which uses the total number of “1”’s
as a decision statistic since the information about which sensor reports a “1” is of
little use to the fusion center. Recent research shows that FDR-based decision fusion
with nonidentical thresholds can substantially improve the detection performance as
compared to counting rule with identical thresholds.
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In a WSN setting with severe constraints on energy, bandwidth, and delay, trans-
mitting sensor decisions to the fusion center over error free channels may become
unrealistic since error free transmission may require high transmission power and/
or powerful error correction codes. Therefore, channel impairments should be taken
into account in the design of distributed detection systems. Channel aware decision
fusion algorithms where each has different degrees of channel state information have
been reviewed.

For distributed detection in WSNSs, in [55], it has been assumed that the commu-
nication channels between the sensors and the fusion center are perfect. It will be
interesting to study the effect of imperfect communication channels on the detection
performance of the proposed FDR-based framework. Also, the FDR framework has
been proposed for the detection of a single target in the ROI. Extension of the FDR
framework to detection of multiple targets in the ROl is an interesting and challeng-
ing research problem. It is also assumed that every sensor has identical noise power.
Extension of the proposed framework to include the scenario of nonidentical noise
power at each sensor is an interesting research problem.

Dense deployment of sensors in the WSN introduces redundancy in coverage, so
selecting a subset of sensors may still provide information with the desired quality.
Adaptive sensor management policies can be applied in distributed detection which
select a subset of active sensors or distribute the available resources among the infor-
mative sensors while meeting the application requirements in terms of quality of
service [36].

In this chapter, we have focused on parallel decision fusion architecture where
sensors transmit their observations directly to the fusion center. For serial decision
fusion, the information processing dealing with distributed data in the context of
accurate signal detection and energy-efficient routing is currently emerging as a
fruitful research area [88,89].
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5.1 INTRODUCTION

Many applications such as target tracking, robotics, and manufacturing have increas-
ingly used multiple sensor or data sources to provide information. Multiple sensors
provide better coverage than a single sensor, either over a larger geographical area
or broader spectrum. By generating more measurements, they can improve detection
and false alarm performance. Improved accuracy (location, classification) can also
result from viewing or phenomenological diversity provided by multiple sensors. For
example, similar sensors that are not co-located can provide more accurate mea-
surements on target location by exploiting different viewing angles, while dissimilar
sensors such as radar and optical can observe different features for better object
recognition.

The measurements from multiple sensors can be processed or fused at a central
site or multiple sites. The centralized fusion architecture requires communicating all
the measurements to a single site and is theoretically optimal because the informa-
tion in the measurements is not degraded by any intermediate processing. When
the sensors are geographically distributed, it may make sense to also distribute the
processing, with each processing site responsible for the measurements from one
or more sensors. These sites can communicate their results to other fusion sites for
further processing. The distributed fusion architecture has many advantages such as
lower bandwidth by communicating processing results rather than measurements,
availability of processing results for local functions such as sensor management, dis-
tribution of the processing load to multiple sites, and less vulnerability because there
is no single point of failure. Furthermore, a properly designed distributed fusion sys-
tem can provide modularity and scalability for rapid incorporation of more sensors.

Because of these advantages, there are many examples of distributed fusion sys-
tems including net-centric military systems, robotics teams, and wireless sensor net-
works, where centralized processing is not practical. However, many technical issues
need to be addressed for distributed fusion systems to achieve high performance.
The first issue is selecting the appropriate fusion architecture that connects sensors
with the processors or agents at the fusion sites and how the data are shared with
other sites in the network. The fusion architecture also specifies the information flow
between the agents. The second issue is how the data should be processed by each
agent to provide the best performance. For example, a fusion agent has to recognize
when common information occurs in any received data to avoid double counting
when fusing the data.
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This chapter presents the fundamental concepts for distributed data fusion. In
particular, we focus on the estimation problem where the goal of fusion is to compute
an estimate of the state from measurements collected by multiple sensors. The state
may be continuous and time varying such as the position and velocity of a vehicle
in object tracking. It may also be discrete and static such as the class of an object in
object classification. We focus on estimation to exclude discussions on data associa-
tion issues that are important in object tracking. These issues will be discussed in
Chapter 6.

The rest of this chapter is structured as follows. Section 5.2 discusses distrib-
uted fusion architectures, their advantages and disadvantages, the use of information
graph to represent information flow, and selection of an appropriate architecture.
Section 5.3 presents the Bayesian fusion equation for combining two probability
functions, or their means and covariances. Section 5.4 shows how the information
graph can be used to keep track of information flow in a distributed estimation system
and how it can be used to derive fusion equations for various fusion architectures.
Section 5.5 discusses some suboptimal but practical approaches that are based on
approximations of the optimal approach. Section 5.6 presents algorithms for fusing
estimates characterized by means and covariances. Section 5.7 discusses distributed
fusion for object tracking when the state is continuous and time-varying. Section 5.8
discusses distributed fusion for object classification when the state is a discrete and
static random variable. Section 5.9 provides a summary, and Section 5.10 contains
some bibliographic notes.

Much has been published on distributed estimation over the last three decades
with summaries provided in Chong et al. (1990) and Liggins and Chang (2009). Our
discussion focuses on algorithms that are non-iterative, i.e., we will not address the
consensus problem (Teneketzis and Varaiya 1988, Olfati-Saber 2005). We also view
decentralized estimation (Durrant-Whyte et al. 1990) as a special case of distributed
estimation. Furthermore, we sometimes use fusion and estimation to mean the same
thing, and consider conditional probability (density) as a form of estimate.

5.2 DISTRIBUTED ESTIMATION ARCHITECTURES

The basic components of a distributed estimation system are sensors, processors
(estimation or fusion agents), and users. Sensors generate measurements or data on
the objects of interest. The measurements contain information on the object state
such as position, velocity, or class. Estimation or fusion agents process sensor data or
results received from other fusion agents to generate better estimates. Users are the
consumers of the fusion results. A user can be the controller in a robotic system or
a commander in a surveillance system. In a distributed fusion or estimation system,
there are multiple sensors, processors, and users. These components are usually dis-
tributed geographically and connected together by a communication network.

The fusion architecture (Chong 1998) consists of three components. At the sys-
tem level, the communication graph represents network connectivity between the
components. When sensors collect measurements and processors fuse estimates at
multiple times, the information graph represents the detailed information flow from
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the sensors to the processors. Finally, the information content communicated also
has to be specified.

5.2.1 FusioN ARCHITECTURE GRAPH

The fusion architecture graph represents the connectivity of the fusion system as
determined by the communication network. The nodes of the graph represent the
sensors and processors, and the directed edges are the communication paths between
the components. There are two main types of system architectures based on the
number of communication paths from a particular sensor to the processor.

5.2.1.1 Singly Connected Fusion Architectures

In a singly connected fusion architecture, there is a single path between any
sensor—processor pair. Figure 5.1 shows four examples of singly connected fusion
architectures—centralized, decoupled, replicated centralized, and hierarchical
without feedback.

In the centralized architecture, measurements from all sensors are sent to a single
fusion site or agent to be processed. Theoretically this architecture produces the best
performance since there is no information loss. However, centralization implies high
communication load over the network, high processing load at the fusion site, and
low survivability due to a single point of failure. The decoupled architecture parti-
tions the sensors into multiple sets with a fusion site responsible for each set. This
architecture is appropriate when there is a natural partitioning of the sensors so that
the sensors in the same set can help each other but those outside the set provide little
additional information. This architecture has the lowest computation and commu-
nication requirements. However, the performance can be poor if the sensors cannot
be partitioned easily. In the replicated centralized architecture, multiple fusion sites
process data from overlapping sets of sensors. There is no communication among
the fusion sites. This architecture has high performance and reliability due to the

Replicated centralized Hierarchical without feedback

FIGURE 5.1  Singly connected fusion architectures.
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multiple sites processing the same data. However, it also has high communication
and processing costs.

These three architectures do not allow communication among the fusion sites.
Thus there is a single information path from a sensor to a fusion site. This allows
the use of simple fusion algorithms since the double counting or rumor propagation
problem does not exist. These architectures are useful since they serve as bench-
marks for comparing the performance of other distributed fusion architectures.

In the hierarchical (without feedback) architecture, the fusion sites are arranged
in a hierarchy with the low-level fusion sites processing sensor data to form local
estimates. These estimates are sent to a high-level fusion site to be combined. In
order to realize the benefit of reduced communication, the communication rate from
the low-level site to the high level should be lower than the sensor observation rate.
As compared to the centralized architecture, the hierarchical architecture has the
advantage of lower communication, lower processing cost when the low-level site
processes data from a smaller set of sensors, and increased reliability. However,
multiple information paths can occur if the sensors and fusion sites collect measure-
ments and process at multiple times.

5.2.1.2 Multiply Connected Fusion Architectures

In a multiply connected fusion architecture, there are multiple communication paths
between a pair of sensor and processor. Figure 5.2 shows four examples of multiply
connected fusion architectures—hierarchical with sensor sharing, hierarchical with
feedback, peer-to-peer, and broadcast.

In the hierarchical with sensor sharing architecture, the measurements from one
sensor are processed by multiple fusion sites. This makes sense when that sensor is par-
ticularly powerful. However, high-level fusion is difficult because the common infor-
mation from that sensor cannot be removed easily. In the hierarchical with feedback

Peer-to-peerwith neighbors Broadcast

FIGURE 5.2 Multiply connected fusion architectures.
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architecture, the accuracy of the local estimates can be enhanced by feeding back
high-level estimates (which include information from more sensors) to the low level
where the data are to be combined. In this feedback architecture, information flows
in both directions, from low level to high level and also from high level to low level.

In the peer-to-peer architecture, a fusion agent has two-way communication with
another fusion agent (with only neighbors in a decentralized architecture). In the
broadcast architecture, a fusion agent broadcasts its results to multiple fusion agents,
who can also broadcast their own results. These two are examples of fully distributed
architectures where the communication is dynamic and not specified a priori. For
example, a fusion site may send its results to another fusion site depending on the
results or in response to a request for information from another site. Such architec-
tures can adapt dynamically to the current situation. In general, multiply connected
fusion architectures are more robust against failures, but algorithms are more dif-
ficult to develop because of the multiple information paths.

5.2.2 INFORMATION GRAPH

The fusion architecture graph characterizes information paths at a high level. It does
not describe how each measurement or fusion result flows through the system, and
particularly it does not portray the effects of time between updates or communica-
tions due to repeated sensor observations and fusion processing. In particular, the
architectures in Figures 5.1 and 5.2 do not represent the relationship between the esti-
mates and the sensor data at different times, which is needed in order to identify the
common information to avoid double counting or data incest. The information graph
(Chong et al. 1982, 1983, 1985, 1986, 1987, Chong and Mori 2004) represents the
detailed information flow and transactions in a fusion architecture specified by com-
munication paths. It also supports the development of optimal and suboptimal fusion
algorithms. A similar graph model can be found in McLaughlin et al. (2004, 2005).

The nodes in the information graph represent information events. The observa-
tion node represents the observation event of a sensor at a specific time; the fusion
node represents a fusion event at a fusion site at a specific time. There are two main
types of fusion events: fusion of sensor observation with the local fusion result, and
fusion of the processing results from other sites with the local results.

The directed edges or links represent the communication between information
nodes. Note that the observation node is a leaf node with no predecessors and its
successor nodes are always fusion nodes. The predecessor node of a fusion node may
be an observation node or another fusion node. A fusion node may have other fusion
nodes as successors or no successor nodes.

The edges in the graph can be used to trace the information available to a node. A
directed path from Node A to Node B means that Node B has access to the informa-
tion at Node A, and in general each node has access to the information of its prede-
cessor nodes. The specific information available depends on what is communicated.
Sensor data are transmitted from an observation node to a fusion node but usually
estimates are communicated between fusion nodes. If the estimate is the sufficient
statistics, then the maximum information at a node consists of the sensor data based
on all its ancestor observation nodes.
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A main problem in distributed fusion is identifying the common information
shared by two estimates that need to be fused. The information graph provides a
useful tool to discover the source of this common information. If two fusion nodes
have common ancestors, then the estimates at these nodes contain the information
of the common ancestors. If two fusion nodes have no common predecessor, there is
no sharing of information except for the prior. The following are some examples of
information graphs.

5.2.2.1 Singly Connected Information Graphs for Singly

Connected Fusion Architectures
Figure 5.3 shows the information graphs for the centralized, replicated centralized,
and decoupled fusion architectures of Figure 5.1. Note that time is now represented
explicitly. These information paths are singly connected because there is only one
information path from each observation node to a fusion node.

5.2.2.2 Multiply Connection Information Graphs for Hierarchical Fusion

Figure 5.4 shows the information graph for hierarchical fusion without feedback
architecture. Even though the fusion architecture graph is singly connected when
there is no feedback from the high-level site, the information graph (on the left)
is multiply connected due to repeated communication and fusion. For example,
both fusion nodes H and L have the predecessor node L, that is, the information
at L is included in the information at H and L. Thus fusion of H and L have to
make sure that the common information of L is not double counted. This multiply
connected information graph can be transformed into a singly connected graph by
modifying the processing and communication strategies. One approach is to have
the local fusion site send only new information since the last time it communicated
with the high-level fusion site. This is equivalent to deleting the edge at the local site
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FIGURE 5.3 Singly connected information graph for singly connected fusion architectures.
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FIGURE 5.4 Information graph for hierarchical fusion without feedback.

after each communication (local restart and sending new information in Figure 5.4).
Effectively, the local fusion site has a separate estimator whose output is communi-
cated. The other approach of getting a singly connected graph is not to allow memory
at the high-level fusion site. Then the fusion nodes will only have observation nodes
from each sensor (global restart and no memory in Figure 5.4).

Figure 5.5 shows the information graph for hierarchical fusion with feedback. As
in hierarchical fusion without feedback, the multiply-connected information graph
for high level fusion can be converted to a singly connected network if the local

] [ 2] (=] )
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Multiply connected information graph
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Information graph for high level fusion

FIGURE 5.5 Information graph for hierarchical fusion with feedback.
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fusion site sends fusion results that do not rely on feedback or the sensor obser-
vations before the last communication. Effectively, the local site keeps two sets of
books—an optimal estimate for local use based on all sensor observations and an
estimate for communication based only on new local observations received since
the last communication. Similarly, the low-level fusion site can obtain a singly con-
nected fusion graph by deleting the appropriate edges.

Figure 5.6 shows the information graph for hierarchical fusion with a common
sensor. In this case, the information graph is inherently multiply connected and it is
difficult to convert it into a singly connected information graph.

5.2.2.3 Information Graph for Distributed Architectures

The information graphs for general distributed architectures are usually multiply
connected because of the possible communication paths. However, it is sometimes
possible to convert them to singly connected information graphs by designing the
appropriate information exchange. Figure 5.7 shows how the information graphs
for peer-to-peer and broadcast fusion architectures can be made singly connected if
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FIGURE 5.7 Peer-to-peer and broadcast architectures.
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each local fusion site only communicates the new information received since the last
communication. The dotted lines are information paths that are only maintained for
generating the local estimates but not for communication.

The information graph can become complicated if the fusion sites only commu-
nicate their fusion results. Figure 5.8 shows a cyclic fusion architecture where site 1
sends its local fusion result to site 3, site 3 to site 2, and site 2 to site 1. It is difficult
to identity new information because of the loopy communication in this architecture.
From the information graph, the most recent common predecessors of B and C are
D and E. The common predecessors of D and E are the nodes F and G, which have
the same information as H.

LLE&;

2] [g] [=] [ [=] [¢]

FIGURE 5.8 Information graph for cyclic architecture.

5.2.3 INFORMATION COMMUNICATED AND COMMON PRIOR KNOWLEDGE

Defining the distributed fusion architecture also requires specifying the type of
data communicated. The data can be the sensor measurements collected by the site
or processing results, which can be estimates or probabilities of the state. Choosing
what to communicate is a tradeoff between bandwidth and amount of information.
Communicating measurements require the most bandwidth but provide the most infor-
mation. Processing is easy for the fusion site receiving the measurements because the
measurement errors are generally independent. Effectively, each fusion site performs
centralized fusion of measurements and the information graph is singly connected.
When processing results such as estimates or probabilities are communicated,
additional information is frequently needed for optimal fusion by the receiver. For
example, network topology or information pedigree is needed to construct the infor-
mation graph to identify the common information. Optimal fusion may also require
knowing other estimates. When such information or sufficient statistics is not avail-
able, fusion can only be suboptimal. For example, optimal fusion for tracking objects
with nonzero process noise requires knowledge of state estimates at multiple previous
times. The fusion will be suboptimal when the state is only known at the current time.

5.2.4  SELECTING APPROPRIATE ARCHITECTURES

The fusion architecture has a significant impact on the development and perfor-
mance of the distributed fusion system. A fusion architecture can be evaluated by the
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amount of information generated, communication bandwidth, algorithm complex-
ity, and robustness. The following are some general guidelines for selecting fusion
architectures:

e Use all sensor data for optimal performance. A fusion site should have
access to as much sensor data as possible and a fusion node in the informa-
tion graph should include information on all observation nodes (ancestors)
that can be communicated to the fusion node.

e Compress sensor data for efficient communication. Less communication
bandwidth is needed if the information in multiple observation nodes can
be captured by a single intermediate fusion node. However, compression
may result in information loss and introduce multiply connected informa-
tion paths.

¢ Find architectures with singly connected information paths. Then the infor-
mation to be fused will not contain common information and the fusion
algorithm will be relatively simple.

e Use redundant paths for robustness/survivability. Each observation node
should have multiple paths to reach a fusion node. However, redundancy
may result in more processing/communication cost and/or more complicated
fusion algorithms.

5.3 BAYESIAN DISTRIBUTED FUSION ALGORITHM

The goal of distributed estimation is to generate an “optimal” estimate for each fusion
site given the information available to the fusion site. We assume that local estimates
(or probabilities) and not measurements are communicated to the fusion site. The
advantage is local use of estimates and lower bandwidth due to data compression.

When measurements are communicated, as in centralized fusion, the fusion algo-
rithm can exploit the independent measurement errors or the conditional indepen-
dence of the measurements given the state or variable to be estimated. When only
local estimates are shared across the network, this conditional independence may
be lost due to common information resulting from prior communication. In some
cases, the “state” may not be large enough due to internal variables not included in
the estimates. These are issues that have to be addressed in developing distributed
fusion algorithms.

The following sections will develop the optimal Bayesian distributed fusion
algorithm for a general object state. For object tracking, this state is a temporal
sequence of states (e.g., position, velocity) at each time, and the observation is a
temporal sequences) of measurements, e.g., range, angle for a radar. For object
classification, the state is the object class and attributes such as object size and the
observations are observed features such as measured length.

5.3.1 BAYESIAN DISTRIBUTED ESTIMATION PROBLEM AND SOLUTION

Let x be the state to be estimated. The state may be a continuous random variable
such as the position and velocity of an object or a discrete random variable such as
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the class of an object. Let p(x) be the prior probability density function for a continu-
ous variable or the probability distribution for a discrete variable.

Suppose the measurement sets at two fusion nodes (as in the information graph),
node 1 and node 2, are

Z, ={z1,212,2135- -} 5.1)

Zy ={231,222,%23>---}

These measurements may come from multiple sensors at different times or the same
time. Assume the measurements are conditionally independent given x, i.e.,

p(Z1j7""Zmr17"' l .X) = p(Zij |x)"'p(zmn |.X) (52)

This assumption is valid if the measurement errors are independent across sensors
and over time.

The fusion nodes compute the local posterior conditional probabilities p(x1Z,)
and p(x|Z,). The goal of distributed estimation is to compute the posterior condi-
tional probability p(x|Z, U Z,) given all the measurements Z, U Z,.

The fused information set Z, U Z, is the union of each node’s private information
and the common information (Figure 5.9), i.e.,

21UZZ =(Z1\Zz)U(Z2\Z1)U(ZlmZZ) (53)

where \ denotes set difference. Then, the assumption (5.2) of conditional indepen-
dence of the measurements given the state implies that

P(ZyVZy | x) = p(Z\NZy | X)p(Z\NZy | X)p(Z, N2, | x)

— P(Z] l x)P(Zz l -x) (54)
p(Zl M Z2 [ x)
z Z,

FIGURE 5.9 Decomposition into private and common information.
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Bayes rule leads to the Bayesian distributed fusion equation

p(Z 1 x)p(Z, | x) p(x)

S VAT VA
=C71 p(X|Zl)p(-X|ZZ) (55)
p(x1Z,NZ,)

where the normalizing constant is given by

C= pPZiNZy)p(Z, VZ,)

(5.6)
p(Z)p(Z,)

This Bayesian distributed fusion equation states that the fused posterior probabil-

ity p(x1Z, U Z,) is the product of the local probabilities p(x|Z,) and p(x|Z,), divided

by the common probability p(x|Z, N Z,), which is included in each of the local

probabilities.

The Bayesian fusion equation can be used to derive optimal fusion equations
for the state of interest as long as the measurements are conditionally independent
given the state. The key is identifying the common information that has to be
removed to avoid double counting. This common information is usually a prior
probability or estimate or the information shared during the last communication.
Thus, fusion requires knowing the common probability p(x1Z, N Z,) in addition to
pxl1Z)) and p(x1Z,).

5.3.2 BAYEsIAN DisTRIBUTED FusION FOR GAUSSIAN RANDOM VECTORS

Suppose the state x is a Gaussian random vector with known mean and covariance,
and the measurements are also Gaussian with zero mean errors and known cova-
riance. Then the local estimates are Gaussian random vectors with means X; and
covariances P;. The fused estimate is also Gaussian with mean £, ,, and covariance
P\, Then the fusion equation (5.5) becomes

_1 ~ _ _l ~ _l ~ _1 A
Poaxioo =P X+ P X, — P X (5.7

Psz =P'+P'-P, (5.8

where %, and P, are the mean and covariance of the state estimate given the com-
mon information.

Equations 5.7 and 5.8 are the information matrix form of the fusion equations
because the inverse of the covariance matrix is the information matrix. Equation 5.8
states that the information matrix of the fused estimate is the sum of the informa-
tion matrices of the local estimates minus the information matrix of the common
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estimate. Equation 5.7 states that the information of the fused estimate is the sum
of the local information minus the common information. As in the general case,
optimal fusion requires knowing the %, and P, in addition to the estimates and
covariances to be fused.

The information matrix fusion equations can be derived directly from the infor-
mation filter equations (Chong 1979). Suppose each fusion node i=1, 2, has the
observation equation

Zi = H,'X"’V,‘ (5.9)

where
H; is the observation matrix
v; is a zero mean independent observation noise with error covariance R;

Then the information filter form of the estimate X; is given by
P2 =P 'X+HR'Z, (5.10)
with error covariance given by
P =P '+ H/R'H, (.10

where X and P are the mean and covariance of x. Given the measurements Z, and Z,,
the optimal estimate % and its error covariance P are given by the information filter
equations

P'x=P'x+HR'Z (5.12)
P'=P'+HR'H (5.13)
where the measurement vector Z, observation matrix H, and noise covariance matrix
R are
Z H R 0
z=|"" H=|""| R=|" (5.14)
Zz H2 0 R2
Since
HR'Z=HR'Z,+ HR,'Z, (5.15)

HR'H=H|R'H,+ H,R;'H, (5.16)
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Equations 5.12 and 5.13 become

P'*=P'x+HR'Z + H)R;'Z, (5.17)
P'=P '+ H/R'H, + H}R;'H, (5.18)

These are the information fusion equations used in Durrant-Whyte et al. (1990) to fuse
measurements communicated by the fusion agents. Substituting into (5.10) and (5.11)
produce the information matrix fusion equations similar to Equations 5.7 and 5.8

Plx=P"%+P'%-P'% (5.19)

Pl=p'+p" - P (5.20)

5.4 OPTIMAL BAYESIAN DISTRIBUTED FUSION
FOR DIFFERENT ARCHITECTURES

The Bayesian distributed fusion equation assumes a hierarchical architecture with
no feedback. Furthermore, the local estimates are only fused once by the fusion
agent. However, with the help of the information graph, this equation (in either gen-
eral or linear form) can be used to derive optimal fusion equations for complex archi-
tectures and identify the information that needs to be communicated in addition to
the estimates to be fused. It is also trivial to extend to fusing multiple local estimates.
The following sections contain some examples.

5.4.1 HIERARCHICAL ARCHITECTURE

5.4.1.1 Hierarchical Fusion without Feedback

Consider the example of Figure 5.4 with F3 as the fusion site. When there is no feed-
back from the high level, the common information in the received estimate p(x|Z,) and
the current estimate p(x1Z,) is the estimate p(x1Z7) last communicated from the low-
level fusion site F2. From (5.5), the fused estimate or probability function is given by

PN Zy)p(x 1 Z,)

| ZyuZ,)=C"
p(x1Zy L) p(x1Z,)

5.2
When the probability distribution is Gaussian, applying Equations 5.7 and 5.8 yields
Pil =P/ +P'-p (5.22)

Paliiuon = Py'%y + PR - P37 (5.23)

where the subscripts represent the information nodes.
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5.4.1.2 Hierarchical Fusion with Feedback

For hierarchical architecture with feedback in Figure 5.5, fusion takes place at
both levels. For fusion at the low level node F1, the common predecessor of L, and
H is L, the fusion node of the last communication from low level to high level. For
fusion of H at the high-level node F3 with the estimate at L, from F2, the common
predecessor is H, the fusion node of the last communication from high level to low
level. For low-level fusion, the common information shared (from the information
graph) is the last estimate sent to the high level. Thus the fusion equation for low
level is

(X|ZH)P(X|ZLI)

p(x1Z,uz)=c"P ez (5.24)
Similarly, the high-level fusion equation is
p(x1Zy 02z, =PI 2P 1 Z1,) (5.25)
p(x1Zy)
When the variables are Gaussian, the low-level fusion equations are
Pl =Pyt + P, =P (5.26)
PalnXnon, = Pa'Xy + Py, — PL'%; (5.27)
and the high-level fusion equations are
Pil, =P + P, - P (5.28)
Pibi,Xnon, = Pa'xy + P'%, — Pi'iy (5.29)

5.4.2 ARBITRARY DISTRIBUTED FUSION ARCHITECTURE

The optimal fusion algorithm for arbitrary distributed fusion architectures is
found by repeated application of the Bayesian fusion equation (5.5). The algo-
rithm starts by identifying the common predecessor nodes of the information
nodes whose estimates are to be fused. If there is only one common predecessor
node, then the information at that node becomes the p(Z, N Z,) in the denomina-
tor of (5.5). If there are multiple common predecessor nodes, then (5.5) is used
again to compute p(Z, N Z,) terms of the information (probability) at these nodes
and the information at their common predecessor nodes. The process is repeated
until each conditional probability involves only one information node. Thus the
fusion equation for the general fusion architecture consists of a product of proba-
bilities representing information to be fused and divisions representing redundant
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information to be removed. The general fusion equation has the form (Chong
et al. 1987, 1990)

N
| xl Uz,. - C’IH p(x12Z,)"P (5.30)
i=1 jel
where
J is a set of predecessor nodes of the fusion node
C is a normalizing constant
o) is either +1 or —1 depending on whether information is to be added or deleted
For Gaussian case, the fusion equations are

Pli= Zoc( NP3, (5.31)
jeJ

P =Y (P! (5.32)
jelJ

The hierarchical fusion equations discussed earlier are special cases of these equa-
tions. For the cyclic architecture of Figure 5.8, repeated application of the fusion
equation results in the following equation:

| 7.3= ' PN Ze)p(x1Ze)
etz (x| Zoos)

-C! px1 Zg)p(x | Z)p(x | Zp )
p(x1 Zp)p(x1Zg)

—C! px1 Zg)p(x | Zo)p(x | Zy)

(5.33)
p(x1Zp)p(x| Zg)
The equations for the Gaussian case are
Pi'%y = Py'3p+ Po'3c — Py'xp — Pr'ip + Py'xy (5.34)
Pl=P'+P ' -P - P + P (5.35)

5.5 SUBOPTIMAL BAYESIAN DISTRIBUTED FUSION ALGORITHMS

The optimal distributed fusion algorithm described in the previous section is based
upon identifying and removing redundant information using the information graph.
When the bandwidth does not support communication of information pedigree, such
as in ad hoc wireless sensor networks, the relevant part of the information graph
cannot be constructed by the fusion node. Even if the information pedigree can be
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communicated, in a dynamic network with possible failures and adaptive communi-
cation strategies, the optimal distributed fusion algorithm may not be practical due
to the long pedigree information needed for de-correlation. This section presents
several practical and scalable algorithms (Chang et al. 2010) based on approxima-
tions of the optimal algorithms (5.30) through (5.32). To simplify the notation, we
again focus on the fusion of two information nodes with either probability functions
given by p,(x) and p,(x), or estimates X; and X, with error covariances P, and P,. The
fusion result is represented by probability function p(x) or an estimate X with error
covariance P.

5.5.1 Naive FusioN

Naive fusion ignores the dependence in the information to be fused or the denomina-
tor in the optimal Bayesian fusion equation (5.5). Thus the naive fusion algorithm is

p(x)=C"'pi(x)pa(x) (5.36)

where C is the normalizing constant. For Gaussian case, the common information is
similarly ignored in Equations 5.7 and 5.8, resulting in the following equations for
the fused state estimate and error covariance

P'=p"+p
b (5.37)

1A 1A DN
P x=131 x1+P2 Xo

By not subtracting the prior information matrix (inverse of the prior covariance
matrix), the computed fused error covariance is smaller than the true error covari-
ance, resulting in an estimate of naive fusion that may be overconfident.

The naive fusion equation for the Gaussian case is sometimes called the convex
combination equation because it can be shown that the fused estimate is given by

I=P(A+P) M+ PAP+P)E (5.38)

For the cyclic architecture of Figure 5.8, naive fusion only retains p(x | Z,) and p(x| Z,).

5.5.2 CHANNEL FiLTER FusioN

The channel filter (Grime and Durrant-Whyte 1994, Nicholson et al. 2001, Bourgault
and Durrant-Whyte 2004) can be viewed as a first-order approximation of the opti-
mal fusion algorithm. The distributed estimation system consists of a number of
channels with each defined by a pair of transmitting and receiving nodes. In the
channel filter, the fusion node keeps track of the communication history for all the
information nodes that it receives data from. When it receives a new estimate to be
fused from a node, it retrieves the more recent estimate from that node and considers
it as the only common information to be removed, ignoring earlier information nodes
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that may have contributed to the common information. In that sense, the channel
filter can be considered as a first-order approximation to the optimal information
graph approach.

Specifically, the channel filter fusion equation is given as

p(x) = PROP2RY) 1(;)(‘Z 2)()‘) (5.39)

where
C is a normalizing constant
p(x) is the probability function received from the same channel at the previous
communication time and is the common “prior information” to be removed in
the fusion formula, with mean X and covariance p when Gaussian.

When both p,(x) and p,(x) are Gaussian with means and covariances %,, P, and %,,
P, respectively, the fused state estimate and corresponding error covariance are
given by

P'=p'+p'-P"! (5.40)
P'i=P"%+P'%,-P'x (.41

The first-order approximation of channel filter fusion is suboptimal because it
does not account for all common information shared by the estimates to be fused.
However, it may only be slightly suboptimal if the time between when that redun-
dancy occurred and the current processing time is relatively long. For the cyclic
architecture of Figure 5.8, channel filter approximates (5.33) by the following

_ p(x1Zg)p(x1Zc) 5.42
pxizp=c PEIEEE 042

and ignores the other terms in the optimal fusion equation. Similarly, the fusion
equations for the Gaussian case become

PXl.i'A:PE;I.%B'FPEl.%C_PL;l%D (5.43)

Pl =P+ P - P (5.44)

5.5.3 CHEerNOFF FusioN

Chernoff information fusion also ignores completely the dependence in the informa-
tion to be fused. However, instead of assigning equal weights as in naive fusion, the
fusion formula allows different weights for the probabilities to be fused, resulting in



114 Distributed Data Fusion for Network-Centric Operations

p(x)=C'pl'(x)py " (x) (5.45)

where w € [0 1] is an appropriate parameter which minimizes a chosen criterion. The
fusion algorithm is called Chernoff fusion when the criterion to be minimized is the
Chernoff information (Cover and Thomas 1991) defined by the normalizing constant
C. It can be shown that the resulting fused probability function that minimizes the
Chernoff information is the one “halfway” between the two original densities in
terms of the Kullback Leibler distance (Cover and Thomas 1991). In the case when
both p,(x) and p,(x) are Gaussian, the resulting fused density is also Gaussian with
mean and covariance given by

P =wP ' +(1-w)P; (5.46)

P 'i=wP '3 +(1-w)P '}, (5.47)

This formula is identical to the covariance intersection (CI) fusion technique
(Chong and Mori 2001, Nicholson et al. 2001, 2002, Hurley 2002, Julier 2006,
Julier et al. 2006). Therefore, the CI technique can be considered as a special case
of (5.45). In theory, Chernoff fusion can be used to combine any two arbitrary
probabilities in a log-linear fashion. However, the resulting fused probability may
not preserve the same form as the original ones. Also in general, obtaining the
proper weighting parameter to satisfy a certain criterion may involve extensive
search or computation.

5.5.4 BHATTACHARYYA FusioN

Bhattacharyya fusion is a special case of Chernoff fusion (5.45), when the
parameter w is set to be 0.5. Then the normalizing constant of (5.45) becomes

B= J.,/ p1(x) p,(x)dx, which is the Bhattacharyya bound. The fusion algorithm is
p(x)= B~ pi(x)p>(x) (5.48)
When both p,(x) and p,(x) are Gaussian, the fusion equation can be written as

P = %(Pf‘ +p) (5.49)

~ 1. Zia
P71X=5(P1 % +P'R)
or

F=P+ Y (PR + P Y) (5.50)
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Therefore, Bhattacharyya fusion is similar to naive fusion for the Gaussian case.
However, the resulting fused covariance is twice as big as that of naive fusion. Note
that the fusion equation can be rewritten as

U D R
P 1=5(Pl "+ Py =(P 1+le)—5(1"1 '+ph (5.51)

Pli= (R )
ia 1A 1, i~ A
=P '3 +P 1x2)_5(P1 %+ P'%) (5.52)

This formula replaces the common prior information of (5.40) and (5.41) for
channel filter by the average of the two sets of information to be fused, namely,
P <L+ P Y and P'x & L(P7'X 4P '%,). In other words, instead of remov-
ing the common prior information from the previous communication as in the chan-
nel filter case, the common information of Bhattacharyya fusion is approximated by
the “average” of the two locally available information sets.

5.6 DISTRIBUTED ESTIMATION FOR GAUSSIAN DISTRIBUTIONS
OR ESTIMATES WITH ERROR COVARIANCES

In Section 3.5, we presented several suboptimal algorithms that avoid the exact iden-
tification and removal of redundant information using the information graph. These
algorithms can be viewed as approximations of the optimal fusion algorithm for gen-
eral probability functions. This section presents fusion algorithms that are optimal
according to some criteria when the information to be fused is either Gaussian or can
be represented by estimates with error covariances.

In the following, we assume that the state to be estimated has mean X and cova-
riance P, the estimates to be fused are %, and %, with error covariances P, and P,,
and cross-covariance P, = P;;. Note that in addition to the common prior X and P,
there is additional dependence between X; and %, represented by the cross-covariance
P, = P;,. Thus removing the common prior alone is not sufficient for generating the
best fused estimate.

5.6.1 MaxiMmum A PosTeriORI FusiON OR BEST LEAST UNBIASED ESTIMATE

Let z=[X] X5 1" be the augmented vector of the estimates to be fused. Assume z and
x are jointly Gaussian with mean Z and x, with covariances

P. =P, £ E{(x-0)(z-2)} (5.53)

P 2 E{z-D)(z-2)} (5.54)
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Then given z, p(x1z) is also Gaussian with mean and covariance given by (Anderson
and Moore 1979)

X=X+P.P'(z-7) (5.55)

P=P-P.P.'P, (5.56)

Note that (5.55) is also the maximum a posteriori (MAP) estimate (Mori et al. 2002,
Chang et al. 2004) and can be expressed as

with Wy=1—-W, — W, and Py,=E((x — X)(X; — x)') for i=1, 2, where

~1
P, P,

[W, Wa]= PP =[Py Poz]|: P‘ PZ] (5.58)
21 2

If %, and %, are not jointly Gaussian but the moments are known, (5.57) is the best
linear unbiased estimate (BLUE) (Zhu and Li 1999, Li et al. 2003). Note that the
MAP estimate or BLUE requires more information for its calculation. In addition
to the common prior X and P, and the estimates %, and %, with error covariances P,
and P,, it also requires the cross-covariances P, = P;, between the estimates, and the
cross-covariances P, and P, between the estimates and the state. If the estimates %,
and %, are generated from measurements with independent errors, (5.57) and (5.58)
reduce to the standard fusion equations of (5.19) and (5.20).

5.6.2 Cross-CoVvARIANCE FusioN

The cross-covariance fusion rule (Bar-Shalom and Campo 1986) considers explicitly
the cross-covariance of the local estimates to be fused. The fusion rule is given by

where
W, =(P,—Py)(P+P—P,—Py)" (5.60)

for i=1, 2 with j=3 — i. Since W,+ W,=1, the fused estimate is unbiased if the
local estimates are also unbiased. It can be shown that Equation 5.59 maximizes
the classical likelihood function p(%,, %,lx) with x viewed as a parameter. Thus, the
cross-covariance fusion rule is also the maximum likelihood fusion rule. As shown
in (Chang et al. 1997), Equation 5.59 is the unique solution of the BLUE without a
priori information, i.e., the linear solution obtained without using a priori informa-
tion (initial condition). This follows from the fact the MAP estimates becomes the
maximum likelihood estimate when the prior covariance becomes very large.



Fundamentals of Distributed Estimation 17

If we ignore the cross covariance P, (5.60) becomes, for i=1, 2 with j=3 -,

ip
W, =P(R+P) " =" +P )P (.61)
which is the fusion rule obtained by treating the two estimates %, and %, as if they

were two conditionally independent observations of x. This is again the convex
combination rule.

P P
Since det[[ ! 2 :| ]z det(P, — P,,P5 ' Py)det(P,), ignoring the cross covari-

21 P2
ance as P,=0 increases the size of the ellipsoid defined by the joint covariance
matrix [Pl PIZ] . Thus, the simplified fusion rule (5.61) is obtained by inflating
Py B

the joint covariance matrix.

5.7 DISTRIBUTED ESTIMATION FOR OBJECT TRACKING

In this section, we discuss how the general approach for distributed estimation can
support object tracking (Liggins et al. 1997, Chong et al. 2000). Multi-object tracking
involves two steps: associating measurements to form object tracks, and estimating the
states of the objects given the tracks. Our discussion will focus on single object state
estimation or filtering. The association problem in object tracking will be addressed
in Chapter 6.

For object state estimation, the state of the object is a random process that evolves
according to a dynamic model given by the transition probability p(x,,,|x,), where
X, 1s the state of the object at time f,. Measurements are generated from the state
according to a measurement model p(z,lx,). The objective of object state estimation
is to generate the estimate of the state, p(x,1Z,), given the cumulative measurements
Z,=(2, 2y, ---» Zp)- Recursive state estimation or filtering consists of two steps: pre-
dicting p(x,1Z,) to the time of the next measurement to obtain p(x,,, | Z,) and updating
with the current measurement to generate p(x,,, | Z,,,). Since the prediction step uses
only the object dynamic model and does not depend on measurements, distributed
estimation focuses on the update step.

We assume a hierarchical fusion architecture to discuss the approach. Each low-
level fusion agent i generates an updated estimate of the object state given its local
measurements p(x,1Z,) where Z,,=(z;y, 21, ---» 2)- The high-level fusion site or agent
combines the low-level (updated) estimates to form the fused estimate p(x,1Z,) where
Z=2, N\ Zy.

5.7.1 DEeTermINISTIC DYNAMICS

An object is said to have deterministic dynamics if its future state is determined
completely by the current state, i.e., the state transition probability is a delta func-
tion. Ballistic missiles and space objects are examples of objects with deterministic
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dynamics. It can be easily shown that conditional independence of the measurements
7, given x, for all i and k implies conditional independence of the cumulative mea-
surements Z,, given x, for all i and &, i.e.,

P(Zig, Zog | %) = p(Zi | ) p(Zoi | xi) (5.62)

Thus the Bayesian distributed fusion equation can be used and

|Z|k,Z2k) — C71 p(xk |Zlk)p('xk |sz) (5.63)

Pl P 1 Ziy)

where
C is a normalizing constant
px,1Z,_)) is the common prior that can be extrapolated from p(x,_,1Z,_,) provided
by the fusion site

When the random variables are Gaussian, the fusion equations are

_1/\ _ _1 A~ _1 ~ _] ~
Par Xk = Pk X + P X ok — Prak-1Xki-1 (5.64)

Py = Pl,71<llk + PZTI:Ik — Py (5.65)

where £, ,,;and P, are the estimate and error covariance of x, given Z; and %, and
P, are the fused estimate and error covariance given x, and Z,.
If there is no feedback from the fusion site, the fusion equation is

POV Zy ) p(x | Zyy)
PO N Zy ) p(a | 2 1)

P | Zys Zy ) = C™! P 1 Ziy) (5.66)

When the random variables are Gaussian, the fusion equations become
-1a _ p-1 »~ —1 A -1 A —1 A -1 A
PaieX k= Bl 1k — P k-1 1 kie—1 FPoie X 2,0 — Poie—1 X2 k-1 + Pk -1 Xii—1 - (5.67)
Pt = P — Pllee + P — Poes + P 5.68
kk = Lige — L kike-1 T L2 00k — L2 0k-1 1 L1 (5.68)

For deterministic object dynamics, the fusion equations reconstruct the optimal cen-
tralized estimate independent of number of sensor revisits between fusion times.
This is not the case for nondeterministic object dynamics.

5.7.2  NONDETERMINISTIC DYNAMICS

When the object has nondeterministic dynamics, the cumulative measurements Z;,
are no longer conditionally independent given x,. Effectively, the common process
noise or nondeterministic dynamics destroys the conditional independence. Then
the fusion equations (5.63) through (5.68) are no longer optimal or exact unless the
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low-level fusion agents communicate with the high-level agent after each observation
time. For hierarchical fusion with feedback, the high-level fusion agent also has to
send the fused estimate back to the local agents after each fusion.

5.7.2.1 Augmented State Vector and Approximation

Let X, =[x, x],..., ;] be the augmented state vector consisting of the states at multi-
ple observation times. Then the cumulative measurements Z,, are conditionally inde-
pendent given X, and the optimal fusion equations are (5.63) through (5.68) with x,
replaced by X,. However, this approach may not be practical because the probability
density functions or covariance matrices involve high dimensions.

5.7.2.2 Using Cross-Covariance at a Single Time

For problems that can be represented by Gaussian distributions or means and covari-
ances, the approach of Section 5.6 can be used to handle the conditional dependence
due to nondeterministic dynamics. Specifically, let %, ;, and £, ;,, be the estimates to
be fused with error covariances P, ,, and P, , cross-covariance P = Py, and
common prior %,,_, with covariance P,,_,. Then the MAP, BLUE, or cross-covari-
ance fusion rules can be used by replacing &, P, P,,, X, and P with £ s P; s Prasies
Xy and Py,_, respectively in the fusion equations. Chapter 6 has a comparison of the
different fusion rules for nondeterministic dynamics.

5.8 DISTRIBUTED ESTIMATION FOR OBJECT CLASSIFICATION

The general fusion approach in Section 5.3 can be used for distributed object clas-
sification (Chong and Mori 2005) where the state of interest is a discrete and constant
random variable representing the object class. When the conditional independence
assumption is satisfied, optimal distributed object classification can be performed
using (5.5) of Section 5.3. In general, selecting object class as the state will not
satisfy the conditional independence assumption because measurements containing
class information may also depend on other variables such as viewing angles. In the
following, we will consider hierarchical fusion at a single time to focus on the infor-
mation that should be used in fusion. More complicated communication patterns
will require checking for common information and removing it, using approximate
algorithms if necessary. Chapter 9 contains a more detailed discussion on distributed
object classification.

5.8.1 DistrRIBUTED OBJECT CLASSIFICATION ARCHITECTURES

The common fusion architectures for object classification are centralized measure-
ment fusion, decision fusion, and probability fusion. In centralized measurement
fusion, measurements containing object class information are fused at a central site.
This architecture is theoretically optimal because the central site has access to all the
measurements but requires the most communication. In decision fusion, each local
site performs classification using the local measurements and sends the decision to
the fusion site. Decisions require very little bandwidth to communicate but may not
contain enough information for generating a good decision after fusion. Thus we will
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FIGURE 5.10 Bayesian network for object classification.

focus on probability fusion, in which each local site generates a conditional probabil-
ity of the object class from the local measurements, and the fusion site combines the
conditional probabilities to form the centralized conditional probability.

The key to high-performance probability fusion is determining the state used for
generating the probability. In general, the object class is not sufficient as a state for
optimal fusion because the measurements may depend on other object attributes in
addition to the class (Chong and Mori 2004). Consider the example in Figure 5.10
where a Bayesian network is used to show that the measurements z, and z, depend on
the object class x. through the static object attribute x¢ such as size and the dynamic
attribute x,, such as viewing angle. As shown in Figure 5.10, the measurements are
conditionally independent given x and x, i.e.,

P(z1,22 1 x5,%p) = p(z | X5, %p) (22 | X5, Xp) (5.69)

but not conditionally independent given only x, i.e.,
P22 1 xe) = JP(ZI’ZZ’XS’XD | xc) dxsdxp

= J.I’(Zl,Zz I xg,xp)p(xs,xp | xc)dxsdxp # p(z 1 xc)p(z2 1 xc) - (5.70)

Thus, for optimal distributed fusion, the state to be communicated should be xg and x;,.

5.8.2 DisTrRIBUTED CLASSIFICATION ALGORITHMS

For optimal distributed classification, the object state in the probabilities should
make the measurements conditionally independent. For the example in Figure 5.10,
the state consists of the static attribute xg and the dynamic attribute x,,. Then the
optimal fusion equation is

1 P(xs,xp 1 21) p(xs, xp | 25) (5.71)
p(xS’xD)

p(xs,xplz,2,)=C"
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From this, the object class probability can be computed as
plic 12220 = [ plic L t0)plas.xp | 21022 drsd (572)

When only the probabilities of the object class are communicated, naive fusion can
be used to obtain an approximate solution

1 Pxe Ilz;()f(;cc 12) (5.73)
C

p(xclz,2) =

Note that in the case the information ignored is not the common prior due to com-
munication but the states that lead to conditional independence.

5.9 SUMMARY

This chapter presented the fundamental concepts for distributed estimation, which
are crucial for developing distributed fusion algorithms. We discussed various
distributed fusion architectures, their advantages and disadvantages, the use of
information graph to represent information flow, and selection of an appropriate
architecture. We presented the Bayesian fusion equation for combining two
probability functions, and the equation for estimates given by means and covariances.
The Bayesian fusion equation, when used with the information graph, can be used
to derive fusion equations for various fusion architectures. Since the fusion equation
can be complicated, requiring pedigree or network information for complicated
architectures, it is necessary to approximate the optimal algorithm with suboptimal
algorithms for implementation in real systems. When the estimates to be fused
are Gaussian or can be characterized by means and covariances, there are several
linear combination rules such as MAP, BLUE, and cross-covariance fusion. We also
showed that the distributed estimation approach can be used for object tracking and
object classification.

5.10 BIBLIOGRAPHIC NOTES

Research in distributed estimation started around 1980 and addresses the problem
of reconstructing the optimal estimate from the local estimates (Chong 1979, Speyer
1979, Willsky et al. 1982, Castanon and Teneketzis 1985). A general distributed
estimation approach (Chong et al. 1982, 1983, 1985, 1987) for arbitrary architectures
was investigated under the Distributed Sensor Networks (DSN) program sponsored by
the Defense Advanced Research Projects Agency (DARPA). By using the information
graph to track information flow in the system, the optimal fusion algorithm avoids
double counting of information or data incest. The DSN program also developed
general distributed tracking algorithms (Chong et al. 1986, 1990). Around 1990,
researchers in the United Kingdom and Australia developed similar decentralized
fusion algorithms (Durrant-Whyte et al. 1990, Grime and Durrant-Whyte 1994)
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that avoid data incest, and CI algorithms (Nicholson et al. 2001, 2002) to address
unknown correlation between local estimates to be fused. Bar-Shalom and Campo
(1986) developed the first fusion algorithm that uses the cross-covariance between
the local estimates. This paper was followed by the BLUE fusion algorithm (Zhu
and Li 1999, Li et al. 2003) and the MAP fusion rule (Mori et al. 2002, Chang et al.
2004). The last two papers also contain performance evaluation of fusion algorithms,
along with Chong and Mori (2001) and Chang et al. (2010).
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6.1 INTRODUCTION

This chapter describes an important, practical, widely studied application of the
distributed estimation theories described in Chapter 5, i.e., distributed target track-
ing. Multiple-target tracking problems can be viewed as an extension of classical
dynamical state estimation problems, or filtering problems (Wiener 1949, Kalman
1960, Kalman and Bucy 1960, Anderson and Moore 1979), to estimate the states of

125
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generally moving physical entities. An essence of the extension is from single-target
problems to multiple-target problems with an unknown number of targets, without
a priori target identification, where any observation originates from any one of the
modeled targets, or an object of no interest (i.e., clutter, false alarms, etc.) (Blackman
1986, Bar-Shalom and Fortmann 1988, Bar-Shalom and Li 1993, Blackman and
Popoli 1999, Bar-Shalom et al. 2001, 2011). In short, multiple-target tracking prob-
lems are dynamical state estimation problems with data association problems.

As any other information processing system, given a set of sources of informa-
tion, i.e., sensors, optimal or near-optimal state estimates are obtained by central
processing, i.e., by centrally processing all the relevant information provided by all
the sensors. However, in many large-scale system designs, an alternative process-
ing architecture, i.e., distributed processing, is preferred because of the lack of sin-
gle-point-of-failure, generally reduced communication requirements, and possible
minimization of processing bottlenecks, as discussed in the previous chapter. This
preference is particularly prevalent for multiple-target tracking problems, mainly
because of often severely heavy information-processing requirements for solving
data association problems. In distributed tracking systems, the data association
requirements are typically divided into (i) local data association where sensor
measurements are correlated together into local (or sensor) tracks, and (ii) global
processing where local tracks are associated and fused together into a set of global
(or system) tracks. In this way, the processing and the communication loads may
be system-wide balanced.

For this reason, the studies of distributed tracking started almost at the same
time when the multiple-target tracking itself began to be studied. We can cite a
pioneering work (Singer and Kanyuck 1971) and two seminal papers (Bar-Shalom
1981) and (Bar-Shalom and Campo 1986), which cover two essences of distributed
tracking, i.e., track association and track fusion. As mentioned in the previous
chapter, the studies of the track association and fusion problems were formulated
and solved in the framework of distributed estimation problems (Chong et al. 1985,
1987, Liggins II et al. 1997), with general sensor and information networks. Since
then, the amount of the literature on track fusion has exploded (Hashemipour
et al. 1988, Durrant-Whyte et al. 1990, Belkin et al. 1993, Lobbia and Kent 1994,
Drummond 1997a, Miller et al. 1998, Zhu and Li 1999, Li et al. 2003), and many
others.

As described in Drummond (1997a), Liggins II et al. (1997), Chong et al. (2000),
Moore and Blaire (2000), Dunham et al. (2004), and Liggins II and Chang (2009),
many distributed tracking systems, both military and civilian, have been developed
and operated, system engineering studies, mainly of so-called fusion architecture
studies, have been conducted, and performance of various functions and algorithms
has been examined. Recently, the topics of the distributed target tracking have been
migrated into the area of the robotics (Durrant-Whyte et al. 1990) and the distributed
large-scale sensor networks (Iyengar and Brook 2005).

Instead of covering the entire areas concerning the distributed tracking, this
chapter revisits its two essences, i.e., track association and track fusion, in terms of
track fusion rules and track association metrics. We will describe as many rules and
metrics that have been proposed and examine them, as quantitatively as possible.
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To do this, we need to limit our scope using simple abstract mathematical models.
However, we will try to cover as many practical factors as possible: consequences of
one-time versus repeated information exchanges, fusion of information from simi-
lar versus dissimilar sensors, target maneuverability, a priori position and velocity
uncertainty, and target density. We also choose a minimum complexity of system
architecture, i.e., a two-sensor, or two-station system, by which we can isolate the
two essential problems, i.e., the track association and fusion, to enable clear com-
parison of many algorithms. In this way, we can discuss key design factors for the
distributed tracking, i.e., fusion with or without feedback, and the effect of the depth
of memory of the past informational transactions, etc.

The rest of this chapter is divided into two major sections: Section 6.2 describes
representative track fusion rules, and numerically compares the performance, under
a set of prescribed variations of track fusion environments and designs. Section 6.3
examines a simple one-time track-to-track association and compares the perfor-
mance using various track-to-track association metrics.

6.2 TRACK FUSION

Although track association is prerequisite to track fusion, we will discuss track fusion
first in this section before discussing track association in the next section. Despite a
large volume of works on track fusion, the studies on the track association are still
rather sparse comparing with the studies on the track fusion.

We will first consider a simple, one-time track-to-track fusion problem in
Section 6.2.1 and more complicated cases where track fusion is done repeatedly
in Section 6.2.2.

6.2.1 ONEe-TimMe TRACK FusioN

Suppose that two sensors, i=1, 2, have been observing the same target as

Yie = Hyx(tz) + My 6.1

at time t, for k=1,..., N, such that #;; <---<t,, where each measurement error
M 1S an independent zero-mean Gaussian random vector with covariance matrix*

Ry = E(mmﬁ) and H,, is an observation matrix with appropriate dimensions. x(-) in
(6.1) is the target state process defined by

%x(r) = A,x(t)+ Bo(t) 6.2)"

* By X" we mean the transpose of a vector or matrix X. [E is the conditional or unconditional mathemati-
cal expectation operator.

* More precisely, (6.2) is meant to be a stochastic differential equation, dx(r) = Ax(t)dt + Bdw(z), with
unit-intensity Wiener process (W(1)),e(s ). We assume x(t,), (W(t))e(s ) and ((Ma)¥i)E, are all inde-
pendent from each other.
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on [z, =) with 7, <min{z,,, t,,} on a Euclidean target state space E, with a unit-intensity
vector white noise process (W, ), ., and by the initial state x(,), a Gaussian vector
with mean X, and covariance matrix V, i.e.,* P(x(t,)) =g(x(t,) — Xo;V,)-

We assume the local data processor, for each sensor, i=1, 2, produces the local

estimate X = E (X (¢ F)‘ (Vi )kNil), which is the conditional expectation’ of the target
state x(#;) at a common fusion time ¢ = max{tl N> b, }, conditioned by the local data
(i )rs,, together with estimation error covariance matrix Vi=E (& — X)X, — x(t)D)
that we assume is strictly positive definite, i.e., P(x(tz) ‘(y,-k W)= g(x(tr) — x;;V;). Our
track fusion problem is then defined as the problem of generating a “‘good” estimate X,
of the target state x(t) as a function of the local estimates %, and X,.

The joint probability density function of the two local estimation errors can then

be written as
N A _ =x(tp)| (Vi Vi
P(x—=x(tp), X,—x(tp)) = g([iz_x(tp)] ’[Vz, v, D 6.3)

We need to consider the cross-covariance matrix, V,=E((X, — xtp))&, — x(#))")

and V,; =V}, in (6.3), because the initial condition x(ty)=x, and the process noise
(W(1))se110.) 0 (6.2) both commonly affect the two estimates, £, and X,.
Let the local estimation errors be denoted by X; ‘ﬁffc,» —x(tp), i=1, 2. Then, we

should immediately recognize the following three facts:

1. For each i, the estimation error X, is independent (orthogonal) to the state
estimate X,.

2. The two estimation error vectors, ¥, and X,, are correlated.

3. Each estimation error ¥, is not necessarily independent of the target state x(t;).

Although (1) is the basic fact of the linear Gaussian estimation (cf., e.g., Anderson
and Moore 1979), (2) and (3) are the distinct characteristics of the track fusion
problems, which prevent us from treating the two local estimates as if they were two
independent sensor measurements of the target state x(f). As mentioned earlier, (2)
originated from the common use of the initial state condition and the process noise
while (3) is simply due to the fact that &; is the processed result, correlated to the
initial condition x(#,) =x,, and hence ¥, is correlated to x(z,).

Some of the track fusion rules described subsequently can be used for track fusion
problems with nonlinear target dynamics and nonlinear observation models. In such
a case, (6.3) may be considered as a Gaussian approximation of a non-Gaussian joint
estimation error probability distribution.

* For this chapter, we use P and p as the generic symbols for conditional or unconditional probability
density or mass function, and g as the generic zero-mean Gaussian density function, i.e., g(&;V)df =
det2mV)~"2 exp(=(1/2)ETV-1E).

7 In this chapter, we use any conditioning in the strict Bayesian sense, e.g., P(xly) = P(x, )WP(). (Vi)
is shorthand for a finite sequence (y;, Yi2,-- ., yin,)-
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6.2.1.1 One-Time Track Fusion Rules

In the following, for the sake of simplicity, we will drop the time index and replace
x(tp) by x, E(x(t) by X, and write V=E((x — X)(x — x)7). All the rules described in this
section are in the form of the linear combination

-SZ‘F = W’O X+ Vlel + WzXz (64)

with W+ W, + W, =1 (unbiasedness), where all the weight matrices are constant and
independent of sensor data, (yik)ivg'l, i=1, 2, either as a conscious choice, or as a
consequence of the linear-Gaussian assumptions. The estimation error covariance
matrix V. can therefore be evaluated by

‘7 VOI VOZ WOT
Vi=s[Wo0 W W ||Vei Vi Vo ||[W 6.5)
Voo Vb Vo ||W

The covariance matrix_V; is provided with each local state estimator, i=1, 2, and the
a priori state variance V at the fusion time 7 is given by

V = ®(t5,1)Vo®(t5, 1)) +O(tr,1y) (6.6)

where ®(t, 7) is the fundamental solution matrix of (A, )., ) defined by a matrix
differential equation (0/00)®(t, T)=Ad(t, T) with ®(t, ©)=1, and Q) is defined by

Ot ty) = j(b(rz,r)BTBZ o1, 1) di 6.7)

|

for any 7, < t, <t,. Later, Section 6.2.1.2 shows how to calculate the cross-covariance
V., between the two local state estimation errors, ¥; and X,, as well as the cross-
covariance V|, between the state a priori expectation error, X — x, and the local state
estimation error X;, i=1, 2.

Some of the fusion rules described later in this section declare the estimation error
covariance matrix V by itself, assuming implicitly or explicitly that some of the statis-
tics, e.g., V}, or V,,,, are not available when fusing the two local estimates, %, and £,. In
that case, the declared covariance matrix V, may not be the true one defined by (6.5).
We will call the declared V. honest (consistent) if it coincides with the one calculated
by (6.5), pessimistic if it is generally larger, and optimistic if smaller.

6.2.1.1.1 Bar-Shalom—Campo and Speyer Fusion Rules

The Bar-Shalom—Campo fusion rule, described in a seminal paper (Bar-Shalom and
Campo 1986), is defined by the weights, W;=0, and

W, = (V, = V) (Vi + Vs =Viy = Vo)™ ©8)
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for i=1, 2 with j=3—-i. Since W,+ W,=1, the unbiasedness of the local estimates
implies the unbiasedness of the fused estimate X,. As shown in Li et al. (2003),
this fusion rule is obtained as a unique solution x=%, that maximizes the likelihood
Sfunction L(xI%,, %,) defined as L(xI%,, %,) =p(X; — x, X, — x), where p(X,, X,) is the joint
probability density function of the two local estimation errors, X, and ¥,.

We should note that this likelihood function L(xI%,%,) is not the likelihood
function P(%,, %,lx) in the strict Bayesian sense, i.e., the conditional joint probability
density function of the data, %, and %, given the true state x, because the estimation
errors, (¥,, X,), are not independent of the target state x=x(7;). Nonetheless,
L(xI%;, ,)=p(X, —x, %,—x) is certainly qualified as a likelihood function of x in the
classical statistics sense, i.e., a joint probability density function of %, and %,, when
we consider x as a constant parameter to be determined. Two other fusion rules based
on the conditional expectation and the likelihood function, both in the strict Bayesian
sense, will be described later in this section. Both of those rules, as well as the Bar-
Shalom—Campo rule, use the cross-covariance matrix V,, generated by the common
factors, i.e., the common initial condition and the common process noise.

If we ignore the cross-covariance Vj;, (6.8) becomes, for i=1, 2 with j=3—i,

W =V,V+Va) ! =+ V)T (6.9)

which is the fusion rule obtained by treating two estimates %, and %, as if they were
two conditionally independent observations of x. Since the gain matrices (6.9) are
obtained by normalizing two positive definition matrices V; or V"' to have W, + W, =1,
we may call (6.9) the simple convex combination rule, with some caution for not con-
fusing this with the covariance intersection fusion rules described later. It is also
called the naive fusion rule in Chang et al. (2008). We call this simplified rule the
Speyer fusion rule, because this fusion rule seems to have appeared for the first time
as Equation (22) of Speyer (1979).

T
2 2

Vi Vi
Since det (|:VI Vlz :| ] =det(V, — V,, V5 'Vi5) det(V,), ignoring the cross-variance
1

as V,,=0 means an increase in the ellipsoidal area defined by the joint covari-

ance matrix [V‘ Via

ViV
(6.9) is obtained by inflating the joint covariance matrix. Using either fusion
rule, the fused estimate is unbiased in the sense E(X,—x)=0. For the Bar-
Shalom—Campo rule, the declared fused estimation error covariance matrix,
Vi =Vi—(V=Vi)(Vi +V, =V, =Vi5) (Vi =V}3), is honest (or consistent), while,
ignoring the cross-covariance, V.=V, +V;) "' =V, =Vi(V,+V,)'V, for the
Speyer rule is not honest and generally optimistic.

:|. In that sense, we may say the simplified fusion rule

6.2.1.1.2 Tracklet Fusion Rule

For each sensor i=1, 2, let p;,(x) = P(x‘(yij)?';,). Then, as shown in Chong (1979),
the tracklet fusion rule to obtain the fused probability density function p, by fusing
p, and p, can be written as py(x)=C"'p,(x)p,(x)/p (x), with the a priori probability
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density p(x) and the normalizing constant C. This fusion rule can be applied to
any probability (generally non-Gaussian) distributions on any appropriate target
space E as long as the densities and the integral are all well defined. In our linear-
Gaussian case, as shown in Chong et al. (1983,1986,1990), etc., the tracklet fusion
rule is defined by

W=VpVii=12 Wo=-ViV' =1-W, =W, (6.10)

with the declared fused estimate error covariance matrix Vp = (V' +V; ' =V) 7,
where V=E((Xx — x)(x — x)7) is the a priori covariance matrix.

Unfortunately, the tracklet fusion rule may not be exact in the sense,
pr(x)=P(x (ylj)?’;l,(yzj)yﬁl), unless the target dynamics are deterministic, i.e.,
B,=0 in (6.2). Nonetheless, the extrapolation of the a priori covariance matrix
by (6.6) takes the effects of the process noise into account. However, the declared
fused estimate error covariance matrix V» = (V;"' + V5 ' = V)™ is often not honest and
generally optimistic.

The fusion rule (6.10) can be rewritten as

~-1

Vike =V x4 Vi +Vaz ©.11)
— o~
Vil=V +Vi +V,

with, fori=1, 2,

{\Z' L=V -V ' 6.12)
~-1

vii=yioyT

Equation 6.11 appears as a Kalman filter update equation that updates the state
estimate by the two conditionally independent measurements, z, and z,. Equation 6.12
can be interpreted as the decorrelation of the two local estimates, %, and X,, by
removing the prior information represented by the pair (x, V) from X, and X,. The
decorrelated estimates, z, and z,, defined by Equation 6.12, are called the equivalent
measurements, or the pseudo-measurements, or the state estimates of tracklets (or a
track segment, a portion of a track, small enough represented by a single Gaussian
distribution but large enough to have such a full-state representation, defined by (z;, V)
(Belkin et al. 1993, Lobbia and Kent 1994, Drummond 1997a, 1997b), etc. This is
the reason why we call this rule the tracklet fusion rule. Because Equation 6.11 is in
the information matrix form of Kalman filter, a distributed track fusion algorithm
using Equation 6.11 with Equation 6.12 is sometimes called information filter or
information matrix filter (Chang et al. 2002).

The decorrelation formula (6.12) also gives us a convenient way of representing
a tracklet or a track segment by a pair (z;, V) of the equivalent measurement and its

~—1 o~
measurement error covariance matrix, or equivalently (Vi z, Vi ) From this point

~ ~-1 ~-1
of view, the distributed track fusion algorithm that use this pair, (z;, V,) or (V,- zi, Vi )
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to represent approximately the conditionally independent unit of information, is
called the Channel filter in Durrant-Whyte et al. (1990) and Rao et al. (1993).

6.2.1.1.3  Minimum-Variance (MV) Fusion Rule

Let x,=E(xlx,, %,), i.e., the conditional expectation of the target state x=x(#;) at the
fusion time #,, given the two local state estimates, %, and %,. It is well known (cf,,
e.g., Rhodes 1971) that the estimate X, minimizes the expected estimation error*®
E(||% — x]|?1%,, X,) among all the estimates %, as defined as any measurable functions of
X, and %,. Because of the Gaussianness, the fused estimate, X.=E(xlx,, X,), is also the
maximum a posteriori (MAP) estimate of x conditioned by £, and %,, and is given by
(6.4) using [W, W, ] =V,.V.', and Wy=1 - W, — W,, with

VSV Ve VetV =V =V
Vo +V =V Vo Voo +V-=ViH—-Vp (6.13)
Ve = [‘7_V01 ‘7—V02:|

iz

where
T
. . . AT AT
V., is the self-covariance matrix of z = [x, X3 :|

V.. 1s the cross-covariance between x and z

We should note that, since %—X=X-x+x—-Xx=X%,—-(x—-x), i=12, we have
E(( )e,.—f)()e,—f)r)=v.+x7_%€ —Vg,, for i, j=1, 2, with V,=V,, and E((x - X)

\’ y
& -x)"=V -V, for i=1, 2. Therefore, while the Bar-Shalom—Compo rule consid-
ers only the correlation caused by the common process noise, and what the tracklet
rule considers explicitly only the correlation caused by the use of the common a

priori information, the MV rule considers both and provides the optimal estimate as
T
the conditional expectation given z = [)EIT X §] . The declared fused estimate error

covariance matrix, Vy =V =V, V'V, is honest.

As shown in Zhu and Li (1999) and Li et al. (2003), this MV fusion rule is also the
best linear unbiased estimate (BLUE) by choosing the best weights (W,, W,, W,) to
minimize the estimation error variance, under constraint W+ W, + W, =1, and hence
we may call it the BLUE fusion rule. The Bar-Shalom—Campo rule is obtained as the
BLUE rule with more restriction, i.e., by the minimization with respect to (W, W,),
with the constraints W,=0 and W,+ W,=1.

6.2.1.1.4  Bayesian Maximum-Likelihood Fusion (BML) Rule
T
Define z= [fclT i ] as before. Consider P(zlx), which is the conditional probability

A A T » . . . .
density of z= [xlr % ] (data) given x (state to be estimated), i.e., the likelihood
function in the strict Bayesian sense. Reversing the roles of x and z, we have
P(zlx)=g(z — Z;V.,) with

* By ||-||, we mean the standard Euclidean norm, i.e., HxH =+/x"x for any vector x.
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~ o —-1
z=z+V,V (x—x) 6.14)

Hence, the likelihood function P(zlx) (as a function of x) is maximized at
— ~ -1 ~
fp =54V (VW) ViV (z-7) 6.15)

Thus the maximum likelihood estimate of the target state x given the local esti-
mates X; and X, can be expressed by (6.4) with the weight matrices calculated by
(W, Wol=MV,, V' with M =V(V,V;'VE)™" with W,=I — W, — W,, instead of the
MV fusion weights [W, W, | =V, V"

We may say the likelihood function P(zlx) is the likelihood function in the strict
Bayesian sense, and hence we call the fusion rule defined by (6.15) the Bayesian
Maximum Likelihood Rule, or BML Rule.

6.2.1.2 Calculation of Cross-Covariance Matrix

Besides the Speyer (simple convex combination) fusion rule and the tracklet fusion rule,
it is necessary to calculate the cross-covariance matrix between the estimation errors,
X, and X, of local estimates, X; and X,. The calculation was described in Bar-Shalom
(1981), for the synchronous sensor case, which can be easily extended to nonsynchronous
cases as shown in Mori et al. (2002). To do this, let 7 = U { ;Ik} be the union of the

observation times of the two sensors, ( ) be the unique enumeratlon of T such that

T,<T,<...<Ty,and [, = {z e{l, 2}‘Tk =ty forsomek } for every k.

Let V,,, and Vuk be the cross-covariance matrices between estimation errors of
the state estimates of x(7) based on {ylt,, < T,_,} and {y,lt,, < T,_,}, and between
those by {y,lt;, < T,} and {y,lt,, < T}}, respectively. Then we have

vlzk = q)(Tk,Tk—l) ‘XZ(k—l)q)(Tk’Tk—l)T + Q(Tk’Tk—l) 6.16)
and
(I_K]k’Klk')Vlzk lflk :{l}andtlk' :Tk
Vise =4 Vi (1- K2k'K2k’)T it [, ={2}andt,p =T, 6.17)

(I =Ky Kyp ) Vi (1 - KZk”sz")T it ={1,2}andt,p = tpr =T,

together with an appropriate initial condition, where K- and K,;- are the Kalman
filter gain matrices used by sensors 1 and 2 to process y;- and y,-, respectively. The
cross-covariance matrix V;, between ¥, and X, can be obtained at the end of this
recursion, with an extra extrapolation (6.16) (at the end) if necessary.

The cross-covariance matrices V,,, between the estimation error of the
state estimate of x(7,) conditioned on {y,lf,, < 7,} and the a priori extrapolation
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error E(x(T}) — x(T))), can be calculated similarly by the extrapolation equation (6.16),
and the second update equation of (6.17), to obtain V|, and V,,, (which are necessary
for calculating the MV and BML fusion rules). The local estimation error covariance
matrices, V, and V,, are of course provided by the local Kalman filters, while the a
priori extrapolation error covariance matrix V is calculated by (6.6).

6.2.1.3 Covariance Intersection Methods

The covariance intersection (CI) method was introduced as a method of fusing
two estimate-covariance pairs, (%, V;) and (%,, V,) when the cross-covariance V,,
of the estimation errors is not known or available. The CI approach is a heuristic
approach to adjust the commonly used the simple weighting, i.e., the Speyer fusion
rule (6.9), as

Vi'dp=aV! & +(1-0)V5'%,
(6.18)
Vi' =aV ' +(1-0) V5!

with a fixed scalar parameter o € [0, 1], i.e., (6.4) with W,=0, W, = OcVFVf', and
W, :(I—OL)VFVZ"I. The term “covariance intersection” originates from the fact

that the ellipsoid” { x € E ‘||x||é,lﬁ Xz} is included in the intersection of two ellip-

soids, { xe E‘||x||‘2/,, < X2}, i=1, 2, for any given >>0 (Nicholson et al. 2001, 2002,

Julier et al. 2006). But the terminology may appear rather confusing because the
ellipsoid { xe E‘H x—34 ‘2’E‘S Xz} is not necessarily contained in the intersection

2
N l{x cE|lx-32.s xz}-
= i

The CI rule (6.18) can be viewed as a Gaussian case of the fusion rule,

Pl(x)apz(x)lfa
L PO Py d

pr(x)= (6.19)

which is called the Chernoff fusion rule in Hurley (2002) and Julier (2006), because
the denominator of the right-hand side of (6.19) is known as Chernoff information
(Cover and Thomas 2006). There are several proposals about how to choose the
parameter o € [0, 1]. A couple of choices for the scalar weight o are shown below.

6.2.1.3.1 Shannon Fusion Rule

Consider the continuous-random-variable version of the entropy, known as the
differential entropy or the continuous entropy of the fused probability distribution,

“ By |||, we mean the norm on any Euclidean space defined by a positive definite symmetric matrix A

def
as HxHA = \x" Ax for each vector x.
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H(pr) = —f In( $(x)) pe(x)dx 6.20)
E

The fusion rule that minimizes (6.20) can be called the minimum entropy fusion or
Shannon rule. In the case where p, is Gaussian with the CI covariance matrix V,,
we have H(pp)=(1/2)(In(det(2nVy) +dim(E)), the minimization of which becomes
the minimization of the determinant. The resultant fusion rule (6.18) is called the
Shannon rule in Chang et al. (2008).

6.2.1.3.2 Chen-Arambel-Mehra Fusion Rule

This fusion rule is defined as the one that minimizes the estimation error mean

square, i.e., the trace of the fused covariance matrix V, defined in (6.18),
-1

tr(Vp)=tr (ocV[1 +(1—0L)V2’1) , as a function of o.e [0, 1]. Let die [0, 1] such

that the trace tr(V}) is minimized at ot= 6. Chen et al. (2002) show a very interesting
interpretation of this optimal &, i.e., the corresponding CI fusion gain matrix pair,
W, = aV,V; " and W, = (1-&) V5, is an optimal solution that minimizes

hWW,) = JuW VW + W,V Wy 6.21)

subject to the unbiasedness condition W,+ W,=1. We call the convex intersection
with this & the Chen—Arambel-Mehra fusion rule.

6.2.1.4 Optimality of Track Fusion

The track fusion rules described so far obtain an target state estimate that is the
“best” in some sense, e.g., maximum likelihood, maximum a posteriori (MAP),
minimum variance, etc., given the two local target state estimates, either explicitly
or implicitly, under the assumption that the local estimates are optimal in the usual
sense, i.e., the outputs of the local Kalman filters. However, because the conditioning
uses only the local estimates that are not sufficient statistics when the target dynamics
are nondeterministic, e.g., with process noise in the target model to account for target
maneuvers, the performance of the fused estimate is generallg inferior* to that of

the central processing using all the raw sensor data, (()’ik)kNil - For this reason,

i=
the performance of a track fusion rules should be compared with that of central
processing, rather than the MAP (or the MV) fusion rule, whose optimality is also
limited to the conditioning by the local sate estimates, %, and X,.

Furthermore, there may be one more compelling reason why the performance
of every track fusion rule must be compared with the centralized tracking
performance. That is because, for the first time in the long history of track fusion
studies, it was recently shown that the reconstruction of the globally optimal
state estimate only by fusing or combining the local estimates is possible.
Although such reconstruction can be obviously done in cases with deterministic
dynamics or the full-rate communication, it is remarkable to see that the fusion

* Except for some extreme cases such as the cases where the local agents send out the local estimates
after every synchronized observation (i.e., the full-communication-rate cases).
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rule in Koch (2008, 2009), Govaers and Koch (2010, 2011), which we may call
the Koch—Govaers fusion rule, can achieve the global optimality with any
asynchronous communication and arbitrary communication rate to achieve the
global optimality after each communication.

Using the notation in Section 6.2.1.2, the Koch-Govaers fusion rule requires
local estimates, ((f,-k)kNﬂ)i_l and (()Afzk )/’:/:1)1,:1, each X, paired with the covariance

matrix V,, and each %, paired with the covariance matrix V,, to satisfy

2
P(x(m)lvwl < Tvi=12}) = [ [e(x(m)-5%) 622

and

2
ty <Tovi = 1,2}) - C'—‘Hg(x(Tk) 24 0 6.23)

P ('x(Tk)‘{yik'

The recent series of papers (Koch 2009, Govaers and Koch 2010, 2011) show that
those two requirements can be satisfied by the extrapolation step

2 (7r— (' A
X = 2CD(T/<,T1<—1)(Z”1 Vi’(lk—l)) Vice-1) Xik-1y

(6.24)

_ 2 . -1
Vi = 2(¢(Tk,Tk1)( ZM V,«»}lkl)) cb(Tk,kal)T + Q@(Tk,Tkl)]

and the updating step

)iik = X + Ky —flik'xik HT =1 {x:k = xi'k (6.25)
Vi =(I-KivHy: )V Vi =V
with K}, =V,_ HE. (Hika_lHi? +Rik')71 if T, =t,, each for each sensor i=1, 2. The
initialization can be done in any way to satisfy the condition, either (6.22) or (6.23),
for any appropriate k.
We should note two crucial facts: (i) neither ((-xzk)k 1)2 nor ((Xlk) ha 1)2 | are neces-
sarily locally optimal estimates in any sense, and (ii) both extrapolatlon (6.24) and

update (6.25) require knowledge of the local variance matrices (Vik )2, , not only its
own but also those of the other sensor. In other words, global optimality is obtained
by sacrificing local optimality, and we need extensive knowledge in terms of covari-
ance matrices of the other local processor. As far as (i) is concerned, however, local
optimality, if necessary, can be maintained by locally running the Kalman filter for

B 2
each sensor in parallel to the estimates ((xik)kN=l) and ((-xtk)k 1 ) defined by (6.24)
and (6.25). The latter requirement (ii), however, looks too excessive at the first glance.
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We should note, however, that for our linear-Gaussian systems, all the estima-
tion error (self and cross) covariance matrices as well as all the crucial param-
eters, such as the Kalman filter gain matrices and the innovations variance
matrices, are all constant (i.e., not random). Hence, in the probability theory,
they are all known or a part of the problem definition or the problem statement.
In practice, however, the exchange or transfer of such knowledge may require sig-
nificant communication bandwidth that may or may not be available. Therefore,
realistically, we need to assume those parameters may have to be considered
as a part of system design parameters, i.e., off-line information communicated
“beforehand.” Otherwise, e.g., communicating each measurement error covari-
ance matrix for every local observation to a fusion center, or to each other local
agent, may be equivalent to or exceeds the full measurement communication.
Furthermore, whenever the linearity or the Gaussianness is questionable and
extended Kalman filters are needed, the covariance matrices may become data-
dependent, and hence, at least, some adjustment may become necessary. Thus the
feasibility of this “optimal” track fusion algorithm remains to be demonstrated
in a practical situation.

6.2.1.5 Performance Comparison of One-Time Track Fusion Rules

In order to characterize various track fusion rules and to compare with each other,
we would like to use simple yet realistic examples. For this purpose, we chose
a four-dimensional (two-dimensional position, two-dimensional velocity) state

0 1 0
space, with the Ornstein—Uhlenbeck model, i.e., A, = , B = , and
P t |:O _BI:| ' \al
2
_ 1
VO = {GP

0 (2)1:| (B >0andq = 2Bo; > 0), and the two-dimensional position-only
G,

observation,* H, = [I 0]. The Ornstein—Uhlenbeck model can approximate a real-
istic target maneuver behavior known as a random-tour behavior with B! as the
mean time between two maneuvers or of the length of each constant-velocity leg
(Washburn 1969, Vebber 1991). For the sake of simplicity, we use synchronous,
uniform sampling (measurements), i.e., At = t;,,,, — 1, for k=1,...,N, t,=t,, and
tp=t,, fori=1, 2.

It is customary to use the so-called almost constant-velocity model or the small-
white-noise model to model target maneuvers, i.e., f=0. Since we have chosen
the Ornstein—Uhlenbeck model instead, we would provide some explanation. The
Ornstein—Uhlenbeck dynamics are usually determined by two parameters, the
inverse [ of the time constant (which can be considered the mean time between two
maneuvers) and the white noise intensity ¢ that drives the variations in the velocity,
from the initial condition. However, if the target velocity is, a priori, a stationary
process defined by the stochastic differential equation dv(r) =—[3v(t)dt+\/;dw(t)
with the stationary covariance matrix 621, the two parameters are constrained as
g =2Po;. Using the stationary velocity process with standard deviation o, reflects
the physical reality of real moving objects, in particular, on ground or on surface

* Where / and 0 are the 2x 2 identity and zero matrices, respectively.
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FIGURE 6.1 Characterization of Ornstein—Uhlenbeck model: (a) Increase of a priori
position uncertainty in time, (b) a priori position uncertainty as function of normalized
white noise intensity, (c) size of state uncertainty ellipsoid as function of normalized white
noise intensity.

water or under water. Avoidance of ever increasing a priori velocity uncertainty
(contradicting with reality) is the major motivation for using the Ornstein—Uhlenbeck
model.

Figure 6.1 presents the key features of the Ornstein—Uhlenbeck model. Figure
6.1a shows the time increase of the a priori root mean square (RMS) position by
the Ornstein—Uhlenbeck model, which increases as B~'(1 — e#)o, (which can be
approximated as G,/ when [ is small, and approaches 0 when J is large) by the

velocity uncertainty, and by the white noise intensity, as 6,/2B87'¢ for large B and

{(2/3)Boit’ for small B. The increase as the function of time is generally much slower
than the small white noise model. Figure 6.1b shows the a priori positional RMS at a

fixed time AT as a function of the normalized white noise intensity q/ (Gf / AT). We
should note that, as g | 0, since g = 2[363, we have B | 0, i.e., the model approaches
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a deterministic system, and that, as the white noise intensity increases g 1 o, 3
increases as 3 1 oo, and a priori position uncertainty approaches to be stationary one.

As B 1 o (hence ¢ 1 ), the average time between maneuvers approaches zero,
and it will eventually reach the point where there are so many maneuvers to every
direction, the effects cancel each other, resulting in the almost stationary positional
RMS. Figure 6.1c shows the volume of the state uncertainty hyper volume at fixed
time AT (normalized by the initial state hyper volume) as the function of normalized
white noise intensity g / (Gf / AT). It is interesting to see that, for both small and large
q’s (consequently small and large [’s), the position-velocity joint uncertainty volume
approaches the same volume at the initial time, and the maximum of the volume is
attained in the middle. For a small [, the position-velocity cross-covariance makes
the state uncertainty volume time-invariant, while for a large 3, the position-velocity
cross-covariance disappears and both position and velocity covariance matrices
become stationary.

6.2.1.5.1 Supplementary Sensor Case

Let us consider two sensors that have almost the same performance characteristics,
so that the addition of the second sensor to the first sensor is supplementary. As
an extreme case in such situations, we assume, with N=10 (track fusion after each

2
sensor accumulates 10 measurements), R, = O 02 , k=1,...,N,i=1,2, which
implies V,=V,. Gum

Inthisextremecase,the Bar-Shalom—Camporuleisreducedto W, = W, =(1/2)I,which
is the same as the Speyer rule. In other words, no matter how big the cross-covariance
between the two local track estimation errors is, the inter-sensor cross-covariance is
irrelevant to the fusion rule.

Moreover, because V,=V,, any value o in the unit interval [0, 1] provides the
same VF for any rule of the CI method. Although the actual fused estimation error
covariance may change with the weight o, considering the symmetry, it is reasonable
to choose o.=1/2, which makes both the Shannon and the Chen—Arambel-Mehra
rules” become the same as the Bar-Shalom—Campo and the Speyer rules. As is well
known, however, the fused estimation error covariance by any CI rule is the same
as each local estimation error covariance and is extremely overestimated (overly
pessimistic).

Figure 6.2 compares the performance by the four fusion rules: the Bar-Shalom—
Campo rule (also Speyer and CI rules), the MV rule, the tracklet rule, and the BML
rule, with the centralized tracking performance, when the normalized white noise
intensity, q/ (63 / At), is varied in a wide range. Other key parameters are set as
6,=100,, (the initial position standard deviation) and ©,=3(c, /A7) (the stationary
velocity standard deviation).

First of all, we should note that the deterioration of the estimation performance
from centralized tracking is very small, i.e., less than 4% for the Bar-Shalom—Campo,

* With oe=1/2, the denominator of the right hand side of (6.19) becomes J \/P1(x)p2(x)dx, the expres-
E

sion known as the Bhattacharyya bound, and hence, we may call covariance intersection fusion rule
with ou=1/2, Bhattacharyya fusion rule (Chang et al. 2008).
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FIGURE 6.2 Percent increase of RMS estimation errors over centralized tracking perfor-
mance as function of normalized process noise intensity: supplementary sensors: (a) RMS
position estimation error and (b) RMS velocity estimation error.

minimum variance (MV), and the tracklet rules, over a wide range of the process
noise intensity, which is consistent with the observations reported in Bar-Shalom and
Campo (1986) and Mori et al. (2002). The apparent poor performance of the fusion
rule using the likelihood function in the strict Bayesian sense, labeled as BML rule,
in the figure, is, however, rather surprising. The deterioration of the performance of
the BML rule from centralized tracking is within 10%—30% for both the position and
the velocity error RMS, for small process noise intensity, when ¢ < (62/At). However,
when ¢ > (G2/At) , the estimation errors, in particular for the velocity estimates, dete-
riorate and seem to increase rapidly.

As mentioned in Section 6.2.1.1, the BML rule is defined using the likelihood
function in the strict Bayesian sense, i.e., the conditional probability density of the
data P(%;, %,|x) given the target state x to be estimated. In order for the BML rule
to be close to the optimal in the sense of the minimum variance, we must have
V=V (V. -V, V'V )V, which is apparently violated for large process noise
intensities. As mentioned in Section 6.2.1.1, the Bar-Shalom—Campo rule uses a
likelihood function in the classical statistics sense, and apparently, its performance
is much better than the ML estimate using the likelihood function in the strict
Bayesian sense. In Figure 6.2, the full extent of the BML rule performance is not
shown, since its bad performance will otherwise obscure the comparison of the
performance of the other three fusion rules.

The MV rule provides optimal performance in terms of the estimation error vari-
ance as shown in Figure 6.2. It is however interesting to see that the tracklet rule,
which does not use the inter-sensor cross-covariance matrix, shows better perfor-
mance in terms of positional estimation than the Bar-Shalom—Campo rule, which
uses the cross-covariance. But the order of the performance is reversed for the
velocity estimation. This trend holds generally true for complementary sensor and
repeated fusion cases, as shown later. All three fusion rules, Bar-Shalom—Campo,
tracklet, and MV, converge to the performance of centralized tracking performance
both when ¢ | 0 and g 1 o, although the Bar-Shalom—Campo rule that does not use
the a priori target state information exhibits a small bias as g | 0.

Figure 6.3 shows a similar comparison when we vary the initial state position
standard deviation, 6,, which represents the a priori information, in a wide range.
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(a) RMS position estimation error and (b) RMS velocity estimation error.

For this figure, the process noise intensity and the stationary velocity covariance
are kept constant at g = 0.1(63 / At) and 6,=3(c,,/A?), respectively. The Bar-Shalom—
Campo rule does not use the initial state (a priori) information, and its performance
is invariant with respect to 6,. Like Figure 6.2 obtained by varying the process noise
intensity, the performance of the BML rule using the likelihood function in the strict
Bayesian sense (that we may call the Bayesian likelihood function) is noticeably
worse than the Bar-Shalom—Campo rule that is a maximum likelihood estimate
using a likelihood function in the classical statistics sense. In particular, the estima-
tion error of the BML rule exhibits more than 20% increase in the velocity estimation
error RMS over centralized tracking for small initial position uncertainty (small 6,),
although Figure 6.3b does not show that part. Again the position estimation perfor-
mance by the tracklet rule is better than the Bar-Shalom—Campo rule consistently,
and the order of the performance is reversed for the velocity estimation.

We performed similar studies by changing the stationary velocity standard devia-
tion ©,, and did not observe any significant effects on the performance of any of the
fusion rules.

6.2.1.5.2 Complementary Sensor Case
Let us consider cases where two sensors compensate with each other, by letting

40,
including the Ornstein—Uhlenbeck model. Figure 6.4 shows the changes in estimation
performance by several fusion rules due to the process noise intensity.

In this case, the 90° difference in the orientations of the local measurement error
covariance matrices, R, and R,,, is propagated into the local state estimation error
covariance matrices, V; and V,, and the state fusion weight matrices, W, and W,, of
various fusion rules. In particular, the difference in the behaviors of the fusion rules
that use the inter-sensor, cross-covariance matrix V,, (Bar-Shalom—Campo and MV
rules) and those that do not use it (tracklet, Speyer, and CI rules) becomes visible in
Figure 6.4. Nonetheless, like the supplementary sensor case of Figure 6.3, the estima-
tion performance deterioration of the four fusion rules from the centralized tracking
performance remains within a very small range, i.e., 4%—5%. In Figure 6.4, we exclude

m

2 2
G 0 4c,, O . .
Ry :[ 0 ) } and Ry :|: 0 5 ], using the same parameters otherwise,
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FIGURE 6.4 Percent increase of RMS estimation errors over centralized tracking perfor-
mance as function of normalized process noise intensity—complementary sensors: (a) RMS
position estimation error and (b) RMS velocity estimation error.

the performance of the BML rule using the likelihood in the strict Bayesian sense to
prevent its bad performance from obscuring the comparison of other fusion rules.
There are apparently two peaks in the departure of distributed tracking fusion per-
formance from the centralized tracking performance, i.e., the low g peak and the high ¢
peak. For the position estimation performance, the tracklet rule that does not use the V,,
exhibits better performance over the Bar-Shalom—Campo rule for very small g's (close
to deterministic cases). For large g's, on the other hand, the Bar-Shalom—Campo rule
using the V}, exhibits clear advantages over the other rules that do not use V,. For the
velocity estimation performance, the advantage of the Bar-Shalom—Campo rules over
others (except for the MV rule) is uniform with respect to the process noise intensity q.
Unlike the supplementary sensor case (where V,=V,), the scalar weight o in
(6.18) does change the fused estimation error covariance V since V; # V,. However,
in our examples, for both supplementary and the complementary cases, since the
measurement error covariance matrices are diagonal, all the state estimation (self and
cross) covariance matrices are also diagonal. The minimization of the determinant

of the CI fused state estimation error covariance matrix ((XVl_l +(1—0c)V2‘1) "is
therefore the same as the minimization of its trace, and both are reduced to the
maximization of o(1 —o), achieved uniquely at a.=1/2. This makes all the CI rules
identical to the Speyer rule, i.e., W, = (V" + V5" )V,»’l, i =1,2. In other words, both
Shannon and Chen—Arambel-Mehra rules become the same as the Speyer rule.

Figure 6.5 shows the sensitivity of the four algorithms to the initial state
estimation accuracy, i.e., the dependence on the a priori information. Both the
Bar-Shalom—Campo and the Speyer rules do not use the a priori information,
and hence, only very small secondary effects are visible. Because of the sensors’
difference in observability, the effects of including the cross-correlation or not are
apparent. Like the case chosen for Figure 6.3, the process noise intensity and the
stationary velocity covariance are kept constant at ¢ = 0.1 (65 / At) and 6,=3(c,/Af).
With this parameter, as shown in Figure 6.4, the tracklet rule performs better than
the Bar-Shalom—Campo rule, for the position estimation, while the opposite is true
for the velocity estimation.

Other tendencies are almost identical with those shown in the supplementary sen-
sor case (Figure 6.3). Both Figures 6.4 and 6.5 exhibit the robustness of various track
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fusion rules, due to the changes in the key tracking parameters, i.e., the process noise

intensity level and the initial state accuracy (except for the BML fusion rule), as well
as Figures 6.2 and 6.3.

6.2.2 RepeateD TrAcK FusioN

In the previous section, we considered a simple case where track fusion takes place
only once to fuse two local state estimates. In this section, we will explore cases
where communication between two sensors or to a fusion center is repeated.

Figure 6.6 shows three architectures of distributed tracking systems using two
sensors that have their own independent local data processing capabilities. The two
sensor systems may act as two completely autonomous systems that exchange data
between them, or alternatively, report their processed data to a high level system,
which we may call a fusion center. The fusion center may feed fused state estimates
back to the two local sensor systems, to improve the performance of the local
systems. In this section, we first consider the cases where there is no feedback, and
then later, the cases with feedback.

We assume the same linear dynamics of a target to be tracked using two sensors
with linear observations, as described in Section 6.2.1. For the sake of simplicity, let
us consider only cases where the informational exchange happens synchronously at

Fusion
center

Fusion

center

(@) (b) (c)

FIGURE 6.6 Three possible architectures using two sensor systems with local data pro-
cessing capabilities: (a) two-autonomous-sensor distributed system, (b) two-level hierarchical
distributed system, and (c) hierarchical system with feedback.
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the same time, but repeatedly at t,, tp,,...(f,<tp <tz <...). The local estimates of
the two sensors and their estimation error covariance matrices will be denoted as
((Gi1> Vi), Gy Vin)) at 2y, (R Vi), Bgs Vi) at 1y, (R, Vi), (3, Vp) at 15, and so
forth, while the fused state estimate at each #, k=1, 2, ... will be denoted as 3.

For repeated-fusion cases, with or without feedback, the fusion rules X, =, (X,
X125% 15 X003 -+ 3%, Xi0) (Where ¢, is a linear or affine function because we are using a
linear-Gaussian model) can be categorized as follows:

—

. Memoryless: Xz, =, (X, X;,) uses only the most recent local estimates (X, X;,).

2. Limited memory: Xp=0&u_rsi> Xapsnos -3 %u» Xo) uses only the most
recent ¢ pairs of local estimates.

3. Full memory: The full history (X, X,5; %5, X505 -3, X;p) Of the past local

estimates is used.

We may categorize the Bar-Shalom—Campo, the Speyer, and the CI rules into the
memoryless fusion rules, while the MV, and the BML rules can be made to be either
limited or full memory rules, and the tracklet fusion rule may become a memoryless
or one-step limited memory rule.

6.2.2.1 Repeated Track Fusion without Feedback

Let us first consider the cases where each sensor subsystem maintains the local data
processing only with the local data, and does not mix with data from other sensors,
while fused state estimates are calculated by fusing the unmixed local estimates.
The rationale for not letting the local sensor system use the fused information is
that, depending on what fusion rule is used and how fused results are fed back to
the local data processing system, the performance of local systems, and eventually
of the overall system, may deteriorate, rather than improve, by contamination of
the otherwise pure local data. This data processing can be achieved either by a
hierarchical or two-autonomous-system design, as shown in Figure 6.7.

Figure 6.7 shows two information graphs (described in Chapter 5) to illustrate
the information flow in track fusion without feedback. The two information
graphs are equivalent to each other and describe informational transactions in a

Sensor 1 measurements Sensor 1 measurements
ITTTTIE ITITIRIT Y
Sensor 1
Fusion .’i‘t(’ fL\t“ %f)tk‘z rx\tra }f)t}q
center ? 7{ f
Sensor 2 [% T é é
banbdboh
Sensor 2 measurements Sensor 2 measurements

(2) (b)

FIGURE 6.7 Information graphs for processing architectures of two-sensor track fusion
without feedback: (a) two sensor and fusion center and (b) two autonomous sensors.
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two-sensor-one-fusion-center system and a two-autonomous-sensor system. Dotted
lines and circles with dotted lines represent a priori information, and squares
represent raw sensor data that are fed into and accumulated in the local sensor
data information graph nodes. The data accumulation, represented by horizontal
informational flows at the same horizontal position, is represented without arrows
in the graph. As shown in the graph, the same data processing can be implemented
in either (a) hierarchical architecture or (b) autonomous architecture (or replicated
hierarchical architecture). In the latter case, each local system maintains two state
estimation filters, one local and one global. The global filter maintained by each
local sensor system is sometimes called a shadow tracker (Drummond 1997b).
The various fusion rules introduced in Section 6.2.1 can be adapted as follows:

e Bar-Shalom—Campo, Speyer, and CI fusion rules: Those rules do not use
the a priori information. For repeated track fusion, the a priori information
at one fusion time 7, can be viewed as the information accumulated up to
the previous fusion time #;_;,. Thus these fusion rules ignore this a priori
information, and simply combine the latest available local state estimates
(i.e., memoryless fusion rules).

e Minimum Variance (MV) Fusion Rule: As indicated in Figure 6.7, either fusion
center or the fused state filter in a local system accumulates the local estimates
as (£}, Vi), (1, Vi), .o (R L, VoD, (g2, Vi), at fusion time #4, in
addition to the current pair (X, V), ({12, Vi»)). Therefore, a general linear
estimate X, of the target state x(,) is a linear function of all the available esti-

A k .. . .
mates ((x ir Vi )1 ) . plus the a priori information P(x(z,)) (or equivalently
P(x(z)) with mean X, and covariance matrix \7k). By letting 2= ( (T )K=|

and x=x(t,) in (6.13), and by calculating the covariance matrices V,_ and V_,
with augmented dimensions, the MV fusion rule can be expressed as

K2
Xpe = Wio X + 2 z WXy (6.26)

k=1 i=l

which is a full-memory fusion rule. Note that the calculation of the matri-

k
.. . . A \2
ces, V. and V_, are not trivial involving many random vectors ((xm')m) .
k=1

Nonetheless, ;; can be done through a simple extension of the method

described in Section 6.2.1.2. We should note that the MV fusion rule is
called the quasi-tracklet fusion method in Gao and Li (2010).

k k
Replacing the summation 2 in (6.26) by ZFHH, we have a memoryless

(¢=1) or alimited memory (> 1) fusion rule. In such a case, the MV rule obtained in
that way is the BLUE with respect to the weights (Wi, Wiy, Wia, oo, Wy 1, W)

with the constraint W, + ZK " MZW“ = I, while the Bar-Shalom—Campo rule
is the BLUE with respect only to (Wkl, W,,) with W, +W,,=1.
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The BML fusion rule using the likelihood function in the strict Bayesian sense,
defined by (6.15) in Section 6.2.1.1 for one-time track fusion, can be extended to the
repeated fusion rules without feedback in exactly the same way as the MV rule. However,
because of the poor performance that we found for the single-time track fusion, we will
exclude the BML fusion rules from our consideration in the rest of this chapter.

6.2.2.1.1 Tracklet Fusion Rule and Decorrelation Method

The tracklet fusion rule defined by (6.10) in Section 6.2.1.1 can be directly translated
into the repeated fusion as W,y =V Vi, Wy =V V', and W, = Vi V3. In other
words, we can apply the one-time tracklet fusion rule (6.10) used to decorrelate the
past fused estimate from the most recent pair of the local estimates. Without feed-
back to the local processing, it can be shown (cf., e.g., Chong et al.1990) that this
rule can achieve the performance of the centralized tracker for deterministic target
dynamics without process noise, and for non-deterministic target dynamics when the
fusion rate is the same as the sensor revisit rate.

Another approach is to decorrelate the local estimates between the current esti-
mates %, at the current fusion time 7, and the previous fusion time #5_;), by rewrit-
ing Equation 6.12 as

{Vkilzki = Vk;l)%ki —‘71517% 6.27)

-1 _ ys-1 /-1
Vi =Vii = Vi

to obtain the decorrelated pair (z,, V,,), for each sensor, i=1, 2. This rule is similar
to Equation 6.11 except that the local past estimates in used in decorrelation
(Chong 1979). As mentioned in Section 6.2.1.1, the vector, z;;, i=1, 2, obtained this
way, is called the pseudo-measurement or the equivalent measurement, and the
measurements between the two consecNutive fusion times #,,_, and 7 are often called
a tracklet. The decorrelated pair (z;;, V), i=1, 2, is then used to obtain the updated
fused estimate %, using the Kalman filter update equations

Vilie = Vil Xm + Vid'zu +Vid zia 6.28)
Vid = Vil + Vi + Vi '

The local prediction (x;;, V,,) and the global prediction (X, V) can be obtained by
the extrapolation described in Section 6.2.1.1.

The tracklet fusion rule may viewed as a memoryless rule, since it uses only
the most recent pair of local estimates, (%,,, X,,), although it uses the extrapolated
a priori state mean. On the other hand, decorrelation of the local estimates uses
the extrapolated pair of (X, X;,) of the last local estimates (£;_,,;, £;_;,), as well as
the extrapolation X, of the last fused state estimate %, i.e., a fusion rule with
limited (one-step) memory. However, it can be readily shown that the two methods
are equivalent to each other only if the target dynamics are deterministic, i.e., B, =0
in (6.2). However, when the target dynamics are not deterministic, their performance
will be different. As mentioned in Section 6.2.1.1, this local estimate decorrelation
fusion rule is called the Channel filter in Bourgault and Durrant-Whyte (2004).
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6.2.2.1.2  Numerical Example of Repeated Track Fusion without Feedback

Figure 6.8 compares the performance of various track fusion rules applied to repeated-

fusion-without-feedback case. We used the same simplified model defined in Section

6.2.1.5, i.e., the Ornstein—Uhlenbeck model with the time constant § and g = 2Bo?,

with a priori position standard deviation, 6, and the velocity standard deviation ©,.

2 2

G, 0 40, 0 1.

isused.
c

Only the complementary case with R, = 5 and Ry, = 5

40, p

As shown in Section 6.2.1.5, 10 local synchronous measurements are taken
between two consecutive fusion times, which are repeated 5 times, at the end of
which we evaluate the performance of each repeated track fusion rule by the methods
described in Section 6.2.1.2. The performance is shown only for the variation of the
normalized process noise intensity. When the initial positional covariance matrix
(determined by o) or the stationary velocity covariance matrices (determined by
G,) is varied, virtually no sensitivity was found due to the relatively long simulation
period.

Comparing Figure 6.8 with Figure 6.4 in Section 6.2.1.5, the relative trends of
the various fusion rules remain the same for the positional estimation performance,
while the deterioration of the velocity estimation performance when the process
noises is noticeably smaller in the repeated fusion than the one-time fusion.
Since this is a complementary-sensor case, the local estimation error covariance
matrices are different, and hence the fusion weights of the Bar-Shalom—Campo
and the Speyer rules are different, resulting in some differences in Figure 6.8.
However, because of the use of the completely complementary sensors defined
by constant measurement error covariance matrices, R, and R,,, all the CI fusion
rules become the same with a.=1/2, as in the one-time fusion case (for Figure 6.4)
and is identical to the Speyer rule.

As described in (6.26), the full-memory MV fusion rule uses an increasing num-
ber of past fused state estimates in the fusion rule as track fusion is repeated, requir-
ing correlation among a larger number of past local estimates. To obtain Figure 6.8,
we considered two cases for the number of local estimates used by the MV estimate.

4 Speyer/

3| Bar-Shalom-

7
1 rul
Campo rule = Spever/Clule

NTsal
i
N

i
; Tracklet .-

% increase of position
estimation error RMS

% increase of velocity
estimation error RMS

=

0 . h = 0 ‘ ‘ "
102 107 10° 10! 102 10° 10* 10° 1073 1072 107! 10° 10! 102
(@)  Normalized white noise intensity g/(c.2/At) (b) Normalized white noise intensity g/(c.2/At)

FIGURE 6.8 Percent increase of RMS estimation errors over centralized tracking perfor-
mance as function of normalized process noise intensity: repeated fusion without feedback—
complementary sensors: (a) RMS position estimation error and (b) RMS velocity estimation
error.



148 Distributed Data Fusion for Network-Centric Operations

Case 1 (MV1) uses only the most recent local estimate for each sensor and the
2

fused estimates is Xp, = WX + 2 W, x,; for each sensor and the fused estimate is
) i=2
Xpe = WX + Z(Wkifck, + W(k_1)5€(k_1);)~ As mentioned earlier, the MV fusion rules
i=2
outperform any other fusion rules that were compared. We should also note that,
except for the MV2 fusion rule, all the fusion rules do not exhibit the convergence
to the performance of the centralized tracking when the system approaches the
deterministic dynamics, i.e., B | 0, which may be a general indication of a potential
instability associated with repeated fusion without feedback. Nonetheless, as seen in
Figure 6.8, the performance deterioration of distributed tracking from centralized
tracking by various fusion rules remains relatively very small, i.e., 1%—5%, over a
very wide range of the process noise intensity level g. In particular, the performance
by the relatively simple fusion rules, i.e., Bar-Shalom—Campo, Speyer, and CI, is
found to be very robust.

The tracklet rule shown in Figure 6.8 is in its decorrelation form, which is widely
used to decorrelate a sequence of up-stream trackers’ outputs that are input into a
fusion engine that fuses tracking information from multiple sources, given in terms
of state estimates rather than raw sensor measurements. The decorrelation form of
the tracklet rule is defined by (6.27) and (6.28). This tracklet fusion rule is practical
because it does require inter-sensor local target state estimation error covariance,
and the result in Figure 6.8 justifies its use in the cases where fused state estimates
are not fed back the local tracks.

6.2.2.2 Repeated Track Fusion with Feedback

It is rather intuitive to expect better state estimation performance, both local and
global, by feeding back the fused state estimates to the local tracking agents.
However, even using linear models, i.e., a rather idealized version of generally
nonlinear real-world systems, such expectation may not be realized, depending on
what fusion rule is used. This is the case because, although some fusion rules may
perform reasonably well for state estimates at fusion times as shown in Chang et al.
(2002), they may declare wrong, generally unreasonably optimistic estimation error
covariance matrices, thereby contaminating the performance of the local trackers.
This may cause secondary effects such as contamination of the fused state estimates
generated later in by local tracking agents and subsequent deterioration of the overall
performance. For this reason, repeated fusion without feedback may be preferred in
many practical cases.

Repeated track fusion with feedback can be illustrated by the information graph
shown in Figure 6.9.

In this figure, feedback is represented by those from the fusion center to the local
processors in (a) two-local-sensor-one-fusion-center architecture and by arrows that
connect local processing information graph nodes directly in (b) two-autonomous-
sensor architecture. In (b), two-autonomous-sensor distributed architecture, each
local processing node sends its current state estimate at an agreed upon fusion time
to the other node, and upon the receipt of the state estimate from the other node,
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FIGURE 6.9 Information graphs for processing architectures of two-sensor track fusion
with feedback: (a) two sensor and fusion center and (b) two autonomous sensors.
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FIGURE 6.10 Percent increase of RMS estimation errors over centralized tracking
performance as function of normalized process noise intensity: repeated fusion with
feedback—complementary sensors: (a) RMS position estimation error and (b) RMS veloc-
ity estimation error.

fuses the local and remote state estimates into the global estimate at that moment.
Then, until the next fusion time, each local sensor processes only its local data.

Figure 6.10 shows the performance of the various fusion rules adapted to repeated
track fusion with feedback, using the same complementary-sensor model used to
compare the performance of Figure 6.8. The adaptations are shown below.

6.2.2.2.1 Bar-Shalom—Campo, Speyer, and CI Rules

The same fusion rules are used but the local state estimates and estimation error
covariance matrices modified by feedback are used. All the covariance matrices
are diagonal due to the use of the same diagonal measurement error covariance
matrices R,;’s. Hence, all the CI rules become the same with o.=1/2 as shown earlier.
However, although the Bar-Shalom—Campo fusion rule provides the honest fused
state estimation error covariance, neither the Speyer nor the CI fusion rule does. The
Speyer rule ignores the cross-covariance and results in generally optimistic estimation
error covariance matrices, whereas the CI rules generally produce grossly pessimistic
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estimation error covariance matrices, with a typical determinant about four times
bigger than that of the actual estimation error, both contaminating the local trackers’
performance.

6.2.2.2.2 Tracklet Rule

In this fusion rule, X5 = Vi (Vi fu + Vid 3n — Vit X ) the a priori global state esti-
mation pair, (Xp, Vp), obtained by extrapolating the last fusion result (Xz_1), Vig1)s
is used to eliminate the redundant information contained by the two local state esti-
mates through the feedback and remove double counting. Nonetheless, the declared
fused estimation error covariance matrix Vi, = (V;' + V3 = Vi)™ is not honest and
generally optimistic, thus contaminating the local sensor data processing.

6.2.2.2.3 MV Fusion Rule
The MVI rule as defined in Section 6.2.1.1, which only uses the most recent local

2
estimates as xp = Wyo X, + E WX, 18 used because the most recent estimates

contain all the significant upl(zilates by the local agents due to feedback of the fused
estimation results to the local agents. Any version of the MV fusion rules based
on the BLUE principle generates honest estimation error covariance matrices, and
hence there will be no contamination propagated through fusion and its feedback to
the local processors.

6.2.2.2.4 Numerical Example of Repeated Track Fusion with Feedback

The same simplified linear models with synchronized complementary sensors as
those to produce Figure 6.8 are used for Figure 6.10.

The behavior of the tracklet fusion rule is much more stable than that in fusion
without feedback and behaves as a good approximation of the MV rule, which we
may consider an almost optimal distributed fusion algorithm, as far as positional
estimation is concerned. As observed in Figures 6.2 through 6.5, 6.8 and 6.10,
however, the simpler rules, i.e., Bar-Shalom—Campo, Speyer, and CI, may provide
better velocity estimation performance for a range of the process noise intensity levels
q. The MV rule may be improved more by considering linear optimal estimate using
longer length of memory. On the other hand, the Bar-Shalom—Campo, the Speyer,
and the CI fusion rules do not use the a priori information. In the fusion with feedback
case, we can see its consequences in Figure 6.10, although all the variations are within
a relatively small margin, i.e., 5%. Therefore, we see again the robustness of the
simple fusion rules, despite concerns about the use of information that may be much
less than information available at each fusion time, and about the contamination of
the local tracker by not honest (either pessimistic or optimistic) state fusion estimation
error covariance matrices.

6.3 TRACK ASSOCIATION

Track association is a prerequisite for track fusion in a distributed tracking system.
However, in many cases, association is rather obvious, and therefore target state
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estimation from multiple sensors or track fusion becomes the major problem. On the
other hand, when the target density is high, track association becomes a much more
important problem than track fusion. As the track density becomes even higher, track
association and track fusion can no longer be treated as separate problems. In that
case, many local track association hypotheses are possible and equally likely, so that
the best local association hypothesis may not provide high-quality tracks for associa-
tion at the fusion site. Then some form of distributed multiple hypothesis tracking is
needed (Chong et al. [1990], Dunham et al. [2004]).

In this section, we treat the situation where the local tracks are good enough so
that distributed tracking can be viewed as a two-stage problem, i.e., track associa-
tion followed by track fusion. The concept of distributed tracking in terms of track
association was developed shortly after target tracking started to be investigated
with modern estimation theory or filtering theory. Early work includes Singer and
Kanyuck (1971) and Yaakov Bar-Shalom (1981).

6.3.1 TRrRACK ASSOCIATION PROBLEM DEFINITION

We use the same linear-Gaussian model described in Section 6.2.1. We assume,

n

however, a fixed number n of “true” targets represented by the system ((X,'(l )),e[,o,w)),zl

of n replicated stochastic processes on the time interval [z, ) with the joint initial
condition Pr ob{xl (to) € dx, (to),. s X (to) edx, (to)} = H g (xi (to)— )?0;\7<))dx,- (to )

i=1
Each individual stochastic process (x,-(t)) o)’ i=1,...,n, is defined as in
119,

Section 6.2.1, with a system ((vi/,-(l‘)),e[,o,m))fl_l of white noises, or equivalently Wiener
processes ((Wi (D)refi.0) ))__1 . The target density can be measured by Y,(x) =ng(x — xy; V)

so that for any measurable subset B in the target state space E the integral j Yo (x)dx
B

is the expected number of targets whose initial condition x(f,) is in the set B.

Instead of assuming the number n of targets to be a known constant, we may
assume that n is a random variable. When r is a Poisson random variable, the system
(x,-(to))?=I of random vectors in E is a Poisson point process. We maintain the
constant n assumption for this chapter for the sake of simplicity, because the main
purpose of this chapter is to compare various track association metrics.

We assume the following scenario: All the targets are visible by each of the two
sensors, i.e., we assume the detection probability (for the local track level) by each
sensor is unity. We also assume that there are no false tracks. The last assumption
is supported by the fact that any track made up solely of false alarms would have
been weeded out by the local sensor’s tracking. Thus we have n targets that are
observed by two sensors, which produces n local tracks through N; measurements,
i=1, 2, prior to a fusion time #,. Then our goal is to associate two sets of local
tracks represented by the n-tuple of state estimates, (%,;(t7))._, . and (R2(tp))_, at
the fusion time #,, where each estimate Xy is associated with the estimation error
covariance matrix V.
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Uncertainty of the association between the true targets and the set of tracks from
each sensor, i=1, 2, can be modeled by two independent assignment functions ¢, that
is a permutation on the set {l,..., n}. The association hypothesis between the two
sets of local tracks is then expressed as a(i) = (a2 ~a{1)(i), i.e., the i-th track from
sensor 1 and the a(i)-th track from sensor 2 share the same origin. The problem is
then the determination of the most likely or most probable association according to
an evaluation function that has the general form

P(a)zClﬁE(i,a(i)) (6.29)

where
C is the normalizing constant
{(i, j) is the likelihood of track i from sensor 1 that shares the same origin (target)
as track j from sensor 2

Under an appropriate set of assumptions mentioned earlier, (6.29) becomes the a
posteriori probability of the association a conditioned by the set of state estimates of
all the tracks from both sensors, with the normalizing constant C. However, in this
chapter, we consider (6.29) as the expression that relates the association hypothesis
evaluation function to the track association metrics represented by the likelihood
function £(i, j) or its half negative logarithm, L(i, j)=—(1/2)In (G, j)).

6.3.2 TRrRACK ASSOCIATION METRICS

Using the negative half logarithm L(i, j)=—(1/2)In (£(i, j)), the optimal track association
ais obtained by minimizing the association cost f (a) = zn 1L (i,a (z)) By the track
association metrics, we mean the metrics that represent the &)St L(i, j) for associating
the ith track from sensor 1 and the jth track from sensor 2. Some of the metrics in the
following list were originally developed as the metric to be used in the classical chi-
square test, but can be considered as an association metric because of its structure.

Singer—Kanyuck metric: In a pioneering paper (Singer and Kanyuck 1971), the
usual chi-square metric

.. N ~ |2 N A 1A A
L(l’]) = H X —Xoj H(vazj)” =(x;—X Zj)T Vi +V2)) ! (X, —X%2;) (6.30)
is proposed. This metric can be interpreted as the negative half logarithm of

f(i,]')=J Dui (x) f’zj (x)dx=Jg(x—fcl,-;V],-)g(x - ),EZj;VZj)dx:g(xli_)?Zj; Vi +sz)
E E

(6.31)

when we eliminate the factor det(2m(V);+V,))™"2, or its negative half logarithm

In (det(2m(V};+ V), as a constant that appears in the metrics for the other pairs.



Essence of Distributed Target Tracking 153

Bar-Shalom metric: Yaakov Bar-Shalom proposed the metric

2

L(i.j)=| & — %2 ( (6.32)

-1
Vl,-+\/2j4/12[j—V172‘.j)

in Bar-Shalom (1981) to be used also in a chi-square test for the track association,
where V), is the cross-covariance between two tracks, track i from sensor 1 and
track j from sensor 2, obtained assuming that they originate from the same target.
This metric can be interpreted as the negative half logarithm of

X=Xy Vi Vigj
gi,-:J : dx=g( %1 — SayiVii+ Vo, —Viay = Viby
(i) g([x—fz_i] [vl;,« sz:|] ol Fu= RV Vs Vi = Vi )

E

6.33)

12
when we ignore the factor det(2n(Vl,-+sz—V]2,~j —V.Q,,)) , or its negative half

logarithm In (det (ZTI:(VU +Vo; = Vigii — Vlg,-j ))) , as a constant that is to be canceled out.

CI metric: To the best of our knowledge, there is no track association metric based
on the CI principle. However, based on the observation on the two metrics described
earlier, and on the definition of the CI fusion (6.19), an appropriate track association
metric may be defined as

L(i,j) =% - a%szE 6.34)

—1
(AX;IV“+(1 - &’! )_l Vo )

This metric can be interpreted as the negative half logarithm of

0

Z(i,j):J' P (x) &y ﬁzj(x)(l—&r:f)dx=.|.g(x—fc],-;Vh-) g(x—fczj;vzj)(u&fj)dx

E E

(6.35)

det(Vl,-)(1 ~4) det(Vz/-)aU

det((l — 8 ) Vi + d,,vz,.)
logarithm, as a constant that is to be canceled out. The “optimal” weight &€ [0, 1] may
det (ocvg1 +(1- oc)V{j‘)

when we ignore the factor or its negative half

s

be chosen as the one that either maximizes the determinant
(corresponding to the Shannon fusion rule), or minimizes trace ((()LVI,T1 +(1- OL)V{,»I )_1)
(corresponding to the Chen—Arambel-Mehra fusion rule).

Chong—Mori—Chang metric: Under the assumption that there are no false tracks
and missed tracks for the two-sensor track-to-track association, we can show that
the Bayesian track association hypothesis evaluation formula is expressed by (6.29)
using the track association likelihood given by
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p(x)

B det (\7) det ( VF,j)

f(i,j)ZJ. ﬁli(x) IA?zj(x)dx:J'g(x_fﬁi;vu)g(x_)ACz_,'Qsz)dx
. " g(x—x;V)

1/2
2

H A~ 2
—|\ XFp—X H,
-1 F -1
sz Vv

(6.36)

~ ~ |2 ~ A
XFij = X1 -1 +H XF— xsz
1i

where
P (x)=g(x — X; V) is the a priori probability density of the target state x=x(z,) at
the fusion time 7,
(67 VFU) is the pair of the fused state estimate and the estimation error covariance
matrix, obtained by the track fusion rule, defined by (6.15) in Section 6.2.1.1, i.e.,

‘}Fj} ;Fif =V Xii+ Vs %y, — Vix
6.37)

-1 -1 -1
Vg =Vi +Vp; =V

all under the hypothesis that the i-th track from sensor 1 and the j-th track from
sensor 2 originate from the same target. Unfortunately, like the tracklet fusion rule
(6.15), the last statement is true only when the target dynamics are deterministic, i.e.,
there is no process noise (B,=0). Nonetheless, like the tracklet fusion rule, combin-
ing with the nondeterministic extrapolation formula, the track association metric of
(6.36) can be adapted to the nondeterministic cases by combining with the nonde-
terministic extrapolation formula. By eliminating the four determinant factors from
(6.36) as the factors that can be canceled out, the negative half logarithm of the track
likelihood becomes

2

| %, —}H% (6.38)

L(ij) =] 2 = Sl +] e - 2
Expanded State metric: This metric is obtained by expanding the target state
from the state x(¢,) at the fusion time ?, to the states at multiple times, (¢, t,,...,1,),
within the time interval [7,, #,]. If this set (¢, 1,,...,#,) covers all the measurement
times by both sensors, we can reformulate the nondeterministic problem defined in
Section 6.2.1, as a static state problem in which the “static” states are (x(t,), ..., x(t,))
instead of x(z;). In this way, all the uncertainty generated by the process noise is
translated into the cross-covariance among the target states at different times. Then
the track association hypothesis evaluation formula (6.29) using the Chong—Mori—
Chang metric (6.36) becomes truly the conditional probability of each association
hypothesis in the Bayesian sense, from which we can obtain the MAP probability
track association hypothesis by solving the classical bipartite assignment problem.
Remarks: Strictly speaking, the use of (6.29) is justified only when the number of
targets is known, i.e., when there is no missed target and there are no false tracks.
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When missed targets are possible, we may have unpaired local tracks. In such a case,
as shown in Mori and Chong (2003) and Ferry (2010), when there may be unpaired
local tracks, each track-to-track association must be adjusted according to the estimate
of the target density, and when the a priori number of targets is not Poisson, the con-
stant C in (6.19) may depend on the number of paired and unpaired local tracks. The
cases where there may be false tracks are theoretically more complicated. We can find
a proposal of track-to-track association metric used in such a case in Blackman and
Popoli (1999), and a recent theoretical treatment can be found in Mori et al. (2009).

The sensor biases and the track association are closely related, and may not be
separable in some cases. In such a case, the track association metric in (6.29) can be
modified by the sensor bias probability distribution, as shown in Levedahl (2002),
Mori and Chong (2007), and Ferry (2010).

6.3.3 CompARISON OF TRACK ASSOCIATION METRICS

In order to compare the various track association metrics described in Section 6.3.2,
we will examine the track association performance using the evaluation function
(6.29) with different track association metrics. A simple linear model, using the
Ornstein—Uhlenbeck target dynamics and two complementary sensors described in
Section 6.2.1.5, is used for this purpose. The complementary sensor case was chosen
to mimic a situation where each local sensor is able to separate the targets relatively
well into a set of high-quality local tracks, but there is still significant association
uncertainty between the local tracks from both sensors, as illustrated in Figure 6.11.

Figure 6.12 shows the result of this comparison. Unlike the track fusion
performance analysis of Section 6.2, there is no obvious analytical method of
predicting the track association performance by any of the association metrics
described earlier. Therefore, Monte Carlo analysis was conducted. In each run,
a random set of 100 targets was generated according to the model described in
Section 6.3.1, assuming synchronous observation with the same number of 10 local
measurements for each track. The initial position uncertainty standard deviation is 10
times as big as the measurement error, i.e., 6,=106,,. The figure shows a comparison
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FIGURE 6.11 Local tracks from two complementary sensors.
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FIGURE 6.12 Track association performance comparison: (a) track association perfor-
mance as function of normalized process noise intensity and (b) track association perfor-
mance as function of normalized initial position standard deviation.

of association performance by (1) the Bar-Shalom metric, (2) the Singer—Kanyuck
metric, (3) Chong—Mori—Chang metric, and (4) the extended state metric, varying
(a) the normalized process noise intensity ¢ and (b) the initial position uncertainty
standard deviation ©,. The complementary sensor case with 90° different sensor
measurement error covariance matrices is used for this comparison, resulting in the
equal weights for the CI fusion rule, i.e., o=1/2, in (6.18). The corresponding CI
track association metric is defined by (6.34) with equal weight o,; = 1/2. This weight
makes the CI association metric the same as the Singer—Kanyuck metric.

For each run, we examined each target to see whether the tracks originating
from that target are correctly associated or not. Then the probability of correct asso-
ciation, as defined as the probability of each track from sensor 1 being assigned to
the “correct” track from sensor 2 (“correct” as indicated by the ground truth), was
calculated as the number of correctly associated targets over the total number of
targets. Each point in the figure was obtained by averaging 1000 samples.

In Figure 6.12a and b, the advantage of using the inter-sensor cross-covariance in
the association metric is clearly shown by the better performance of the Bar-Shalom
metric over the Singer—Kanyuck or the Chong—Mori—Chang metric that does not use
the cross-covariance matrix. The deterioration of the association performance for the
middle range of the process noise intensity can be explained by its effect on the joint
target state density, shown in Figure 6.1c in Section 6.2.1.5. The use of the a priori state
mean by the Chong—Mori—Chang metric results in better association performance by
that using the Singer—Kanyuck metric, but the difference is rather small because the
10 local measurements may lessen the effect of the initial condition. The association
performance using either of metrics is worse than that of the Bar-Shalom metric that
uses the cross-covariance. In almost all situations, the extended state metric exhibits
much better association performance than the other association metrics because it
considers the state estimates at multiple times, and not just at the fusion time.

6.4 CONCLUSIONS

This chapter has addressed the track fusion and association problems in distrib-
uted multiple-target tracking. We have reviewed several track fusion algorithms
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developed over the last three decades and compared their performance. The use
of linear-Gaussian models allows closed form analytical performance evaluation.
Simple but realistic target dynamics with the Ornstein—Uhlenbeck model were used
to compare the various track fusion rules for one-time fusion, and repeated fusion
cases, with and without feedback of the global fused target state estimates to the local
tracking agents. Our analysis indicates that even though some fusion rules perform
slightly better than others depending on the situation, the performance of the more
common fusion rules such as speyer, minimum variance (MV) or BLUE, Bar-Shalom
Campo, decorrelation, is only slightly worse (<5%) than that of centralized tracking.
The choice of the appropriate fusion rule should depend on factors such as communi-
cation requirements, implementation difficulty, and robustness.

Various track association metrics were compared with respect to track association
performance for a simple one-time track fusion. For the complementary sensor case,
we confirmed clearly better track association performance of the Bar-Shalom metric
that considers the cross-covariance between two local tracks hypothesized to origi-
nate from the same target, over the Singer—Kanyuck metric or the Chong—Mori—
Chang metric that does not use such cross-covariance information. At the same time,
the extended state vector for track association, which requires more data and com-
putation, exhibits much better track association performance than any other associa-
tion metrics. This is not surprising because association tracks with only the state
estimates are difficult when the target is maneuvering. An approximate extended
state track association metric may be desirable in the case of highly nondeterministic
target dynamics.
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7.1 DECENTRALIZED DATA FUSION INTRODUCTION

A decentralized data fusion (DDF) system consists of a network of sensing and
computing nodes that aim to cooperatively estimate a common state [12]. Fusion
occurs on each node using locally obtained observations and communications
from neighboring nodes, without relying on a centralized decision or fusion
system. This chapter summarizes and builds on previous research in DDF,
including [18,22].

DDF systems have been characterized by three constraints [9,12]:

1. There should be no single central fusion center; no single node should be
central to the successful operation of the network.

2. There is no common communication facility; nodes cannot broadcast results
and communication must be kept on a strictly node-to-node basis.

3. Sensor nodes do not have any global knowledge of the network topology;
nodes should only know about connections in their own neighborhood.

The resulting estimates in the decentralized system can be compared to an equivalent
centralized estimator operating with the same observations and modeling assump-
tions. The focus of this chapter is on exact solutions for DDF, which are equivalent
to centralized data fusion, in the following sense:

e The use of consistent fusion with information terms which are conditionally
independent given the state, as opposed to methods which double count or
miss information terms or use conservative fusion methods.

e The use of direct solution methods as opposed to iterative or convergent
methods.

This chapter is organized as follows. Section 7.2 introduces the information form,
which is used in this chapter as the expression for fusion operations. Section 7.3
discusses the fusion update and communication aspects of DDF and discusses the
operation of DDF on tree topology networks. Section 7.4 introduces the trajectory
state formulation for dynamics and uses this to operate decentralized networks for
dynamic systems, including handling delayed, asequent and burst communications
issues. Section 7.5 extends the tree topology to k-tree topologies for redundant and
dynamic decentralized topologies.
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7.2  INFORMATION FORM INTRODUCTION

For the decentralized algorithms presented in this chapter, it is convenient to express
the fusion operations in terms of information by reformulating multiplication of
probability as summation of log-probability.

The main properties that motivate the use of the information form are as follows:

1. Additivity of fusion and observation updates
2. Sparsity of the information matrix

Consider a random variable x with prior probability density function (PDF) described
by a Gaussian PDF, together with a linear observation, described by a Gaussian
likelihood:

_1 LN S D
p(x)—bexp( 2(X x) P (x X)) (7.1)

p(zlx)= 1exp(—;(Hx -z)" R (Hx — z)) (7.2)
c

Where the observation is modeled as
z=Hx+w E[w]=0 E[ww' ]=R (7.3)

Under Bayes’ rule, p(x1z)=p(z|x)p(x)/p(z), the posterior PDF given the prior and
observation is

p(xlz)= (llexp(—;(x -3'P(x— )A()—%(Hx -z)'R™'(Hx —z)) (7.4)
—lex (—l(x— )P (x—- X )) (7.5)
_d p ) + + + .

The two expressions for the posterior must equate

x—-X)"P(x— X)

7.6
+(Hx-z)" R (Hx —z) (76)

(x= X)'P(x~ X,) =

By matching first and second derivatives of each side with respect to x, this results in

P;'=P'+H'R'H (7.7)

P'%, =Pk, +H'R 'z (7.8)
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The information form is defined by these terms P-! and P-'k:

2
Y é _a log{f(x)} — Pfl
ox (7.9)
§ oo - aloga{p(x)} _ plik
X @x=0

Consequently, given Y and §, the estimate is recovered by the solution of the linear
system

~

Y =§ (7.10)

The estimate X will be identical to that obtained by a covariance-based Gaussian
estimator such as a Kalman filter operating under identical assumptions.

So, given a prior PDF described by information matrix Y and information vector 'y,
the posterior following the observation is

Y'=Y+H'R'H (7.11)

y' =y+H'R'z (7.12)

It is convenient to label the observation as contributing observation information in
the form

I=H'R'H (7.13)
i=H'R'z (7.14)

In general, the fusion of multiple, statistically independent terms is a straightforward
addition:
Y=Y oy =)y (7.15)

7.3 DECENTRALIZED FUSION AND COMMUNICATION

This section discusses DDF with a focus on the fusion and update steps resulting
from communication and observations. These aspects are highlighted by considering
DDF on a static state variable. Section 7.4 extends this discussion by considering
system dynamics and temporal aspects.

The static case highlights the basic properties of the fusion component of the
decentralized system, since the present formulation of DDF is built on the additive
properties of the information fusion operations.
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The system then consists of a common static state x, which is to be estimated
on the multiple platforms. The decentralized system is required to obtain an esti-
mate in exact agreement with an equivalent centralized estimator using the same
observations and modeling assumptions. In a static system, the posterior informa-
tion is identically the sum of the individual independent observation information
terms

Y= 2H£R;1Hk §= ZH{R;zk (7.16)

(7.17)

In essence, the DDF nodes communicate to obtain the Y and y sums in Equation
7.16. The required globally agreeing estimate is then obtained through the solution
of Equation 7.17 separately at each node.

Different algorithms on different topologies operate different methods for obtain-
ing the sums in Equation 7.16:

« 1In a centralized estimator, each H: R;'H, and H/R;'z, is communicated to
the central estimator, which performs the sum in Equation 7.16.

+ In a fully connected decentralized topology, each node transmits H; R;'H,
and HR;'z, to each other node. Each node is then able to separately
perform the sum in Equation 7.16.

* In atree-connected decentralized topology, nodes accumulate partial sums
of Equation 7.16 and communicate in a tree to obtain the global sums. This
topology is discussed further later.

7.3.1 Tree NeTwork ToroLoGY, CHANNEL CACHE

This section considers the singly connected or tree decentralized topology. Under
this topology, the graph properties of the tree and the distributivity of the addition
are exploited in order to perform the required summation in Equation 7.16.

A tree topology has no cycles. This means that for each node any communications
to a neighbor cannot affect any other neighbor. Also, any communications from a
neighbor cannot be affected by any other neighbor. This occurs because at any node,
a, the neighbors of the neighbors of a, excluding a, are disjoint.

For every node a in a tree: {N (N (a))N\a are disjoint (7.18)

where
MNa) is the neighbor of node a
S\a is the set § excluding a
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This means that the sum in Equation 7.16 can be written as a hierarchy of partial
sums over disjoint subsets:

Ya=Ia+z I+ 2 {I,.+ Z {Ik+--~}} (7.19)
}

ieN(a) Je(N(i)\a ke{ N (j)H\i}

The tree topology guarantees that the terms inside each summation are disjoint
(independent from each other) and therefore prevents double counting of observa-
tion information.

The algorithm developed in this section will be referred to as the channel cache
algorithm. The channel cache algorithm is a variant of the well-known channel filter
algorithm [6,9,12,18-20,22]. The channel cache algorithm is also inspired by junc-
tion tree algorithm for inference in graphical models [21] and [16].

The operation of a tree topology decentralized network is illustrated in Figure 7.1.
Figure 7.1 shows a branch in a tree network.

Each node stores its own observation information (dark gray) in the form
I=H'R'H and i=H'R-'z. These correspond to the I terms in Equation 7.19.
These observation information terms are required to be statistically independent
information unique to one node.

The communicated term from a node i to a is an information matrix C,, (and its
information vector counterpart). C,, consists of the transmit node’s own independent
observation information plus the sum of all communicated terms received from the
“upstream” part of the tree network:

C, =1+ 2 C, (1.20)

Je{N()\a}

Node D D

FIGURE 7.1 DDF with channel caches. Four nodes are arranged in the topology shown in
the lower right. Each node stores its own fused observations (dark gray). Each node caches the
received communication term from each of its neighbors (light gray). The total fused information
at each node is the sum of each stack, since each layer consists of independent information. The
transmitted communication term is the sum of the stack excluding the destination’s cache term.
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-1e Y e Y ) (21)

je(N(i\a) ke (N ()\i}

Each node locally caches the received communication term from each of its neigh-
bors (light gray) in a so-called channel cache. All of the channel cache, C, and the
observation, I, information terms are statistically independent.

Transmission of a communication term has no effect at the transmitting node, so
transmissions can be lost without breaking the consistency of the estimates. On recep-
tion of a communication term, the received term is simply stored in the channel cache.
This means that duplicate transmissions and/or duplicate receptions are acceptable.

Each node can obtain the total network sum, Y, by summing its own observation
information together with all the locally cached communication terms, e.g., at node a:

Y, =1+ z C. (7.22)
ie N'(a)

The net result is that the network computes a series of partial sums, with each node
obtaining the sum as in Equation 7.19. For each node, the evaluation of Equation 7.19
operates as a series of messages propagating inward on the tree toward that node.

Nodes initialize their observation and communication cache information terms to
zero, I=0, C=0, such that nodes can produce estimates even before the network has
finished propagating terms across the network span.

7.3.2  ReLATED CHANNEL FILTER APPROACHES

The previous section presented the channel cache algorithm for tree topology net-
works. The channel cache is closely related to the channel filter algorithm, which has
been discussed in various papers [6,9,12,18-20,22].

The approach used in a channel filter is to maintain the total information estimate
at each node and maintain the common information between pairs of nodes on a tree
network. The channel filter’s use of the common information is motivated by the fol-
lowing equation for the fusion of a local Y, and a received communication Y, from
a remote node:

Yaus =Ya+Yp—Yanp (7.23)

Each primary operation of the channel filter is described next (referring to operations
atanode i, transmitting to a node a and receiving from a node j). Table 7.1 summarizes
the channel algorithms. The channel filter consists of the following operations:

e Observation: Y; +=1. Observation information I adds simply into the total
information Y, without affecting any channel common information.

e Transmit: The node’s current total information is transmitted, C,,=Y,. It is
assumed that the destination node a will successfully receive the communi-
cation; therefore, the common information is set Y,,=Y,.
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TABLE 7.1
Summary of the Primary Operations for the Channel Cache
and Channel Filter Algorithms

Channel Cache Channel Filter
Obs Update I+=1 Yi+=1
Transmit C.=L+ Z C; Cu=Y;
JE(N (i\a} Yo=Y,

Receive Store C; Y, +=C; -Y;
Y/'i = C/’i
Result Y=L+ Y Use Y,

JeN (i)

* Receive: The received information is Y}, so given the existing common infor-

mation Cj, the total information is updated: Y; +=C;; - Y;;. The nodes now
have common information from the communication, so the node sets Y;=C;.

e Result: The total information is maintained in Y.

Both the channel filter and the channel cache algorithms are designed to exploit a
tree topology network. At each node, both the channel filter and channel cache algo-
rithms store an information matrix and vector for each neighbor, intended to ensure
correct consistent interaction with that neighbor. The basic difference between the
channel filter and the channel cache algorithms is as follows:

¢ The channel filter algorithm maintains the common information between the
local total information and each neighbor’s total information.

e The channel cache algorithm maintains the contributed information from
each neighbor.

Using the common information requires both nodes to maintain identical copies of
the common information, which is vulnerable to failure if the two copies differ (cases
in which this can happen are discussed later). The common information maintained
at both nodes on a channel is required to be identical, since the common information,
Y > is symmetrical between two nodes, i.e., Y;;=Y,,, [12].

By contrast, the channel cache algorithm maintains a local record of the
contributed information from the neighbor. This decouples the communication
between nodes such that the changes only occur locally when information is
received, not when it is transmitted. Table 7.2 shows a decentralized communication
transaction between two nodes, showing both the contributed information and the
common information, in the case of an ideal communication. The communication
must update the common information at both nodes, which requires an assumption
of successful communication for the sender. On the other hand, the communication
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TABLE 7.2
Common Information versus Contributed Information in an Ideal Pair of
Communications

At Node A At Node B
Contrib Common Common Contrib Local
Local Total from B with B with A from A Total Comment
a 0 0 0 0 b Start.
a 0 a a a b+a A—-B
a+b B a+b a+b a b+a A< B

only needs to update the contributed information record once (at the destination
node) and only upon an actual successful communication.

Table 7.2 also shows that the two contributed information terms sum to the com-
mon information:

YA contributedto B T YB contributedto A — YAmB (7 24)

The channel filter algorithm can fall into cases where the two common-information
records can differ due to miscommunication:

e Asynchronous operation. If nodes send messages which “cross over,” then
their common-information records can become misaligned. An example
is shown in Table 7.3. Consider a pair of nodes i,j which transmit almost
simultaneously at times ¢, ¢; and receive at times r;, r;. This asynchronous
case arises if r;>¢; or r;>1,.

e Lost transmissions. The channel filter algorithm can also become mis-
aligned in the case of transmissions which are lost. This occurs if a node
completes the “transmit” update to its channel filter but the destination fails

to receive the message. An example is shown in Table 7.4.

7.3.3  SUMMARY

This section described DDF with a focus on the observation update and the decen-
tralized communication, particularly in tree topology networks.

The fusion of independent observation and/or communicated information is
additive when performed in the log-likelihood or information form. Therefore, the
problem of forming a decentralized estimate which is identical to a centralized
equivalent reduces down to a decentralized algorithm for forming a correct sum of
the observation information terms.

When applied to tree topology networks, it suffices to maintain a local node
information matrix and vector and one information matrix and vector for each
neighbor in the network.
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TABLE 7.3
Asynchronous Operation

Channel Filter

At Node A At Node B
Common Common
Local Total with B Comms  Comms with A Local Total Comment
a 0 — — 0 b Start.
a a a (out) (out) b b b Transmit.
b b b (in) (in) a a a Receive.

Channel Cache

At Node A At Node B
Common Common
Local Total with B Comms  Comms with A Local Total Comment
a 0 — — 0 b Start.
a 0 a (out) (out) b 0 b Transmit.
a+b b b (in) (in) a a a+b Receive.

Note: In the channel filter algorithm, nodes that both transmit simultaneously result in incorrectly
swapped estimates rather than fused estimates. The channel cache algorithm modifies the
node state only on reception, not transmission, and hence is able to operate correctly.

This section presented the channel cache algorithm for handling the local node
information and decentralized communications operations. The channel cache
algorithm handles imperfect communications such as asynchronous transmissions,
lost transmissions in a simple manner. The channel cache algorithm operates on
records of contributed information from each neighbor. This is in addition to the
capabilities previously possible with channel filters on tree networks, especially the
avoidance of double counting, avoidance of conservative fusion, while achieving
global agreement among nodes in a decentralized network.

The aforementioned discussion has focused on the observation update and the
decentralized communication. The following section extends the discussion of DDF
into dynamic systems.

7.4 DYNAMIC SYSTEMS

The observation and communication updates, as described in the previous section,
were discussed with respect to a static system, i.e., a single-state vector x. This
section extends the discussion into dynamic systems and reviews the smoothing
or trajectory state formulation of dynamic systems to formulate DDF for
estimation of dynamic systems. This trajectory state formulation of dynamics is
then applied to address the issues of delayed and asequent observations and burst
communications in DDF.
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TABLE 7.4
Lost Transmission

Channel Filter

At Node A At Node B
Common Common
Local Total with B Comms Comms with A Local Total Comment
a — — 0 b Start.
a a a (out,lost) — 0 b A — B (lost)
b b b (in)j«———(out) b b b A<« B
b b b (out)——(in) b b b A—>B
Channel Cache
At Node A At Node B
Contrib Contrib
Local Total from B Comms Comms from A Local Total Comment
a 0 — — 0 b Start.
a 0 a (out,lost) — 0 b A — B (lost)
—
a+b b b (in) (out) b 0 b A< B
a+b b a (out) (in) a a a+b A—>B

Note: In the channel filter algorithm, a lost transmission results in a loss of the new information in
the lost transmission. The information is not recovered at subsequent communications, due
to the operation of the algorithm subtracting (incorrect) common information. For the chan-
nel cache algorithm, a lost transmission has no effect, and hence the information is correctly
gained upon the next successful communication.

When the decentralized system has observation and/or communication interrup-
tions and delays, it becomes important to decide when and where the dynamic propa-
gation of the estimate is to be applied. Furthermore, at each decentralized node,
there are stored communication terms relating to other nodes, and so it is also neces-
sary to consider the dynamic propagation of these.

This section presents the trajectory state approach to representing system
dynamics. The trajectory state approach expands the state for a dynamic sys-
tem into a joint state consisting of a sequence (trajectory) of states. The tools for
manipulating joint probabilities in several dimensions and tools for manipulating
probabilities and decentralization of static states then become applicable to the
dynamic system.

The trajectory state approach relates to smoothing methods used in Kalman
smoothing [17]. It is also known as delayed states and has been used to account for
delayed decision making in estimation such as delayed associations [15]. The use of
delayed states in the information form, with the resulting sparse structure, has been
applied in localization and mapping [8,10]. Delayed states have more recently been
applied to DDF as a tool for delayed measurements [1] and for delayed and asequent
measurements and communications [4].
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This section focuses on correct approaches to dealing with delayed, asequent,
and burst communications with dynamic models that are known and can be applied
by each node. The trajectory state approach can be extended to allow the decentral-
ized system to distribute dynamic models which originate from one node (known
as model distribution). The issue of dynamic communication topologies in DDF is
discussed separately in Section 7.5.

7.4.1  StAatE DYNAMICS

This section explains the state dynamics and trajectory state form, in general. Section
7.4.2 applies these to DDF specifically.

7.4.1.1 State Dynamic Model
We consider a basic, linear discrete time state dynamic model in the form

X1 = ka +Buk + GVk (7.25)

where
X, is the state vector at instant k
F is the state transition matrix
v, is unknown, zero mean, white noise, E[v,] =0, Elvivi]1=Q
u, is a known control signal, if available

The conventional treatment is to form a prediction by using a dynamic transformation
of the estimate [2]

§k+| = Fﬁk +Buk (7.26)

P.., =FPF" +GQG’ (7.27)

where this is considered to be a transformation of the estimate, replacing the esti-
mate for time k by that for time k+ 1, as a discrete operation.

7.4.1.2 Trajectory Information Approach

Equation 7.27 can actually be considered (see later) to consist of an augmentation of
the estimate into the latter timestep k+ 1, followed immediately by a marginalization
to remove timestep k. In this way, the prediction operation in Equation 7.27 moves
the estimate forward in time but removes the state components for the past timestep.
This removal of the past timestep makes it impossible (or difficult) to fuse late
observations or communicated information. This transformative prediction approach
thus requires observations to be fused in at the appropriate timestep.

This section describes an alternative approach known as delayed state or
trajectory state approach, which is designed to address the aforementioned issues.
In the trajectory state approach, instead of considering prediction equations
to explicitly transform the estimate from time k to k+ 1, we instead consider the
trajectory described by a joint state X = [xk Xpi ]
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The key reason why this is useful is as follows: If we operate with a joint trajectory
state vector X = [xk Xpe1 ot Xpan ], then observations and communications
in any time (k to k+n), and the dynamic model all act additively on the joint state X.
Thus the methods of Section 7.3 remain applicable, since they are designed to exploit
additive operations over decentralized networks.

Therefore, we rearrange Equation 7.25 to focus on the joint trajectory state

X = [Xk Xk+1]:
Bu =-Fx; +7x;., — Gv (7.28)

Bu=[-F ZI][x, xu] -Gv (7.29)

where 7 denotes the identity matrix. We can then consider Equation 7.29 in the form
of an observation, as in Equation 7.3:

R
GQG’
(7.30)

z = H <x +w E[ww’]

[—F I] [xk xk+1]T -Gv  E[GW'G"]

Bu

Considering the dynamic model in the form of an observation requires the following
replacements:

He«[-F I] R<GQG" z«Bu (7.31)

By analogy with Equation 7.13, the dynamic model can then be represented as an
information matrix and vector in the joint trajectory state X:

I=H'R'H i=H'Rz (7.32)
T -1 T-1 T-1
(_(FQ'F -FQ') ._(-F'Q'Bu 733
-Q'F Q" Q'Bu

where Q £ GQG.

7.4.1.3 Equivalence to the Conventional Approach

We next show the equivalence of the trajectory state approach to existing prediction
equations in the information and covariance forms. To show the equivalence, we
setup the same initial conditions and steps as for a prediction:

1. Define some prior information in the earlier timestep x,: Y, and y, satisfying
Y& =y

2. Allow no prior information in the latter x,,,.

3. Apply the dynamic model to the joint x, and Xx,,.

4. Evaluate the marginal information in the latter timestep X,,;.
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The posterior information, Y and y, after step 3 (i.e., given the prior and the dynamic
model) is

Yy = (Yk 0}_ H'R'H y= (Yk J_,_ H'R 'z (7.34)
0 o 0
T -1 T-1 To™!
Y:(Yk+F_lQ F -F ? ) y:(yk—F_lQ B“J (7.35)
—Q''F Q Q Bu

Equation 7.35 is equivalent to the conventional prediction in Equation 7.27 (proofs
are provided in the appendix):

A . A X X
« The joint X satisfies YX=y, with X=| ~ |=| . 7“ |
Xt Fx, + Bu

e The x, marginal of Y remains as the given Y, and y,.
e The x,,, marginal of Y yields known expressions [2,19] for the prediction in
covariance and information forms:

Y, = (FP,F" +Q}™ (7.36)
=M-MGs'G'M (7.37)

Vil = [I - MGS"GT]F‘Ty,dk +Y,,,Bu (7.38)
(s =G'MG + Q’l) (7.39)

(M = F‘TY,dkF‘l) (7.40)

7.4.1.4 Multiple Trajectory States

Earlier we discussed the formation of a pair of joint successive dynamic states, X,
and x,,,. Now consider a longer sequence of trajectory states. The original discrete
time dynamic model in Equation 7.25 holds for each pair of successive dynamic
states; therefore, each successive pair has the dynamic model information added, as
in Equation 7.33. The information matrix and vector for the dynamic model between
any successive states k and k+1 is

T-1 T-1 TA-1
o = (F c(;‘FF _FQ? j o = (_FQ?B B“} (741)
- u

A D
We later re-write I = {DT C) and i" = (a c)T to save space.
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Over a sequence of trajectory states, these pairwise I
sparse banded matrix:

ayn DlOCks add up to form a

A D 0 0 0 0 0o 0
D’ C+A D 0 0 0 0 0
0 D' C+A D 0 0 0o 0
3 i 0o 0 D' C+A D 0 0 0
“ 0o 0 0 D' C+A D 0o 0
0o 0 0 0 D' C+A D 0
0o 0 0 0 0 D' C+A D
0o 0 0 0 0 0 D C

(7.42)

The benefit of the trajectory state formulation is that observations of states within
the trajectory appear additively in the information matrix. For example, the total
information for the trajectory system from times 1 to 8, including a prior Y, |, at time
k=1, an observation I at time k=5, and the dynamic model information between
each time is given by

Yig = Y1|1 +15+ z Iiy“ =

ke[1,7]

Y, +A D 0 0 0 0 0 0
D’ C+A D 0 0 0 0 0
0 D’ C+A D 0 0 0 0
0 0 D’ C+A D 0 0 0
0 0 0 D’ C+A+I; D 0 0
0 0 0 0 D’ C+A D 0
0 0 0 0 0 D’ C+A D
0 0 0 0 0 0 D’ C

Y1;g=(ylll+a c+ta c¢+a c+a c+a+is c+a c+a c)T
(7.43)

where the observation information I appears as an addition on the diagonal of
Y corresponding to the state at the observed time.
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To propagate the trajectory state system forward in time (maintaining a fixed

duration trajectory), there are two steps:

1. Augmenting the system with the additional timestep. This requires
expanding the state vector for the new timestep (k+1) and adding the

dynamic model information I*" and i*".

2. Marginalizing away the earliest timestep.

The system following propagation by one timestep is now given by

A+Yy D 0 0 0 0 0
D’ C+A D 0 0 0 0
0 D’ C+A D 0 0 0
0 0 D’ C+A+I, D 0 0

Y2:9_ T
0 0 0 D C+A D 0
0 0 0 0 D’ C+A D
0 0 0 0 0 D’ C+A
0 0 0 0 0 0 D’

. T
Yoo=(a+yy c¢+a c+a c+a+i; c+a c+a c+a c)

where Y,,, and y,, are

T
Y, =C-D'(Y,

1

+A)"'D
=Q'-Q'F(Y,, +F'Q'F)'F'Q”"
ya =c¢=D" (Y, + A" (y:+a)

=Q 'Bu+Q 'F(Y,, +F'Q'F)'(y,, -F'Q'Bu)

A oo oo o o

(7.44)

(7.45)

(7.46)

(747)

(7.48)

Y, |, is actually the same expression as for the predicted Y,,, |, in Equation 7.35. This
is proven in the appendix. The earlier prior information, Y, clearly resides in a

nonadditive form, in the expression D'(Y, |, +A)~'D.
In summary:

e The augmentation process, which extends the system to further timesteps,
continues the same sparse banded pattern in the information matrix.

e The fusion of observations within the duration of the trajectory states is a
straightforward addition in the information matrix and vector.

e Marginalization of the earliest timestep in a succession of trajectory states
follows the same pattern as for information filtering prediction, leaving
any observations or prior information in the removed timestep k in a
nonadditive form.
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7.4.2 DyNAMIcS IN DEceNTRALIZED DATA FusiON

The previous section discussed the state dynamics generally, resulting in the for-
mation of a trajectory state system. The key advantage of using a sequence of
trajectory states is that for observations of states within the trajectory states, the
observation information is additive, just as for observations of a static state. This
additivity of observation information applies regardless of the timing or sequence
of observations, as long as the state at the observed time exists in the current set
of trajectory states.

This section describes the application of the trajectory state approach for
handling timing issues in DDF. In particular, we consider the following problem
cases:

e Delayed and asequent data fusion, in which an observation from an ear-
lier time becomes available after a prediction step, has been performed
(delayed) or after other data have been fused for later times (asequent).
Delayed and asequent observations usually refer to local sensor node
observations.

e Burst communication, which occurs when decentralized communications
is resumed after a period of interruption. The communications that occurs
after the interruption is referred to as burst communication, since it aims to
deliver a large amount of information in a short time (or single message)
to re-establish agreement between the nodes. Burst communications can
also be thought of as delayed/asequent fusion across multiple decentralized
nodes.

The key issue behind the aforementioned difficulties is additivity of observation and
communicated information, and the fact that for states that have been replaced by
predictions cannot be updated additively by other predictions. This is explained in
further detail next.

7.4.2.1 Common Process Noise Problem

The underlying issue of concern relates to the common process noise problem. They
are so called because separately predicted terms ignore their common use of the
same process noise. This can also be expressed as the problem that the fusion of
predicted information is unequal to the prediction of fused information:

Predict(Fuse(A, B)) # Fuse(Predict(A), Predict(B)) (7.49)

Consider a case where a fused estimate is predicted forward. The fused estimate at
time k is obtained as the sum of two independent information terms, e.g., Y, ,and Y, ;.

Yk = Yk,u + Yk,h (750)

The correct expression for the predicted information for time k+ 1 requires the pre-
diction of the sum
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Y = Predict(Y,) (7.51)

~ (FY;'F" + Q)" (7.52)

If, however, the term Y, , has already been predicted forward, a common approxima-
tion to Y,,, is to take

Y = Predict(Y, . )+ Predict (Y, ;) (7.53)

= {FY..F" +Q}"' +{FY ;F" + Q) (7.54)
The approximate form is not generally equal to the exact form Y™ # Y1,
The approximate form ignores the fact that there is only one underlying process;
hence, the two prediction instances share common process noise, v (of which
E[vv’]=Q). To consider the approximation further, consider a simpler worst case
where Y, =Y,:

Y2 (FY,'F’ +Q)”"' +{FY,;'F’ + Q)"

= 7.55
Yo (F(Y, +Y,) ' F" +Q)” 7
_{Z+2a} (7.56)
{Z +a}
where
a=F7Y,F'Q=(FY,'F")"'Q (7.57)
for which it can be seen that
approx approx
lim Y";lm = lim Y";lact =27 (7.58)
a—0 Y, +H a—e Y, 1
YOG S YR <Y (7.59)

exa

This shows that Y™ is always slightly overconfident, but is close to Y11 for small
Q. However, for large Q, the Y™ is overconfident, being up to 2Y5" in the worst
case. Predicting the Y, , and Y, , independently is equivalent to claiming that there

are two independent process models available.

7.4.2.2 Delayed and Asequent Observations

A delayed observation occurs when an observation from an earlier time becomes
available after a prediction step has been performed [19]. The problem of delayed
observations can occur in any form of estimator, not only decentralized estimators.
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Delayed observations can occur as a result of processing and/or communication
delays before observations are available at the estimator.

An asequent observation occurs when an observation from an earlier time
becomes available after other data have been fused for later times [19]. Asequent
observations may occur if multiple sensors are used locally on a single node, and
these sensors have differing observation delays. The case of asequent observations
occurring on distinct decentralized nodes is similar, but since it involves the commu-
nication aspect it is more similar to the burst communications case discussed later.

The problem with delayed or asequent data fusion is that once the estimator has
predicted the local state forward to time k+ 1, the (late) incoming information for
time k needs to be considered. If the late arriving information is predicted forward
separately, the common process noise problem applies (as discussed in Section 7.4.2)
and the result will be approximate and over-confident.

The problem with delayed and asequent data fusion is basically caused by the
filter architecture destructively predicting estimates forward. That is, applying the
prediction equations in a way that replaces a local estimate.

The proposed solution instead applies the trajectory state approach to avoid
destructively predicting estimates until after a window of time has passed,
while still obtaining correct current-time filter estimates given all available past
observations.

The trajectory information matrix is constructed as in Section 7.4.1:

A+ Yy +1, D 0 0 0
D’ C+A+1,,, D 0 0
Y, = 0 D’ C+A+I, D 0
0 0 D’ C+A+1;,; D
0 0 0 D’ C+1,4

(7.60)

where Y,,,, is written with observation information on each timestep, indicating
how current, delayed, and/or asequent observations can be fused additively in the
trajectory information matrix and vector at their appropriate timestep, as long as that
timestep is available within the trajectory state system.

Given the trajectory state system, the estimate solution for the current (latest)
timestep will be equivalent to a filtered solution, correctly accounting for the late
and asequent observations. Methods for obtaining the solution are discussed in
Section 7.4.2.

The trajectory state approach with N timesteps of trajectory states defers the
destructive prediction of the earliest state by N timesteps, allowing delayed and
asequent observations in that duration. However, very late observations beyond
N timesteps will still be subject to the same common process noise problem preventing
their use. Very late observations beyond N timesteps are expected to occur less
frequently and be less informative to the present estimate and should be discarded
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(which is conservative). Note that the intention of the trajectory state method is to use
N timesteps such that the system can still benefit from the observations with small
delay which are very likely to occur and very beneficial to the present estimate.

7.4.2.3 Burst Communications

Burst communication occurs when decentralized communications are resumed after
a period of interruption. The communications that occurs after the interruption is
referred to as burst communication since it aims to deliver a large amount of informa-
tion in a short time (or single message) to re-establish agreement between the nodes.

The problem with burst communications occurs when the estimator predicts the
local state forward during a period of interrupted communications. The problem is
that other decentralized nodes will also perform the same prediction on their local esti-
mates. When the nodes re-connect and communicate, the common process noise prob-
lem arises, since the information from each node will have been separately predicted.

The problem with delayed and asequent data fusion is again caused by the filter
architecture destructively predicting estimates forward. That is, applying the predic-
tion equations in a way that replaces a local estimate.

The proposed solution, as for asequent observations, involves using trajectory
states in order to maintain a window of some duration in which communications can
be late, but still fuse additively into states in the trajectory window. Estimates for the
current time can still be obtained from the system, conditioned on all the available
past observations.

Referring to Equation 7.60, the decentralized system can communicate the diago-
nal matrix consisting of the I, blocks:

I, O 0 0 0
0 I, 0 0 0
Lia=| 0 0 L. 0 0 (7.61)
0 0 0 L. O
0 0 0 0 I,

This becomes equivalent to a sequence of static decentralized problems, one for each
timestep. The band structure corresponding to the dynamic model can be applied
locally at each node.

For normal operation, with frequent communications, the nodes transmit their
current I, block. But if the communications is blocked for an interval of time and
then later resumed, the resulting burst communications will contain the diagonal
blocks I, for the fused observations for the blocked interval.

The methods for obtaining the solution are discussed in Section 7.4.2.

7.4.2.4 Solution Using Trajectory States
The cases of delayed and asequent observations and burst communications presented
earlier can be addressed using a set of trajectory states. This section focuses on how
to solve the resulting trajectory state system:
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A+Y _pona 1, D 0 0 0

D’ C+A+1I,_,, D 0 0

Y, 4 = 0 D’ C+A+1. D 0

0 0 D’ C+A+1I,_, D

0 0 0 D’ C+1I,
(7.62)
A+ Y pk—n-1 Ty
a+c+ip g
Vikes = at+c+i.. (7.63)
a+c+i;
c+iy

The system in Equation 7.62 is a block tridiagonal sparse linear system. Such a system
can be solved very efficiently in O(n) time, for n trajectory states [11]. It is also possible
to obtain smoothing estimates for the duration of the trajectory states by solving the joint
system fully. This basically corresponds to solving for the latest estimate as described
later, together with back-substitution for the smoothed estimates of the earlier states.

7.4.2.5 Filtering the Trajectory State System

The solution process for the filtered estimate of a trajectory state system is very
similar to an online filtering process. In that case, the dynamic model in the trajec-
tory state system need only be defined implicitly, leaving only the diagonal blocks
(observations and prior) to be explicitly stored. So the current filtering estimate can
be obtained basically by running the information filtering prediction cycles, start-
ing from the prior information in the start of the trajectory and using the stored
fused observation information at each time. Note that we only need to run this when
requiring an estimate for the present state. Multiple observations can be added into
the trajectory system without requiring this solve process. This approach is less gen-
eral than the next, which will be described in greater detail.

7.4.2.6 Filtering with Stored Filter Estimates

In most cases, it is likely that observations and decentralized communications will
arrive with only a small delay, and thus only affect the latter part of the trajectory
state system. In that case, it is inefficient to process the entire trajectory state system
for its whole duration. Also, allowing re-processing only the affected portion of the
trajectory may allow a longer trajectory system to be used. When an estimate of the
present state is required, it is only necessary to process forward from timestep k — n
to the present, where timestep k — n is the earliest changed state in the trajectory.
(Changes include local observations and decentralized communications.) In this
way, the cost in computation to re-process following delayed or asequent observa-
tions or newly arrived burst communications depends on how far back the observa-
tion occurs, such that the normal case of short delays can proceed forward with little
overhead.
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This method is similar to that described for asequent data fusion in Ref. [19]. The
difference is that we store the observations I, in the trajectory state approach, not
only the filtered estimates. This allows the handling of burst communications and
also simplifies the case for asequent observations.

This method corresponds to filtering, but stores in memory the filtered estimates
for a few key timesteps in the trajectory duration. The system needs to store I; for
each timestep, and Y;|;_; and y;;_, for a few key timesteps.

The I terms for each j and the filtered Y,_,|;_,-, for the earliest trajectory state
timestep, k — n are statistically independent of each other. These are regarded as
“source” information. The stored filter Y}, estimates for the other timesteps are not
independent of each other, and not independent of the I, or Y, |,_,,. These are to be
regarded as a computational aid, storing partial results. These filter Y ; could instead
be re-processed from the initial Y;_,|,_,-, and the observation information terms L.

This occurs as follows:

1. The forward filtering can start from time k — n where timestep k — n is the
earliest changed state in the trajectory, or wherever a starting or stored
prior information exists. Starting from time k — n, define a current informa-
tion matrix and vector of the size of the state at a single time:

Y. = Yioukont Yo = Yiontkon-i (7.64)

2. For each time j=k — n: k
a. Fuse observations for time j:

Yo=Y =Y+ ye=yu =Y+ (7.65)

b. Predict the current Y,
at the last time k):

; and y;|; to time j+ 1 using Equation 7.37 (except

YL. = Yj+1|j = M - MGS_IGTM (7.66)

_ _ [ -1 T] -T
(s=6"MG+Q") (7.68)
(M = I?_TY]‘U‘I?_1 (7.69)

c¢. The resulting Y.=Y},,|; and y.=yj,, |, can be stored if desired, so pro-
cessing can resume from time j+ 1 later.
3. The resulting Y. =Y, |, and y. =y, is the filtered information for the state at
time k. X, is obtained from

X, = Yk_lllfyklk (7.70)
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FIGURE 7.2 Illustration of combined trajectory state and channel cache—based DDF at a
single node. The lower portion shows the whole system propagated forward by one timestep.

7.4.2.7 Operation of Channel Caches with Trajectory States

Figure 7.2 shows the combined trajectory state and channel cache—based DDF node.
The node stores the observations I; and i, for each timestep k — n to k in the trajectory
state window for each channel. These are the channel cache contributed information
terms from the neighbors. The node similarly stores its own observations for each
timestep. The node also stores the prior Y_, |, and y,_, | ,- The complete trajectory
state system is formed by summing all the entries for each timestep, including the
dynamic model information.

To shift the combined system forward by one timestep, at the back of the trajectory
state window (earliest timestep), the prior Y_, |,_, is propagated forward as in Equation
7.43. The observations I,_,,; are added into Y, _,,,; | ,_,» leaving the next prior Yi_,,.; [ r_ns1-
The observations for time k — n+ 1 are then popped out of the trajectory system, so that
the guaranteed conditional independence of all information terms is maintained. The
front end (latest and current timesteps) of the trajectory state window is extended into
timestep k+ 1, ready for new observations or channel terms.

7.4.3 SUMMARY

This section presented the smoothing or trajectory state formulation of dynamic
systems to formulate DDF for estimation of dynamic systems. This trajectory state
formulation of dynamics was then applied to address the issues of delayed and
asequent observations and burst communications in DDF.

The solution method for the trajectory state formulation requires nodes to store
the fused observation information for each timestep for a finite duration, allowing for
observation and communication delays. For efficient solving it is also useful to store
the results of filter estimates.



184 Distributed Data Fusion for Network-Centric Operations

7.5 K-TREE TOPOLOGIES FOR REDUNDANT
AND DYNAMIC NETWORKS

The algorithms presented in Section 7.3.1 relate to tree topology networks. Exact
decentralized estimation has, in the past, largely been restricted to singly connected
tree networks [7,9,18,20]. The key point relating to tree networks is that the DDF
problem can be reduced down to a problem of finding a global sum of informa-
tion terms, which is performed in an efficient local manner on a tree network. In
tree networks, there is only one path between any two nodes. This is used in the
decentralized algorithm to ensure exact fusion, especially avoiding cases of double
counting or rumor propagation in the network. However, the single path property of
tree networks also means that tree networks are vulnerable to the failure of nodes
and links, since the failure of any nonleaf node or link would leave the network in
multiple disconnected pieces. Tree networks include both “star” and chain topolo-
gies as well as branching trees.

This section presents an extension beyond tree communications network topolo-
gies into so-called k-tree network topologies. The k-tree topologies are more general
than tree topologies but are more specialized for scalability than arbitrary topolo-
gies. The presentation of this section is based on Ref. [24]. The k-tree is an extension
beyond tree topologies, which keeps an overall strict tree-like pattern on a large
scale (N nodes > k), as shown in Figure 7.3f, but allows redundant, looped, dynamic
topologies or other subsets of full connection within groups of nodes smaller or
equal to k+ 1. The costs in storage and communication grow with k but not with N,
the total number of nodes in the network. The k-tree topologies are intended to be
used with as small k as possible.

The motivation behind using k-tree topologies is to improve redundancy and
dynamism while maintaining scalability and correctness. For redundancy and
fault robustness, it is desirable to allow the network to include multiple redundant
paths such that some links or nodes can fail without disconnecting the network
topology. It is also desirable to improve dynamism so that some topology changes
are able to allow for link failures and re-connections, especially for mobile decen-
tralized networks. The dynamic topology capability is closely related to the link
redundancy capability, because once the algorithm is capable of handling multiple
paths redundantly, then the network can pick and choose among them dynamically.
These capabilities are obtained while ensuring the scalability and correctness of
the DDF network.

The k-tree topology is used to define an allowable topology; the allowable set of
links for the decentralized network. Once this k-tree allowable topology is estab-
lished, it defines which nodes can communicate on which links and establishes what
each node needs to store and communicate in order to ensure correct and exact DDF,
as will be described later in this section. This use of a defined restricted topology
is similar to how spanning-tree algorithms can be used to define an allowable tree
of links in an otherwise unstructured network for DDF [16,18]. A spanning-tree can
then be used with tree-topology decentralized networks (as in Section 7.3.1), but
these do not offer a simple, exact method for handling the data fusion aspects of
changing topology or dealing with link failures.
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FIGURE 7.3 Example k-tree topologies. Each line is an allowable decentralized
communication link, each vertex is a decentralized node. (a) A complete two-tree topology,
(b) a mixed one-two-tree topology, (c) a one-tree topology over the same nodes, (d) a ring
topology (black lines) is a subset of a two-tree (gray dashed lines), (¢) a complete three-tree
network, (f) a larger two-tree example showing the broad scale tree topology for N> k.
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In a k-tree allowable topology (and using the k-tree algorithms presented here),
nodes can communicate dynamically on all/any links within the k-tree topology,
even if there are multiple redundant paths or loops and links fail and reconnect
unpredictably.

A k-tree allowable topology becomes an arbitrary unrestricted topology for k > N,
the number of nodes. This would allow completely arbitrary dynamic and redundant
decentralized communications, but would however result in expensive storage and
communication.

The treewidth of a graph is well known for its role in limiting the complexity of
algorithms in graph theory [3,13,14], graphical models [5], and sparse linear algebra
[21]. Given the strong effect of the treewidth on the complexity of the algorithms and
network, we considered generalizations of one-tree topologies into k-tree topologies,
focusing in particular on the next-highest k; k=2, since it is the simplest topology
that demonstrates the novel properties of the k-tree approach. It is notable that arbi-
trarily large ring networks can be expressed as a two-tree network. Example k-tree
topologies are shown in Figure 7.3.

A complete k-tree graph is made up of cliques of k+ 1 nodes [13,14]. Each adjacent
pair of cliques overlaps at k nodes (a junction or separator). The overall graph of
connections between the cliques is a tree. A k-tree graph has treewidth of k, so called
because the separators are made of k nodes.

Table 7.5 shows the number of links in various k-tree topologies compared
with those of a fully connected topology. This shows that the number of k-tree
links grows at O(n?) up until n=k+1 (when the first k+1 clique is formed), after

TABLE 7.5
Number of Allowable Links Using Trees of Different k versus
Fully Connected

N Nodes 1-Tree 2-Tree 3-Tree 4-Tree k-Tree Full
1 0 0 0 0 0

2 1 1 1 1 1

3 2 3 3 3 3

4 3 5 6 6 1 —n) 6

5 4 7 9 10 forn < (k+1) 10

6 5 9 12 14 15

7 6 11 15 18 21

8 7 13 18 22 kn—L(k*+k) 28

9 8 15 21 26 forn>(k+1) 36

10 9 17 24 30 45

20 19 37 54 70 190
n>(k+1) n-1 2n-3 3n-6 4n-10 kn—L(k*+k) L’ -n)

n>1 O(n) O(n) O(n) O(n) O(n) o(n?)
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which each additional node only adds an extra k links. Hence, the number of
k-tree links grows as O(n) ultimately. By contrast, the fully connected topology
always grows as O(n?).

7.5.1 DEeceNTRALIZED DATA FUSION ON K-TREES

The decentralized algorithm defines what each node needs to store and communi-
cate such that each node can obtain the global fused information. The algorithm
actively limits the data sizes communicated and stored, leading to the scalable
performance of the system. The goal of the topology and message passing is to
produce a set of terms p,(x), such that the fusion of these is a consistent estimate
for the state x:

1
po(x) = CHpi(x) 771)

These p,(x) are probabilities which are conditionally independent of each other
given x, or equivalently, that they have independent errors.
As shown earlier, it is convenient to express this as a sum of information terms:

Y, = ZY" (772)

Yo = ZYi (7.73)

7.5.2 DATA-TAGGING SETS

The approach used here guarantees against double counting of information by using
explicit “data-tagging” sets. A data-tagging set is a set of separate information terms,
Y,, each with a unique identifier. Each data-tagging set stores only conditionally
independent terms, so Equation 7.72 can be used on all items in a data-tagging set
to recover a consistent fused estimate. Fusion of two or more sets is performed as a
set union followed by Bayesian fusion (Equation 7.72). The set union step identifies
any terms with matching labels and ensures that these are counted only once in the
Bayesian fusion. Thus data-tagging avoids double counting of information.

The approach used here ensures scalability by summarizing every stored or
communicated data-tagging set into a minimal size. This summarization process
exploits the global k-tree property and uses the local topology around the sending
and receiving nodes. The necessary local topology properties are guaranteed by
designing the global network topology as a k-tree.

The proposed approach uses an efficient, minimal form of data-tagging. This
is in contrast to the inefficient full data-tagging approach. In the full data-tagging
method, each node maintains a set of independent information terms (conditionally
independent of each other, given the true state), including its own sensor observations.
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In communicating out to any neighbor, the full set of information terms is sent. In
receiving communication from a neighbor, the received set is merged (unioned) into
the local set. The full data-tagging approach guarantees avoidance of double counting
in arbitrary network topology and allows arbitrary dynamism, but is expensive for
large-scale networks. Eventually every node’s storage and every communicated set
have the full list of the conditionally independent information terms arising from every
other node. In the full data-tagging approach, the node storage and communication size
is O(n) for n nodes in the whole network. This increasing storage and communication
size limits the scalability of the network for large n. The full data-tagging approach is
equivalent to a k-tree operating with k > n for n nodes in the network.

The proposed k-tree approach is obtained by reducing the data-tagging sets to
exploit the tree nature of the communications network. The communications and
storage scheme proposed achieves correct operation in k-tree networks without using
full data-tagging, thus obtaining a decentralized algorithm which is scalable in the
number of nodes.

The “stack” of channel cache terms, in Section 7.3.1, Figure 7.1 is actually a mini-
mal data-tag set for the tree network. Each node has n+1 entries corresponding to
the n neighbors and a single entry for itself.

7.5.3  SEPARATOR AND NEIGHBORHOOD PROPERTIES

Before explaining the k-tree decentralized algorithm, it is necessary to discuss some
properties of the k-tree.

7.5.3.1 Separator Property

An important k-tree property is the existence of tree separators, as shown in Figure
7.4. In a k-tree any k-clique is a separator. Each separator divides the network into
distinct parts. Within each part, the effect of all other parts can be summarized
into the separator. Separators enable efficient summarization of entire branches of
the k-tree network. Separators use the k-tree separator property: in a k-tree, if any
path between any two nodes i,k passes through the separator, then all paths between
nodes 7,k pass through the separator.

These separators are used at the borders of the local neighborhood L to sum-
marize the fused total of the rest of the network beyond the local neighborhood. For
example in Figure 7.4, the total information in each half can be expressed as

a\c/b\d —/e—\ \ h
\/

FIGURE 7.4 Tllustration of the separator property. In a k-tree any k-clique is a separator.
Each separator divides the network into two parts. In this figure, b — d is the separator. The
two parts and the intersection are shown. Within each part, the effect of the other part can be
summarized into the separator.
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ths = {Yinlerior} + [Yseparalor] (774)
= {Yb +Ye +Yh +Yd +Yf}+[de] (775)
Yios ={Y, +Y, + Y, + Y, + Y, } +[Y,] (7.76)

where Y, represents information in the separator b — d.

The identifiers in the data-tagging sets are used to identify which node or branch
of the tree network the information originates from. This means that the identifier
should be a set of node labels, to allow reference to one neighbor, or k neighbors on
a k-tree branch separator.

7.5.3.2 Local Neighborhood Property

A consequence of the separator property is that the local neighborhood around a node
becomes a sufficient representation for that node’s interaction with the whole rest of
the network. The k-tree networks allow an efficient decentralized and local neighbor-
hood representation to serve as the only required topology awareness at the nodes.
This is important for scalability, allowing the representation of a global network with
only small local neighborhood representations. The local neighborhood is therefore
an important data structure used in the algorithm proposed in this chapter.

At any node, V, the local neighborhood subgraph consists of V,, the neighbors of
V; and the links and cliques between them, as shown in Figure 7.5.

The local neighborhood representation is motivated by the k-tree “‘junction path
covering property’’: in a k-tree, if any path between any two nodes i,k passes through
the local neighborhood of a node j, then all paths between nodes i,k pass through the
local neighborhood of ;.

This junction path covering property means that the local neighborhood around
a node j has control over how any messages can pass from one side to the other. The
local neighborhood encodes which neighbors to communicate with, which infor-
mation terms must be maintained separately in data-tag sets (for correctness), and
which terms can be fused into others (for scalability).

a b——e——h
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\/
a)

(
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FIGURE 7.5 TIllustration of the local neighborhood representation, L. In k-tree networks, the
local neighborhood L is an efficient local summary of the relevant parts of the global topology:
(a) global network topology, (b) local neighborhood representations, L, at a, b, e respectively.
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For one-tree topologies used in prior works, the local neighborhood representa-
tion is simply the list of neighboring vertices and list of the corresponding edges to
those neighbors.

7.5.4 k-TRee COMMUNICATIONS ALGORITHM

This section explains the decentralized communications algorithm for k-trees. We
explain the algorithm in the case that the complete k-tree is present. Note, however,
that the full set of links is not required.

The algorithm will be described by referring to the sending node, V, (“transmitting
vertex”) and the receiving node V), (“destination vertex”). The transmitting node
knows the topology of the allowable links within its own neighborhood of the
allowable k-tree topology, denoted as L. The sending node has an existing data-tag
set. The objective of the algorithm is to calculate a reduced data-tag set to send to
the destination, V,.

The communications algorithm is simply stated as follows:

* The data-tag set is reduced into the intersection of the local and destination
neighborhoods.

The communications algorithm is given in algorithm 1 and illustrated in Figure 7.6.
In step 1, the algorithm initially copies the local data-tag set to the output data-tag
set. This corresponds to the full data-tagging solution. The subsequent steps erase
and/or summarize some of the entries, thus ensuring scalability. For step 2, data-tag
terms involving the destination vertex are redundant and can be explicitly deleted.
Step 3 eliminates any data-tag terms which are not neighbors of the destination
vertex. This is explained in the following section.

AL\ VA
g “ i
b)

(c) l // n

FIGURE 7.6 Summary of the communications algorithm. The local neighborhood at the
source node is summarized into the neighborhood separator for the destination. This summa-
rized separator set is sent to the destination and merged into the local set. (a) The full network,
highlighting neighbor-hoods of V, and V,, and their intersection. (b) At V, the network beyond
the immediate neighbors is already summarized within the neighborhood. (c) To prepare a
communication set, the source V, can summarize its local neighborhood set into the intersec-
tion with the destination neighbor V,, (resulting in the left hand set). This set is communicated
to V,,. V,, keeps the union of the received set (left) with its local set (right).
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TABLE 7.6
Leaf Vertex Elimination

LT 7

Three-tree {abc} += Z[v {av} {bv} {cv} Aacv} {bcvy {abv}]

/\

—b
Two-tree {ﬂV} {bv}  {abv}]
=
@
One-tree {a} += Z[V fav} ]

Note: The decentralized algorithm uses leaf vertex elimination to reduce the
size of the set communicated to a neighbor. In each case in the table,
vertex v is to be eliminated. Vertex v has been identified as unnecessary
to communicate explicitly, so is instead all terms involving v are merged

into the resulting separator term.

7.5.4.1 Data-Tag Set Elimination

191

This section explains the marginalization process which summarizes nonlocal

information, in Algorithm 1.

Elimination proceeds at each step by eliminating a so-called leaf vertex, which
reduces the size of the data-tag set. A leaf vertex in an ordinary tree would be any ver-
tex with exactly one edge. More generally, however, there are k-tree leaves which are
defined as follows: A vertex which is part of exactly one clique of k+1 is a k-tree leaf.

Eliminating a k-tree leaf results in its former k+ 1 clique being reduced to a clique

of k. To eliminate a vertex v in a k+ 1 clique

* The result data-tag term r is that with identifier containing the k node labels

of the neighbors of v

* For each data-tag term, ¢, whose identifier contains v: add ¢ into r

Examples of leaf vertex elimination for k < 3 are shown in Table 7.6.

7.5.5 LiINK AND NODE FAILURE ROBUSTNESS

The key properties of the proposed approach are correct fusion, scalability and
robustness against node and link loss. Achieving these properties simultaneously is

achieved by using the bounded treewidth network topology.
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ALGORITHM 1: K-TREE DECENTRALIZED COMMUNICATIONS

Compute the communication output data-tag set to send
Input: £: a copy of the local neighborhood graph
Input: V;: this transmitting node in £
Input: V;: the destination neighbor in £
Input: localTags: the local data-tag set
Result: destTags: the output data-tag set to send
1. Starting case: No summarization:
Copy destTags « localTags
2. Delete terms involving V:
Erase term V, from destTags
Erase any terms for V, separators from destTags
3. Summarize away parts not local to V;:
Determine the region to summarize out, S:
S is all vertices in L except V; and its neighbors
while S is not empty do

Find a leaf vertex V, of L in S

Eliminate V,, updating destTags

Erase V), from S

The proposed method is robust against link and node failures simply because it
can send information terms on multiple paths. This still yields correct and consistent
fusion since the method uses data-tagging to avoid double counting and/or the need
for conservative fusion. Furthermore, the method still yields a scalable solution for
large networks since the multiple-path and data-tagging is only performed within the
nodes and separators of the k+ 1 cliques.

Figure 7.7 shows the pattern of communication of individual information terms in the
data-tag sets. In various cases, there are multiple sources redundantly communicating
the same term. The receiving node always stores the incoming information terms into a
given data-tag set entry. The receive process has no effect other than storing the infor-
mation, so it is acceptable to receive the same term multiple times from different paths.

7.5.6 SUMMARY

This section presented an algorithm for scalable DDF based on k-tree topologies.
The k-tree topologies are more densely connected than 1-trees, but still have an
overall sparse (k-)tree topology which gives scalability for large networks. The k-tree
topologies have some redundancy in the topology, which makes them more robust
to node or link failures than 1-tree topologies. The k-tree topologies allow dynamic
changes to the communications topology within subsets of links in the k-tree. Finally,
k-tree topologies transition into the fully connected topology and fully data-tagged
decentralized algorithm as k increases to N, the number of nodes in the network.
Thus k-trees allow some trade-off via k between the tree-based approaches (kK < N)
and the unstructured approaches (k ~ N).
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FIGURE 7.7 Diagrams showing the individual data-tag terms which would be stored and
communicated in the given topology. At each node the diagram shows the stored terms at that
node (cluster of labels), including its own independent information (circled labels). Each arrow
indicates the communication of an individual data-tag term. Terms which originate from each
node are shown in different shades. Communications which result from the fusion of multiple
terms are shown in dashed lines. Communications is strictly with nearest neighbors only, but
the sum of all data-tag terms at each node equals the global sum of independent information.

7.6 CONCLUSION

This chapter presented and reviewed methods for DDF. This chapter focused on the
channel cache algorithm for DDF in tree topologies and robustness to imperfect
communications. In the second part, this chapter reviewed the trajectory state formulation
of dynamic systems to formulate DDF for the estimation of dynamic systems. This
trajectory state formulation of DDF was applied to address the issues of delayed and
asequent observations and burst communications in DDF. In the final part, this chapter
extended the operation of DDF on tree topology networks into so-called k-tree topologies.
The k-tree topologies are tree-like on the broad scale, which gives good scalability for
large networks of nodes. The &-tree topologies allow loops, dense connections, and hence
redundancy and dynamic changes among groups of up to k+ I nodes.

Taken together, these algorithms contribute significantly toward achieving DDF
that is robust to communications latencies and failures, but still yield centralized
equivalent estimator performance and are scalable for larger networks.

7.A  APPENDIX

7.A.1  MARGINALIZATION IN THE INFORMATION FORM

This appendix states the expressions required for marginalization in the information
form. Consider an information matrix partitioned into state variables x, and X



194 Distributed Data Fusion for Network-Centric Operations

v=[2 B} o) 5<[? (777)
BT C *= X, Y= c .

where these satisfy YX=§
Then the marginal information matrix Y, and marginal information vector y,
which satisfy Y,X,=Y,, and similarly for Y, are

Y,=A-BC'B” y,=a-BC'c¢ Yx,=y, (7.78)

Y.=C-B’A"B y.=c-B'A"a Yx =y, (779)

7.A.2 TRAJECTORY INFORMATION FORM EQUIVALENCE

As stated earlier, the following are both equivalent:

o [Y+FQ'F FQ') _(v-FQ'Bu
| Q' Q' ) 'l qBu

Pk+l = FPkFT + GQGT ﬁkJrl = Ff(k + Buk

This can be shown in a few ways:

N . - X X
* The joint X satisfies YX=y, with X=| ~ |=| 7 |
Xiil Fx;, +Bu

- (YL+FQ'F -F'Q')( %
YX = ( —Q'F Q! Fx, +Bu (750
(Y& +F'Q'Fx-F'Q'{FX, + Bu) (7.81)
a -Q'Fx+Q'{Fx, + Bu}
_(y«-F'Q'Bu (7.82)
Q 'Bu
_y (7.83)

* The x, marginal of Y is equal to the prior Y, and y,. This means that aug-
menting a predicted state x,,, onto a given X, system (including the addition
of the dynamic model information) does not alter the marginal PDF for x,.
This is shown as follows.
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* We write the x, marginal of Y as Y;"%, leaving Y, to mean the prior infor-
mation matrix of timestep k

Y = (Y, +F'Q R -F'Q Q) 'Q'F (7.84)
_y, (7.85)

e The x,,, marginal of Y yields known expressions [2,19] for the prediction in
covariance and information forms:

Y. = {FPF" +Q}" (7.86)
=M-MG(G'MG+Q)"'G'™™M (7.87)
(M = F’TYkF") (7.88)

The x,,, marginal of Y, using Equation 7.79, is

Y., =Q'- Q‘IF[Yk + FTQ-IF]" F'Q (7.89)
Using the matrix inversion lemma:
[BCD+A]'=A"- A"B[C" + DA’IB]f1 DA™ (7.90)
With A-Q B—F C-Y' D-F
Y. =[FY,'F" +Q]" (7.91)
=[FP,F" +GQG™ "' (7.92)
which is the covariance form prediction equation.

The information form prediction equation is obtained by a different use
of the matrix inversion lemma, using

A->FY,'F" B>G C—=Q D-G’
Y., =[FY;'F' +GQG"]" (7.93)

=M-MG(Q'+G"™MG)'G'M (7.94)
where

M=[FY,'F'' =FTY,F!
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Equations 7.89, 7.92, and 7.94 can also be found systematically from the
following augmented system [23]:

Y, 0 F 0 Xy Vi
|
0 0 0 || Xpa1 _ 0 (795)
F -I 0 G v -Bu,
0 0 G" Q'J\w 0

where v is a vector of Lagrange multipliers [23] and v, is the (unknown)
process noise, as in Equation 7.25.

e Marginalizing (7.95) in the ordering (v, v, then x,) results in the predicted
information marginal:

Yu=Q'-Q ' FY+FQ'F)'FQ" (7.96)

e Marginalizing (7.95) in the ordering (x,, v then v) results in the same predicted
information marginal, in the form conventionally used in information filtering:

Y., =M-MGQ'+G"MG)'G'M (7.97)

M=FT7YF" (7.98)

e Marginalizing (7.95) in the ordering (x,, v then v) results in the inverse of
the expression used in the covariance form Kalman filtering:

Y., = (FPF" +GQG")™! (7.99)
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8.1 INTRODUCTION

Measurement-to-track fusion (MTF) refers to the process of collecting measurement
data and then using it to improve the accuracy of the most recent estimates of the
numbers and states of targets. Over the last two decades, both the theory and the
practice of MTF have become increasingly mature. But, in parallel, another devel-
opment has occurred: the increasing prevalence of physically dispersed sensors
connected by communications networks, ad hoc or otherwise. One response to this
development might be to try to apply MTF techniques to such situations. But because
transmission links are often bandwidth-limited, it is often not possible to transmit
raw measurements in a timely fashion, if at all. Consequently, emphasis has shifted to
the transmission of track data and to track-to-track fusion, hereafter abbreviated as
“T2F.” Most commonly, the term “track data” refers to target state estimates and their
associated error-covariance matrices—as supplied, for example, by a radar equipped
with an extended Kalman filter (EKF). T2F refers to the process of merging single- or
multi-target track data from multiple sensor sources, with the aim of achieving more
accurate localization, increased track continuity, and fewer false tracks.

T?F is fundamentally different than MTF. In particular, it cannot be addressed by
processing tracks in the same way as measurements. Both MTF theory and practice
are commonly based on two independence assumptions. First, measurements are sta-
tistically independent from time-step to time-step. Second, measurements generated
by different sensor sources are statistically independent.

However, single-target track data is the consequence of some recursive filtering pro-
cess, such as an EKF, and consequently is inherently time-correlated. If it is processed
in the same way as measurements, spuriously optimistic target localization estimates
will be the result. “Tracklet” approaches [1], such as inverse Kalman filters, decorre-
late tracks so that they can be processed in the same way as measurements. However,
such techniques cannot be effectively applied when targets are rapidly maneuvering,
since decorrelation must be performed over some extended time-window.

Furthermore, multisource track data (like multisource measurement data) in dis-
tributed networks can be corrupted by “double counting” [2]. A simple example:
data from node A is passed to nodes X and Y, which then pass it to node B. If node B
processes this data as though it were independent, then spuriously optimistic target
localization will again be the result. Many T fusion solutions have been devised for
networks with pre-specified topologies. But such methods will not be applicable to
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ad hoc networks. “Pedigree” techniques have been proposed to address this chal-
lenge, by having every node “stamp” the tracks with suitable metadata before passing
them on. In a large network, however, accumulated metadata can eventually greatly
exceed the size of the track data that it documents. This problem can be sidestepped
through node-to-node querying methods—but at the cost of increased bandwidth
requirements. (A more practical difficulty: the large number of legacy networks
makes it unlikely that any pedigree convention is likely to be accepted, standardized,
and implemented across all or even some of them.)

In part because of such issues, T?F theory is probably as underdeveloped now
as MTF theory was two or three decades ago. The goal of this chapter is to try to
remedy this situation by proposing the elements of a general theoretical foundation
for T2F, building on ideas that I first suggested in 2000 [3]. These ideas have recently
been greatly refined, especially by Daniel Clark and his associates [4—6].

The methodology will be the same as that which I have previously applied to MTF
and which has been described in Statistical Multisource-Multitarget Information
Fusion [7]:

1. Model an entire multisensor-multitarget system as a single, evolving sto-
chastic process using the theory of random finite sets.

2. Formulate an optimal solution to the problem at hand—typically in the
form of some kind of multisource-multitarget recursive Bayes filter.

3. Recognize that one way to accomplish this is to find an optimal solution to
the corresponding single-sensor, single-target problem and then generalize
it to the multisensor-multitarget case.

4. Recognize that this optimal solution will almost always be computationally
intractable, and thus that principled statistical approximations of it must be
formulated.

The principled approximation methods that I have most frequently advocated are as
follows:

1. Probability hypothesis density (PHD) filters, in which the multitarget pro-
cess is approximated as an evolving Poisson process [7, chapter 16].

2. Cardinalized PHD (CPHD) filters, in which it is approximated as an evolv-
ing identically, independently distributed cluster (ii.d.c.) process [7,
chapter 16].

3. Multi-Bernoulli filters, in which it is approximated as an evolving multi-
Bernoulli process [7, chapter 17].

In what follows I will consider only the first two approximation methods, which will
be applied to three successively more difficult multisource-multitarget track fusion
challenges:

1. Exact T?F of independent track sources.

2. Exact T?F of track sources with known double-counting.

3. Approximate T?F of track sources having unknown correlations, using mul-
titarget generalizations of Uhlmann and Julier’s covariance intersection (CI)
approach.
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In each of these cases I proceed by formulating a general approach to multisource-
multitarget T?F and then by deriving more computationally tractable approximations
using CPHD and PHD filters in the manner proposed by Clark et al.

The chapter is organized as follows:

[98]

AN

8.2

. Section 8.2: Review of single-target T?F theory.
. Section 8.3: Review of those aspects of finite-set statistics (FISST) required

to understand the chapter.

. Section 8.4: Direct generalization of single-target T?F to multitarget T2F.
. Section 8.5: Approximation of this general approach using CPHD and PHD

filters.

. Section 8.6: A discussion of possible implementation approaches.
. Section 8.7: Mathematical derivations.
. Section 8.8: Summary and conclusions.

SINGLE-TARGET DISTRIBUTED FUSION: REVIEW

In this section, I summarize some major aspects of single-target T?F that will be
required for what follows:

8.2.1

. Section 8.2.1: The single-target recursive Bayes filter is the foundation of

the material in this section. I summarize the basic elements of this filter and
define the concept of a “track” in general.

. Section 8.2.2: Single-target T?F when the track sources are independent.

Approach: the track-merging formula of Chong et al. and its special case,
Bayes parallel combination.

. Section 8.2.3: Single-target T?°F when the track sources are dependent

because of known double-counting. Approach: the generalized track-
merging formula of Chong et al.

. Section 8.2.4: Single-target T?F when the track sources are linear-Gaussian

but their correlations are completely unknown. Approach: the CI method of
Uhlmann and Julier.

. Section 8.2.5: Single-target T?F when the track sources are arbitrary and

their correlations are completely unknown. Approach: Mahler’s generalized
CI method, rechristened by Julier and Uhlmann as “exponential mixture”
(XM) fusion.

SINGLE-TARGET BAYES FILTER

The approach in this section is based on the Bayesian theoretical foundation for
single-target tracking, the single-target Bayes nonlinear filter (see Chapter 2 of [7]).
This filter propagates a Bayes posterior distribution f,,(x1Z¥) through time

predictor corrector

"‘_>fk|k(X|Zk) - ﬁc+1\k(X|Zk) - fk+1|1<+1(X|Zk+l)—>“' 3.1
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where
x is the single-target state-vector
7k z,,...,2, is a time-sequence of measurements collected by the sensor at times
Eiae ol

The Bayes filter presumes the existence of models for the sensor and for the pre-
sumed interim target motion, for example the additive models

Xk = 0 (X)+ Wy, Zyyy =Mt (X)+ Vi, 8.2

where (1) x is the target state, (2) the deterministic motion model @,(X) is a nonlinear
function of x, (3) W, is a zero-mean random vector (the “plant noise”), (4) the
deterministic measurement model N(x) is a nonlinear function of x, and (5) V, is a
zero-mean random vector (the sensor measurement noise). Given these models one
can construct a Markov transition density and likelihood function. For the additive
models, for example, these have the form

S X1X) = fir, = QX)) fera(@X) = fy,, (2= Mesa (). 8.3)

The single-target recursive Bayes filter is defined by the time-update and measure-
ment-update equations

Seee (X1 Zk) = J.ﬁc+llk (x| X,) S (X, | Zk)dxl 34

Jir1(Zp 1X) - from (X Zk)

x|z = 8.5
fk+1|k+l( ) f}(+](zk+] le) ( )
where the Bayes normalization factor is
St (Ziea |Zk) = J.fk+1(1k+1 1) frru (X1 Zk)dx- (8.6)

Information of interest—target position, velocity, type, etc.—can be extracted
from f,,, (x| Z¥) using a Bayes-optimal multitarget state estimator. The maximum a
posteriori (MAP) estimator, for example, determines the most probable target state:

XkMﬁEm =argsup fr e (X | Zk+1)~ 8.7

Multisensor, single-target MTF with independent sensors is accomplished by applying
Equation 8.5 successively for each sensor. Suppose, for example, that there are s
sensors. Their respectlve 31multaneously collected measurements ) 5 are mediated

by likelihood functions f b (Z | X) f ,HI(Z I x). By applying Equatlon 8.5 first using
1 5
f kH(z I x) and then using f k+1(Z IX) and so on, the measurements %----Z are not only

fused, but differences in sensor noise, sensor geometry, sensor obscurations, etc., are
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taken into account. Equivalently, one can apply Equation 8.5 to the joint likelihood
function

FerZ1X) = o @1%)f o, (21%) 8.8)

where Z = {%,. ..,z} denotes the set of multisensor measurements.

When motion and measurement models are linear-Gaussian, the Bayes filter
reduces to the Kalman filter. Likewise, the multisensor Bayes filter (for independent
sensors) reduces to the multisensor Kalman filter. In either case, a “track” can mean
any of the following: (1) an instantaneous state-estimate X, 1> (2) Xz 110 together
with its error covariance matrix Py, ., (3) alabeled time-sequence of state-estimates,
or (4) a labeled time-sequence of state-estimates and error covariance matrices.

Remark I Since my goal is to develop a more general T2F theory, in what follows
a “track” at a particular time-step k will refer to the entire distribution f;,(x1Z"),
rather than to the estimates x;; or (X;;, P, extracted from it. Also, for the sake of
notational simplicity, I will typically suppress measurement-dependence and employ
the abbreviation

abbr.
JaeX) = fr(x z"). (8.9)

8.2.2 T2F witH INDEPENDENT SOURCES

Suppose that a single target is being tracked and that s independent sources, relying

on their own dedicated local sensors, provide track data about this target to a T?F site.
jooJ j J
The jth sensor suite collects a time-sequence ZY:Z1,...,Zx, where Z! denotes the

set of measurements supplied by the jth source’s sensors at time #,. The source does
not pass its measurements directly to the fusion site. Rather, it passes the following
information:

* Measurement-updated, single-target track data, in the form of posterior
j abbr. j

J J J
distributions f e (X) = f(x1 Zk)

e Time-updated, single-target track data, in the form of distributions
i abbr. j

j‘kﬂlk(x) = }‘kﬂ\k(x | ij)

abbr.
Let fiu(X) = fun (x| Z*) be the fusion node’s determination of the target state, given

the accumulated track data Z* supplied by all of the sensor sources. Then Chong
et al. [2] noted that the fused data at time-step k+ 1 is exactly specified by the follow-
ing track-merging formula:

]lck+1|k+1(x) JSCHWH](X)

| ] frrm (X) (8.10)
fk+l|k(x) fk+1|k(x)

Sirtke1(X) <
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where the constant of proportionality is

1 s
K= J. flkHlkH(X) e fSkHlkH(X) 'fk+1|k(X)dX. (8.11)
fk+1|k(x) fk+1|k(x)

This formula also applies to the asynchronous-sensor case. If each source has its
own data rate, then the measurement-collection times ¢,....,7, can be taken to refer to
the arrival times of data from all of the sources, taken collectively. If at time 7, only
s, of the sources provide data, then Equation 8.10 is replaced by the corresponding
formula for those sources only.

J
Equation 8.10 is an immediate consequence of Bayes’ rule. Let fi,;(Z | X) be the
joint likelihood function for the jth source’s local sensors. Then

Froent ) = firsZast %)+ fias(Zaet 1% fosne (%) 8.12)

j j j
and thus Equation 8.10 follows from the fact that f ;. (X) o fis1(Zis1 1X) - 1 (X)
forall j=1,...,s.
~ Suppose, now, that the sources do not pass on their time-updated track data

JJ”k+1|k(X) but, rather, only their measurement-updated track data ~;Ckﬂwﬂ(x). (This is
what happens with radars equipped with EKFs, for example.) In this case, Equation
8.10 can no longer be constructed, and some approximation must be devised.

One approach is to presume that all of the sources employ identical target motion

J ’ . . .
models. That is, the sources” Markov densities f,;, (X | X") are identical to the fusion

J
site’s Markov density: f, 1 (X1 X") = fiom (X 1X) for all j=1....,s. Under this assump-
tion, the fusion site can itself construct time-updated track data for the sources, using
the prediction integral

]]C/H”k(x) = J.ﬁﬁ—llk (X [ X,) : }klk(X)dX, (813)

and then apply Equation 8.10.
A second but more restrictive approximation is also possible. It is based on the
presumption that the sources’ time-updated track data is identical to the fusion site’s:

]j‘MIk(X) = fiam(x) for all j=1,...,s. In this case, Equation 8.10 reduces to

ﬁc+1|k+l(x) o< }k+1|k+1(x)' : '?k+1|k+1(X)' fk+1|k(x)lis- (814)

This formula is known as “Bayes parallel combination” [7, p. 137].
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8.2.3 T?F witH KNowN DouBLE-COUNTING

In the previous section, it was assumed that each data source is equipped with
its own suite of dedicated sensors—that is, the sources share no sensors in com-
mon. That is, expressed with greater mathematical precision, let 2121{ be the
time-sequence of measurement-sets for the ith source and let é ly.. .,ék be the time-

i J
sequence of measurement-sets for the jth source. Then Z;~Z; ¢ whenever i # j,
forall [=1,...,k.

i j
If on the other hand Z:"Z; ¢, then the sources are sharing at least some sensors
and double-counting of measurements occurs. Chong et al. [2] generalized Equation
8.10 to this case—assuming that one knows, a priori, which sensors are being shared
1

by which sources. Define Z;,; = Zi+1U---U ékﬂ. Let

12 1
. Z w+1 be the measurements supplied to the second source that are not in Zg+
12

. Z +1the measurements supplied to the third source that are not in Z k1 Z ks
d Zk+1 the measurements supplied to the fourth source that are not in

12 13
Zk+IU LU Zisi

and so on. Define

() J Lj

Zin =Zin—Zi+ . (8.15)

Then Equation 8.10 generalizes to

Footn (X) o< fk+1|k+1(x) fk+1|k+1(x) ) fk+1|k+1((s)) Feon(X). (8.16)

fk+1|k(x) fk+llk(X| Z) S (X12)

If Equation 8.16 is to be applied, the jth source must know which sensors 1t shares

with each of sources 1,...,j — 1, and must pass on fk+1|k(x | Z) in addition to fk+1|k(x)
Clearly, as the number of sensors increases, the problem becomes more complex, in
terms of both computational cost and communications requirements.

Equation 8.16 is, once again, an immediate consequence of Bayes’ rule:

2 s
Frrn®) % fonZiot 10 o Ziet 19+ fon Ziot 19 frome®)  (8.17)

2
Sttt T 10 falanln) o g

Jera(Zin 1X)  firi(Zin 1X)
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2 s
. }‘k+llk+l(x)_ Sromen (X fk+l|k+1()((s)) froome (). 8.19)

1 2 (2)
From®) froan&1Z) [, (x12Z)

1
As an example, set s=2 and suppose that fix(X) = f,:(X). Then Equation 8.16
reduces to the following formula of Chong et al. [2]:

f’””kﬂ(x) fk+l|k+l(X) 820)
fk+||k(x | Zk+1r'\Zk+1)

Stk (X) o<

12 (2) 2 12 1 2
For in this case, Zi+1 = Zk+1—(Zk+1m Zm) and s0 Zi+1 = Zis1— Zi+1 = Zir 1N Lkt

Thus

fk+l|k+l(x) fk+l|k+l(x)

Jrernien () o<  fron(X) (8.21)
fk+l|k(x) fk+1\k(xl Z)
1 2
- flkHIkH(X) 2 kaIlkH(X) 2 “Serme(X) (8.22)
fk+1\k(x) fk+1|k(x | ZisiN Zis1)
1 2
= fk+llk+1(X)'fk+uk+1(x), (8.23)

2 1 2
Frone X ZeniN Zirr)

8.2.4 COVARIANCE INTERSECTION

Sections 8.2.2 and 8.2.3 address situations in which enough a priori knowledge is
available to make exact track merging possible. In general, however, this will not
be possible. This is because not enough a priori information is available, or because
even if available it cannot be effectively utilized. This situation is, in part, what the
CI method of Uhlmann and Julier [8—10] is intended to address.

Suppose that a single target is being observed by two track sources. At time-

. o 9 .
step k, the first source provides a track (X«i, Pxx) and the second source provides a

[ . . 0 Lol . .
track (X«ix, Pxi). CI is a method for merging (§k|k,Pk|k) and (Xxik, Pur) into a single
(X4 Py that is robust with respect to ambiguity. This means, in particular, that the
uncertainty Py, in X, is neither too small (over-confidence) nor too large (under-

confidence). Let 0 < ® < 1 and define ()0(’k|k,1%k|k) by

[0 0 1
Py =(1-)Pi+wPy (8.24)
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0@ 0.0 1
I:’,Jkl Xk = (1— ) Pkal X+ (,l)Pkal Xklk. (8.25)

(0] [
The matrix Piix is positive-definite regardless of the value of ®, and ()uzklk,Pklk)

. . 0 0 1 1
instantiates to (X, Pk ) resp. (Xu, Pux) when =0 resp. o=1.
Suppose that

0
(x = Xue)” Pyl (X — X)) < G2 (8.26)

1
(X—)l(k|k)T B(Tkl(x—)l(km) <o’ (8.27)

are the error hyper-ellipsoids of size ¢ associated with the tracks (xk|k Pk|k) and

(Xklk Pklk) Then it can be shown that, for any 0 < ® < 1 and any ¢ > 0,

) 9] [0)
(x—xu)" Pop (X —Xun) < 62 (8.28)

That is, the error hyper-ellipsoid of the merged track always contains the intersection
of the interiors of the error hyper-ellipsoids of the original tracks.
Intuitively speaking, ® should be chosen so that the hypervolume of the hyper-

ellipsoid (x —Xue)" Pal(X—Xuw) =62 is as small as possible. That is, the merged

hyper-ellipsoid should have the best possible fit to the intersection-region of the two

original hyper-ellipsoids. Uhlmann and Julier proposed choosing ®=® so that it
[ [0]

minimizes either the trace tr P or the determinant det Pri. They demonstrated that
this approach yields an approximation of the exact merged track that is unbiased and
whose degree of uncertainty is not overstated.

Frianken and Hiipper [11] subsequently proposed a more computationally tractable
“fast CI” approximation. Here, ® is chosen according to the formula

0 1 1 0
_ det(Pge+ Pai) —det Pog + det P (8.29)

0 1
2-det(Pyi+ Pai

These authors also proposed the following generalization. Consider the multisource
CI problem defined by

[0} 1 n
Py = o, P+ + 0, Py (8.30)

) Lo L
P Xk = O Peye X+ -+ 0, Poye X (8.31)
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with ®, + -+ + ®,=1. Then their proposed approximation is

det P! —det(Py' — Pai) +det Py

: . (8.32)
n J J

n-det Pg' + E |:det Pl—det(Pg! —ngl)]
j=t

0, =

where
n s
-1 I—I
Py = E P
i=1

Much research has been devoted to determining the effectiveness of CI. The emerg-
ing consensus seems to be that CI tends to produce estimates of the fused track that
are pessimistic. That is, the fused target-localizations are significantly worse than
what one would get from an exact fused solution. This behavior is exactly what one
would expect, given that, by design, CI must address worst-case situations in which
to-be-fused tracks could be highly correlated.

8.2.5 ExrONENTIAL MIXTURE FUSION

The CI method addresses the merging of only linear-Gaussian track sources. How
might it be generalized to more general sources? In 2000 [3], I observed that the fol-
lowing identity is true:

0 1
No (X—Xk|k)1_m-N1 (X —Xu)®
Phik

Pk =No (X—Xr) (8.33)
0 1-0 ! ® Prik
No (y—Xwm) " Ni (y—xwm)”dy
Pk Pk

where, in general, Np(x—X,) denotes a multidimensional Gaussian distribution
with mean x, and covariance matrix P, That is, CI can be expressed entirely in
terms of density functions rather than covariance matrices. I proposed, therefore,
that the following definition be taken as the obvious generalization of the CI merging
formula to arbitrary track sources:

0 e | R
fk+l|k+l(X) 'fk+”k+1(X)

0 | ’
J-fk+llk+l(y)1_w'fk+llk+l(y)mdy

i) = (8.34)

Hurley independently proposed Equation 8.34 in 2002 [12]. He also justified its theo-
retical reasonableness on the basis of its similarity to Chernoff information, which
is defined as follows:
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C(Jl(k+l|k+l;]00k+llk+1) = sup (_logj}kﬂlkﬂ(x)lm '-}k+llk+l(x)mdx)‘ (8.35)

0<w=<l1

As it turns out, Equation 8.34 is a special case of “logarithmic opinion pooling,”
when the opinions of only two experts are being pooled [13]. This means that CI
is itself a special case of logarithmic opinion pooling, given that the opinions of
two linear-Gaussian experts are being pooled. Julier and Uhlmann have described
Equation 8.34 as an “XM model” for track fusion [14,15]. (It has also been given the
name “Chernoff fusion” [16].) I will adopt their terminology in what follows, abbre-
viating it as “XM fusion.” (Julier has also suggested approximations for computing

the XM fusion formula when the original distributions } caea (X) and ]1‘ relksr (X) are
Gaussian mixtures [14].)

The XM fusion density has several appealing properties. First, and perhaps most
importantly, Julier has shown that it is invariant with respect to double counting [17].

0 1
That is, suppose that the distributions f, ., ., (x) and f,,,,,(x) have double-counted

(0]
information in the sense of Section 8.2.3. Then f,_,,,,(X) incorporates the double-
counted information only once, in the same sense as does Equation 8.20.
Second, forall0 <w <1 [9]:

min{}mukﬂ(x)’}k+1|k+1(x)} < ?‘kﬂlkﬂ(x) (all x) (8.36)

0 1 [6)
max{f 110D f st XD} S froma (Xo)  (there exists Xg). (8.37)

The first inequality indicates that }%kﬂlkﬂ(x) does not reduce information (as
compared to the original distributions), whereas the second one indicates that it can
also increase it.

In Ref. [3], I proposed the following as the most theoretically reasonable procedure
for optimizing ®

O = arg sup sup Fres1 (X, (8.38)

(O] X

(0]
in which case f,,,,,(X) with @=@® results in the best choice of track merging. That
is, the optimal value of ® is the one that results in the largest MAP estimate. (Note

that Equation 8.38 can be approximated by computing the covariance matrix P
of f,,14+1(X) and minimizing its determinant or trace, as originally proposed by
Uhlmann and Julier [8-10].)

Julier has proposed [14] that, rather than Equation 8.38, a more theoretically

principled optimization procedure would be to choose ® as the maximizing value
in Equation 8.35:
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. ) 0 o
W =arg lng-fk+llk+l(X)1 © fran (07 dx. (8.39)

This has the effect of minimizing the degree of overlap between the distributions
}H“M(X)"‘” and Jlfkﬂlkﬂ(x)“’. His reasoning is as follows. First, ® reflects the infor-
mation contained in the distribution ;)‘k+”k+l(x) as an entirety—rather than just the
information contained at a single point, the MAP estimate. Second, ?kmkﬂ(x) can

be shown to be equally distant from jor e (X) and Jo‘ w1 (X) in a Kullback-Leibler
information-theoretic sense.

Nevertheless, I argue that Equation 8.38 is a more justifiable theoretical choice,
for two reasons:

1. In target tracking, a track distribution f(x) is of little interest unless one
can extract from it an accurate estimate of target state. Using the entire
distribution f,(X) for this purpose is typically a bad idea. For example,
in practical application, most of the modes of f,(x) will be minor modes
caused by clutter returns, along with (if SNR is large enough) a single larger
target-associated mode. Thus an estimator that employs all of f,(x)—the
expected value x,, of f,,,(x) for example—can produce unstable and very
unaccurate estimates. The MAP estimator, Equation 8.7, is usually more
appropriate for practical application, since it tends to produce more stable
and accurate state estimates.

2. Abstract information-theoretic distances should be treated with caution
when isolated from physical intuition. There is a literal infinitude of infor-
mation-based distance concepts—most obviously, the Csiszar-divergence
family [18,19]

1
Kc(}k+1|k+1;}k+1|k+1) = I}k+1|k+1(x)'c M dx (8.40)
Jrens1 )

and its multitarget generalizations [20], where c(x) is some nonnegative convex func-
tion. For example, choose the convex kernel c(x) to be ¢, (x) =(1 — w)x+® — x®. Then
Chernoff information can be expressed in terms of K, , which is

0 1 0 1
Koo (f orsts frsnns) = I_J-fk+llk+1(x)l e [ rpmn (X)7dx. (8.41)

In addition to these, there are many distance metrics on probability distributions,
such as Wasserstein distance. Which of these is “best,” why is it best, and what might
its physical interpretation be?
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The reasoning behind Equation 8.38, by way of contrast, inherently arises from
the practical goal of trying to achieve the most accurate and stable state estimates

®
possible. For each , consider the following statements about f, .. (X):

1. It is the distribution of the merged track.

2. The MAP estimate for this track is Xk+1e+1 = argsupy f s (X).
3. The larger the value of Supx f,.:(X), the more probable—and therefore

the more sharply localized— Xkt will be.
4. Thus one should choose that value ® of ® which corresponds to the most-
probable (best localized) MAP estimate.

The necessity of this line of reasoning will become apparent when I propose multi-
target generalizations of XM fusion later in the chapter. In this situation, concepts
such as covariance or trace can no longer even be defined. Concepts such as Chernoff
information and Csiszar discrimination can still be defined, but their physical mean-
ing is even less evident than in the single-target case. The primary difficulty is a
practical one, namely that in multitarget problems the computability of Equation 8.38
will be questionable. Thus computational tractability will usually be the primary
motivation for choosing information-theoretic or other optimization approaches in
preference to Equation 8.38.

8.3 FINITE-SET STATISTICS: REVIEW

In this section, I briefly review basic elements of finite-set statistics (FISST) [7,21,22]
that are required for the material that follows:

1. Section 8.3.1: The multisensor-multitarget recursive Bayes filter. This is the
foundation for the approach to T2F that will be introduced shortly.

2. Section 8.3.2: A brief summary of the basic elements of the FISST dif-
ferential and integral multitarget calculus, including Poisson processes and
ii.d.c. processes.

3. Section 8.3.3: The PHD filter. This is the first computational approximation
of the multitarget Bayes filter.

4. Section 8.3.4: The CPHD filter. This is the second computational approxi-
mation of the multitarget Bayes filter.

5. Section 8.3.5: A brief summary of significant recent advances involving
PHD and CPHD filters.

8.3.1 MUuULTITARGET RECURSIVE BAYES FILTER

My approach to multisource-multitarget T°F is based on the multisensor-multitarget
recursive Bayes filter [7, chapter 14]. Let Z®: Z,,...,Z, be a time-sequence of
multisensor-multitarget measurement-sets Z; collected at times f¢,,...,t,. That is,
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each Z; consists of the measurements collected by all available sensors at or near
time-step i. They can have the form Z;=; (no measurements collected); Z;={z,} (one
measurement z, collected); Z,={z,,z,} (two measurements z,,z, collected); and so on.
Given this, the multitarget Bayes filter propagates a multitarget posterior distribution
SuxX1ZF) through time:

predictor

corrector
o= fue (X Z(k)) = S (X | Z(k)) - ﬁc+1lk+1(X|Z(k+1)) - (842

Here, X is the single-target state-set—i.e., X=if no targets are present, X={x,} if a
single target with state x, is present, X={x,,X,} if two targets with states x,x, are
present, etc. The “cardinality distribution”

Prsten(n1 250y = J. Fermn (X 1Z5)8X (8.43)

1XI=n

defines the posterior probability that the multitarget scene contains n targets, where
-0X indicates a multitarget “set integral” as defined in Section 8.3.2.

The multitarget Bayes filter presumes the existence of multitarget motion and
measurement models, for example:

Sk =Sk (XU By, Zpai = T (XU Crg (8.44)

where
S«(X) is the random finite subset (RFS) of persisting targets
B, is the RFS of appearing targets
T,1(X) is the RFS of target-generated measurements
C,,, is the RFS of clutter measurements

Given these models, using multitarget calculus (Section 8.3.2) one can construct a
multitarget Markov transition density and a multitarget likelihood function

feomX 11X, fir(Z1X) (8.45)

(see Chapters 12 and 13 of [7]). Because of this systematic specification of models,
at any given time-step the distribution f;,(X1Z®) systematically encapsulates
all relevant information regarding the presumed strengths and weaknesses of the
targets, and the known strengths and weaknesses of the sensors.

The multitarget Bayes filter is defined by the predictor and corrector equations

fea(X129) = J.kaIk(X 1X): fn (X 1Z29)8X’ (8.46)

[t (Zii 1 X0 fron(X 1 Z0)
ﬁ<+1(Zk+1 l Z(k))

fromn(X 1250y = (8.47)
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where

fin(Zin 120y = Jﬂ+1(zk+1 1 X) fern(X 1 Z%)8X. (8.48)

In what follows, I will abbreviate, for all k > 0,

abbr.

fueX) = fur(X1Z%) (8.49)

abbr.

fermnX) = fra(X1Z9). (8.50)

Information of interest—number of targets, the positions, velocities, and types of the
targets, etc.—can be jointly extracted from f},(X1Z®) using a Bayes-optimal mul-
titarget state estimator (see Section 14.5 of [7]). For example, the joint multitarget
(JoM) estimator is defined by

1X1
C

XN = argsup frsms1 (X | z%y. —— (8.51)
X | X 1!

where c is a fixed constant which has the same units of measurement as the single-
target state X.

Remark 2: Generally speaking, ¢ should be approximately equal to the accuracy
to which the state is to be estimated, as long as the following inequality is satisfied
[7, p. 500]: frsiipe X1 ZED)c < 1 for all X, where 71 is the MAP estimate derived
from the cardinality distribution.

8.3.2 MurtnitArRGET CALCULUS

The finite-set statistics multitarget integral-differential calculus is central to the
approach that I advocate. Functional derivatives and set derivatives [7, chapter 11]
are key to the construction of “true” multitarget Markov densities and multitarget
likelihood functions. They are also key to the construction of principled approxima-
tions of the multitarget Bayes filter, such as the PHD and CPHD filters.

A set integral accounts for random variability in target number as well as in target
state. Let f,,,(X) be a multitarget probability distribution. Then it has the form

[roosx = 7@+ Y [ futtsinoxaax .. 852
n=1 :

Let F[h] be any functional—i.e., a scalar-valued function whose argument /% is a
function A(x). Then the functional derivative of F with respect to any finite set
X={xy,....x,,} with IXI=n > 0 is given by
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OF ) )
= ...~ F .
oX L] ox, 0Ox, L] (8.53)
iF[h] = 1imw (8.54)
ox e\0 €

where 8,(x’) denotes the Dirac delta function concentrated at x. Functional deriva-
tives and set integrals are inverse operations, in the sense that

_[x.3F

Flh]= Jh X [0]6X (8.55)
S [,y

— 1 - f(X)oX = f(X).

[SXJ FO08 ]ho £ (8.56)

Here, for any function A(x),
{ 1 if X=0
Y = . L (8.57)

leexh(x) if  otherwise

In this chapter, we will require frequent use of two special multitarget processes.
Suppose that f(X) is a multitarget probability distribution. Then it is the distribution of

e A Poisson process (Poisson RFES) if
fX)=e"-D* (8.58)

where
N = JD(x)dx

D(x) is the PHD, or “intensity function,” of the process

* Anindependent, identically distributed cluster (i.i.d.c.) process (i.i.d.c. RFS) if
FXO=IX1tp( X 1)-s* (8.59)

where
s(x) is the spatial density
p(n) is the cardinality distribution of the process

Equation 8.58 is a special case of Equation 8.59 with p(n)=e~N - N'/n!
As an example, one can verify that Equation 8.58 defines a multitarget
probability distribution:
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J.f(X)SX =eN.D%+ e_NZ%J.D(Xl)' < D(x,)dx,---dx,  (8.60)
=1

n

=e V4N %N" =e V.V =1. (8.61)
n!

n=1

Likewise, Equation 8.59 defines a multitarget probability distribution:

oo

j FX)BX = 0t p(0)- s° + Z%‘(") j S(x))-+5(x,)dx, -dx,  (8.62)
n'

n=1

= p(O)+ Y P =1. (8.63)
n=1

8.3.3 PHD Fiter

Constant-gain Kalman filters—the alpha-beta filter, for example—provide the most
computationally tractable approximation of the single-sensor Bayes filter. A constant-
gain Kalman filter propagates the first statistical moment (posterior expectation) X,
in place of f,,(x|1Z¥), using alternating predictor steps X, = X,,, and corrector
steps Xy, i = Kippipsr-

The PHD filter mimics this basic idea, but at a more abstract, statistical level
[7, Chapter 16] [23]. It propagates a first-order multitarget moment of the multitarget
posterior f,, (X1Z®) instead of f, (X |Z®) itself:

predictor corrector

"'_>Dk|k(X|Z(k)) - Dk+l|k(X|Z(k)) - Dk+1|k+1(X|Z(k+1))_>"' (8.64)

This moment, the PHD, is the density function on single-target states x defined by

abbr.

D (%) = D(x129) = jfk.k<x Ufx}1Z)3X. (8.65)

It is not a probability density, since its integral is in general not 1. Rather,
Nue = | D (x)dx is the total expected number of targets in the scenario. Intuitively

speaking, D,,,(x) is the track density at x. The peaks of D,,,(x) are approximately at
the locations of the most likely target states. So, one way of estimating the number
nand states X ,..., X, of the predicted tracks is to take 7ito be the nearest integer 71in
N1, and then determine the 7 highest peaks of D, (x).

The PHD can be propagated through time using the following predictor (time-
update) and corrector (data-update) equations. Neglecting the spawning of targets by
other targets, these are
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Dy (x) = N/f+1|k51§+uk(x) + J.I’s (X) frome (X 1X")- Dy (x")dx’ (8.66)

Dy 41 (X)
Dy (x)

Pp (X) Lz(X)
. }Vk+lck+1 (Z) + Tk+1(z).

=1— pp(x)+ 2 8.67)

2€Zp+

Here,

o NE,isthe expected number, and sPan (X) the spatial distribution, of newly
appearing targets.
abbr.

o ps(x") = psiaun(X) is the probability that a target with state x’ at time-step
k will survive into time-step k+ 1.

* frauxIX’) is the single-target Markov transition density.
abbr.
* pp(X) = pps+1(X) is the probability that a target with state X at time-step

k+1 will generate a measurement.
abbr.
e L,(X) = firi(z|x) is the single-target likelihood function.

e A, is the clutter rate and c,,,(z) is the spatial distribution of the Poisson
clutter process, where

Ti1(2) = J-PD (X)L, (X)* Dy (X)dX. (8.68)

One can get an intuitive understanding of how the PHD filter works by noticing that
the measurement-updated expected number of targets is

ND D
Nisisn = J.Dk+llk+l(x)dx = Nkt Z Nivi+1(2) (8.69)
2k
where

ND

Nivins: = J.(l = Pp(X)): Dy (X)dx (8.70)
D

Ni+e+1(z) = T (2) (8.71)

Mis1Chst () + Tppy (2) .

ND
The nondetection term N r+1x+1 1S an estimate of the number of targets that have not
D

been detected. The detection ratio Ni+ik+1(z) assesses whether or not z originated
D
with clutter or with a target. If Ni+ue+1(2z) >1/2—that is, if 1,,,(z) > A, ¢4, (Z)—then
D

z is “target-like.” If Ni+u+1(z) <1/2 then it is “clutter-like.”
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The derivation of Equation 8.67 requires the following simplifying assumption:
the predicted target process is approximately Poisson. As is evident from Equation
8.67, the PHD filter does not require explicit measurement-to-track association. It
has computational order O(mn), where m is the current number of measurements
and n is the current number of targets. It tends to produce inaccurate (high variance)
instantaneous estimates N,,, of target number. Thus it is typically necessary to
average N, over some time window.

The PHD filter can be implemented using both sequential Monte Carlo (SMC,
a.k.a. particle-system) approximation, or Gaussian-mixture approximation. In the
first case, it is called a “particle-PHD filter” and in the second case a “GM-PHD
filter” (see Chapter 16 of [7] and [45-47]).

8.3.4 CPHD FiLter

The CPHD filter generalizes the PHD filter [7, chapter 16] [23]. It admits more general
false alarm models (called “independent, identically distributed cluster” [i.i.d.c.]

models) than the Poisson models assumed in the PHD filter. It propagates two things:
abbr.

a spatial distribution s, (X) and a cardinality distribution py;(n) = pyi(n | Z%®Y on
target number n:

R {sk.k<x 1z pregmr{swux 'z w"gwr{shwx 2 6
Pk (n 1 Z°) Pk 1 Z°) Disikn1(n 1 Z ))

If Ny = Z Lt Pak (n1Z*)isthe expected number of targets, then D, (x| Z®) =N, -
8.1 Z®) is the corresponding PHD. Or, equivalently, Sux (X | Z ) = NutD(x 1 Z9).

CPHD Filter Time-Update Equations. The predictor equations for the CPHD filter are

Dy (X) = by (x) + J. Ps(X)" frome (X 1X") - Dy (X")dx’ (8.73)
D () = zpkﬂlk(n [n"): pr(n”) 8.74)
n’20

where p,ﬁ,uk (n—j) is the cardinality distribution of the birth process and where

Drex(nln’)y= Z P1§+1\k n—=j)-Cy;- \Ili (1 — Yy )n,ij (8.75)
j=0
Vi = J.PS(X) S (X)dX (8.76)

Nyw = N + jm(x’) D (X)X’ 8.77)
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NI§+1Ik = J‘bk+llk (x)dx

4

— T if osjs<w
Cn’,j= ]'(}’l _.])' .
0 if  otherwise

219

(8.78)

(8.79)

CPHD Filter Measurement-Update Equations. If m=1Z,,,| where Z,,,={z,,...,Z,,
is the newly collected measurement-set, then the corrector equations for the CPHD

filter are
D + + ND D
M = (l—pD(X)) Ek+l+ 2 pD(X)'Lz(X)'Ek-H(Z)
Sgatk (X) =
min{m,n} )
— ) pk — 7). 0" .o
Pr+ik+1(1) _ 2@:0 (m = pra(m=j)-Poj- 0" 6(Zi)
Peast) N =Dk paOm=1)- 61(Zas)- Gilhs(00)
where
o D = D plam=)-0,(Ze)-GEiR00)
E = j,;
EH) (m =D pia(m=1)-61(Zi)- Glu(dr)
" j b ' (j+1)
b 1 Z i=0 (m=j=Db pea(m—=j=1)-6;(Zin —{2;}) Gt (¢x)
Ern (Z) = . S p
ea® Zz:o (m =D pia(m=1)-6/(Zp1)- Gl (01)
and where

Gj (Zk+l) = Gm,j [ Tk+1(Z1) Tk+1(zm) )

yeres
Cer1(Zy) Cer1(Zy)

GIEQIIk (q)k) = 2 Pn’,l : pk+l|k(n,) ! (I)ZLI

n’'2l

Gl(cmk)(q)k) = Z Pn',j+l -pk+1|k(n’)-¢2"j"l

n’2j+l1

(8.80)

(8.81)

(8.82)

(8.83)

(8.84)

(8.85)

(8.86)
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0 = 1= o) stc1is 387)

T (2) = J'PD(X) L, (X) - Spip (X)dx (8.88)

where P, ;=n!/(n —17)! is the permutation coefficient.

The corrector equations for the CPHD filter require the following simplifying
assumption: that the predicted target process is approximately an i.i.d.c. process. The
CPHD filter has computational order O(m3n), though this can be reduced to O(m>n)
using special numerical techniques.

The CPHD filter can be implemented using both particle approximation and
Gaussian-mixture approximation. In the first case, it is called a “particle-CPHD
filter” and in the second case a “GM-CPHD filter.”

8.3.5 SIGNIFICANT RECENT DEVELOPMENTS

The theory and practice of random set filters has developed rapidly in recent years.
In this section, I briefly summarize a few of the most recent advances:

1. Track-before-detect filtering in pixelized images without preprocessing.
Most multitarget tracking algorithms using pixelized image data rely on
some kind of image preprocessing step to extract detection-type features:
threshold detectors, edge detectors, blob detectors, etc. In Ref. [24], Vo,
Vo, and Pham have demonstrated a computationally tractable multitarget
detection and tracking algorithm that does not require such preprocessing.
It is based on a suitable modification of the “multi-Bernoulli filter”
introduced in Ref. [7, chapter 17] and then corrected and implemented in
Ref. [25].

2. Simultaneous localization and mapping (SLAM). When neither GPS nor
terrain maps are available, a robotic platform must detect landmarks,
use them to construct a terrain map on the fly, and simultaneously orient
the platform with respect to that map. The current state-of-the-art in
SLAM is the FastSLAM approach, which employs measurement-to-track
association, in conjunction with heuristic procedures for clutter rejection
and initiation and termination of landmarks. Mullane, Vo, Adams, and Vo
have shown that a PHD filter-based SLAM filter significantly outperforms
FastSLAM in regard to the accuracy of both platform trajectory estimation
and landmark detection and localization [26,27]. Clark has devised an
even faster and more accurate SLAM-PHD filter based on a cluster-
process formulation [28].

3. “Background agnostic” (BAG) CPHD filters. The “classical” CPHD filter
relies on an a priori model A,,;, ¢;,,(2), piy(m) of the clutter process and
on an a priori model p,(x) of the state-dependent probability of detection.
In 2009, I initiated a study of PHD and CPHD filters that do not require a
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priori clutter models but, rather, are capable of estimating them, on the fly,
directly from the measurements. In Refs. [29,30], the clutter process was
assumed to be a finite superposition of Poisson clutter processes, each with
an intensity function of the form x(z)=A - 0(z) with clutter rate 0 < A < 1
and spatial distribution 6,(z) parameterized by c. Unfortunately, the result-
ing PHD/CPHD filters are combinatorially complex. Subsequently, in Ref.
[31], I derived computationally tractable version CPHD filters. In this case,
the clutter process is assumed to be an infinite superposition of Bernoulli
clutter processes, each with an intensity function of the form x(z)=2\ - 6,(z)
with 0 < A < 1. Then, in Ref. [32], I showed how to further extend these
filters when both the clutter process and p,(x) are unknown. This filter has
been implemented in certain special cases and shown to perform reason-
ably well under simulated conditions [33,34].

4. “Background agnostic” multi-Bernoulli filters. Vo, Vo, Hoseinnezhad, and
Mahler have generalized the just-mentioned approach to nonlinear situa-
tions, via a particle-filter implementation of a background-agnostic multi-
Bernoulli filter [35-37].

5. Principled, tractable multisensor CPHD/PHD filters. The PHD/CPHD
filter measurement-update steps described in Sections 8.3.3 and 8.3.4
are inherently single-sensor formulas. What of the multisensor case? In
practical application, the de facto approach has been to employ the “iter-
ated corrector” approximation. That is, apply the measurement-update
equations successively, once for each sensor. It is well known that this
approach is not invariant to changes in the order of the sensors. Moreover,
for the PHD filter (but apparently not for the CPHD filter) it turns out
that the iterated-corrector approach leads to performance degradation
when the probabilities of detection for the sensors are significantly dif-
ferent [38]. In Ref. [39], I introduced a new approximation that leads to
principled, order-invariant, computationally tractable multisensor PHD
and CPHD filters. Nagappa et al. have shown that this approximation
outperforms the interated-corrector approach and, for the PHD filter, is
also a good approximation of the theoretically correct two-sensor PHD
filter [40].

6. Joint multisensor-multitarget tracking and sensor-bias estimation.
Current multitarget detection and tracking algorithms presume that all
sensors are spatially registered—i.e., that all sensor states are precisely
specified with respect to some common coordinate system. In actuality,
any particular sensor’s observations may be contaminated by spatial
misregistration biases that may take translational, rotational, and other
forms. In Ref. [41], I proposed an approach that leverages any unknown
targets that may be in the scene, if there are enough of them present,
to estimate the spatial biases of the sensors while simultaneously
detecting and tracking the targets. Risti¢ and Clark have implemented
a cluster-process variant of this approach for a specific kind of spatial
misregistration, and found that it performs well [42].
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8.4 GENERAL MULTITARGET DISTRIBUTED FUSION

In this section, I show how to directly generalize the single-target T?F theory of
Section 8.2 to the multitarget situation. The section is organized as follows:

1. Section 8.4.1: Multitarget T?F when the track sources are independent.
Approach: multitarget generalization of Equation 8.10.

2. Section 8.4.2: Multitarget T?°F when the track sources are dependent
because of known double-counting. Approach: multitarget generalization
of Equation 8.16.

3. Section 8.4.3: Multitarget T?F when the track sources are arbitrary and their
correlations are completely unknown. Approach: multitarget generalization
of XM fusion, Equations 8.34 through 8.38.

8.4.1 MuLTiTARGET T2F OF INDEPENDENT SOURCES

Suppose that multiple targets are being tracked, and that s independent sources,
relying on their own dedicated local sensors, provide track data about these targets

to a T?F site. The jth sensor suite collects a time-sequence Z" : 21 ,,,,, Z » Where Zl
denotes the set of measurements supplied by the jth source’s sensors at time #,. The
source does not pass this information directly to the fusion site. Rather, it passes the
following information:

e Measurement-updated multltarget track data in the form of multitarget

probability distributions f (X ) = f (X1 Z(k))
. Tlme updated multltarget track data, in the form of multitarget distributions

fk+1|k(X) fk+1|k(X l Z(k))

abbr.
Let fu(X) = fi(X1Z%) be the fusion node’s determination of the multitarget
state, given all the accumulated track data supplied by the sensor sources. Then the
exact multitarget generalization of Equation 8.10 is the following multitarget track-
merging formula, first introduced in Ref. [3]:

fk+1|k+l(X) fk+1|k+l(X)
Fon®  Fan®)

Jieetia1 (X) o< S (X). (8.89)

This is the fundamental formula for multitarget T?F with independent sources. As
in Section 8.2.2, it is being assumed here that the sources provide their data in lock-
step, simultaneously at every time-step. Once again, however, it also applies to the
asynchronous case. If each source has its own data rate, then the measurement-
collection times 7,,...,7, can be taken to refer to the arrival times of data from all of
the track sources, taken collectively. If at time 7, only s, of the sources provide data,
then Equation 8.10 is replaced by the corresponding formula for only those sources.



Toward a Theoretical Foundation for Distributed Fusion 223

The approximations described in Section 8.2.2 apply equally well here. Suppose
that the sources do not pass on their time-update track data but, rather, only their
measurement-update track data. Presume that all of the sources employ identical
target motion models. Then (in principle) the fusion site can construct time-update
track data for the sources, using the multitarget prediction integral

Fron(X) =J'fk+“k<x 1X7)- F o (X)X, (8.90)

and then apply Equation 8.89.
Alternatively, assume that the sources’ time-updated track data is identical to the

J
fusion site’s: f o (X) = fiem(X) for all j=1, ..., s. Then Equation 8.89 reduces to

ﬁ<+1|k+1(X) o< }.k+||k+|(X)' : '}'k+1|k+|(X) ) fk+1|k(X)liss (891)

which is the multitarget version of Bayes parallel combination, Equation 8.14.
Equations 8.89 and 8.91 are computationally intractable in general. The task of devis-
ing more tractable approximations of them will be taken up in Sections 8.5.1 and 8.5.2.

8.4.2 MuLtitARGET T2F witH KNowN DouBLE-COUNTING

Suppose now that the data sources share sensors, but that it is known which sensors

are being shared by which sources. As in Section 8.2.3, define Z;,, = ék+1 U...uU 2k+1.
Let E «+1 be the measurements supplied to the second source that are not in 2 K+, ; k+1
the measurements supplied to the third source that are not in ék+lu%k+1, Ekﬂ the
measurements supplied to the fourth source that are not in é k1Y g k1Y 2 k+1, and so
on. Let é ket = ékﬂ— IZ]m. Then the multitarget version of Equation 8.16 is

1 2 s
X X X
f}c+1\k+1(X) o flk+llk+1( ) . 2fk+1|l<+1( ) fk+1|k+l( (S)) 'ﬁc+1|k(X)- (892)

(2) s
X fronX12) - fraun(X12)

This is the fundamental formula for multitarget T?F with known double-counting.
As in Section 8.2.3, the jth source must know which sensors it shares with each of

J () J
sources 1,...,j — 1, and must pass on f,,, (x| Z) in addition to Jf 1c(X).
Equation 8.92 is computationally intractable in general. More tractable approxi-
mations of it will be taken up in Sections 8.5.3 and 8.5.4.

8.4.3 MuLTiTARGET XM FusioN

Suppose that multiple targets are being observed by two track sources. At time-

1
step k, the first source provides a multitarget distribution f,,,.,(X) and the second
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2
source provides a multitarget distribution f,,,,,(X). Then the multitarget version of
the single-target XM fusion formula, Equation 8.34, is [3]

1 2
LrnenX) ™ f iy (X)° . (8.93)

fk+l|k+l(X) =7 1 2
J.fk+1\k+1(Y) - ’fk+1|k+1(Y)w6Y

This is the general formula for the XM fusion of multitarget track sources with
completely unknown correlations. As I did in Ref. [3] and at the end of Section 8.2.5,
I argue that the most theoretically reasonable optimal XM fusion procedure is as
follows:

XM @
I e X = e (X (8.94)
where
. ® CIXI
® = argsupsup f, . (X)—— (8.95)
o X [ XN

where c is as defined in Equation 8.51: a fixed constant which has the same units of
measurement as the single-target state x.

However this may be, Equations 8.93 through 8.95 are computationally intractable
in general. More tractable approximations of these equations will be taken up in
Sections 8.5.5 and 8.5.6.

8.5 CPHD/PHD FILTER DISTRIBUTED FUSION

In this section, I derive CPHD filter-based approximations of the multitarget T?F
approaches described in Section 8.4. The section is organized as follows:

1. Sections 8.5.1 and 8.5.2: Multitarget T°F when the track sources are inde-
pendent. Approach: CPHD and PHD filter approximations of Equation 8.89.

2. Section 8.5.3: Multitarget T?F when the track sources are dependent because
of known double-counting. Approach: CPHD and PHD filter approxima-
tions of Equation 8.92.

3. Sections 8.5.5 and 8.5.6: Multitarget T°F when the track sources are arbi-
trary and their correlations are completely unknown. Approach: CPHD and
PHD filter approximations of Equation 8.93, as proposed by Clark et al.

8.5.1 CPHD Fitter T2F oF INDEPENDENT SOURCES

Suppose as in Section 8.4.1 that multiple targets are being tracked, and that s independent
sources, relying on their own dedicated local sensors, provide track data about these
targets to a T?F site. The jth sensor suite collects its measurements, processes them
using a CPHD filter, and then passes on the following to a central T?F site:
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. Measurement—update multitarget track data, in the form of spatial
abbr ;

distributions Sklk(x) = Sklk(X | Z( ) and cardinality  distributions
Jj abbrj
pk\k(n) = Pk|k(” | Z(k))

e Time- update multltarget track data, in the form of spatial distri-

abbr
butlons Sk+uk(x) = Sk+1|k(X | Z(k))

abbr i
pk+llk(n) = pk+llk(n|Z(k))

and  cardinality  distributions

Then the multitarget track merging formula—i.e., a CPHD filter approximation of
Equation 8.89—is as follows (see Section 8.7.1):

1 K
L P @ Prgpen (M)

Prrtiks1 (1) = \ N “Otik+1 * Prstic () (8.96)
Hesties: Pre (1) Pra()
1 1 s
Seoat(X) = _ .S:c+l|k+l(x)“. Sf+1\k+1(X) S (X) (8.97)
el g e (X) Sk+1k(X)
where
(n) (n)
Misig+1 = Z pkHIkH pkﬂlkﬂ “ Otk Prstie (1) (8.98)
n20 pk+uk (n) pk+l|k(n)
Skt () St (%)
. =Jslk+“k+1 XS ®) o, (899)
Sk+1k(X) Sk+1k(X)
Suppose that we use the approximations py. (1) = ll)k+l|k(n) =...= ;7k+,|k(n) and
Sk (X) = ;k+1\k (X) = --- = Sxae(x) . Then we get the CPHD filter analog of the Bayes

parallel combination formula, Equation 8.14:

1 1 s n -5
Pkt (M) = ————" D M Py (1) Ok 'Pk+1|k(”)l (8.100)
s+t

. ;k+llk+1(x) . ';k+llk+l(X) S (X (8.101)

Skt (X) =
Okt1k+1

where

1 s
Mesnier = Zpk+1|k+1(”)"'pk+1\k+1(”)'GZ+1|k+1 (8.102)

n=0
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Optiik+1 = jékﬂ\kﬂ (x)--- ;k+llk+1(x) *Sk+1ik (X)lﬂ dx. (8.103)

Remark 3: Equations 8.100 and 8.101 have been employed as the basis for the
principled approximate multisensor CPHD and PHD filters [39] mentioned in
Section 8.3.5.

8.5.2 PHD Fitter T2F oF INDEPENDENT SOURCES

What is the analog of Equation 8.97 for PHD filters? That is, suppose that the track
sources use PHD filters rather than CPHD filters, and thus pass on PHDs rather than
spatial distributions and cardinality distributions. Then what is the formula for the
merged PHD? This turns out to be (see Section 8.7.2)

1 s
Diik+1(X)  Di+iks1(X)
Disin (x) = 1+ k L

Dk (X) Dk (Xx)

* Dpeyie (X). (8.104)

This merging formula is potentially problematic because, in the single-target case,
it does not reduce to the correct single-target formula. For example, suppose that

1 s
Dy (X) = Divik(X) = -+ = Diviie(X), in which case

1 s
D 1ies1(X) = Distiest (X) -+ Dtk 1(X) - Dy e (). (8.105)

Equation 8.105 should reduce to Bayes parallel combination, Equation 8.14. However,
it does not. To see this, note that with the single-target Bayes recursive filter, there
are (1) no missed detections or false alarms; (2) the integrals of D, ,(X)=f.;1(X)

and bk+l|k+1 (x)= ]l” w11 (X) for all i should equal 1; and (3) the integral of D, +1(X)
should equal 1.

By way of contrast, Equations 8.96 and 8.97 do reduce to the correct single-target
formula in the single-target case. Thus one must conclude:

e Equation 8.104 is unlikely to provide an accurate approximate track-
merging formula when the number of targets in the scenario is small.

Remark 4: Let bk+llk+1(X) = II,EM (X)'bkﬂ\k(X) be the PHD filter measurement-
update formula for the ith source, as defined in Equation 8.67. Then Equation 8.105
becomes

1 s
Dy (x) = L%kﬂ (X)-++ Lz (X) - Dyyyp (X). (8.106)

This is the multisensor PHD measurement-update formula as described in Equation
8.106 of reference [43]. It follows that this update formula is likely to be inaccurate
when the number of targets is small.
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8.5.3 CPHD Fitter T2F witH KNOowWN DoUBLE-COUNTING

Suppose that the data sources share sensors, but that it is known which sensors
are being shared by which sources. The sources use CPHD filters to process these

measurements: As in Section 8.4.2, define Z,,, = ékHU"'UékH. Let Ekﬂ be the
measurements supplied to the second source that are not in ém, Ekﬂ the measure-
ments supplied to the third source that are not in ékHUEkH, %kﬂ the measure-
gtgents supplield to the fourth source that are not in ékJrlU %kHU gkﬂ, and so on. Let
J J J

Zin1 = Zin1— L1,

At time-step k, the jth source prov1des spatial dlstrlbutlons sk|k (x) and Sk+l|k (xI Z ),

and cardinality distributions p ar(m) and p (@ Z) Then the CPHD filter version of
Equation 8.92 is

1 s s
L Prwen @ Pt Py (1)

Prsien (1) = . ) @ o) Okt Praec(n)  (8.107)
Hirin P pry(nlZ) Pk+1|k(” 1Z)
| 1 2 s
St (X) = . .Sf+llk+1(X). 25k+1\k+1(§(2)) Sk+1|k+l()(2 S (X) (8.108)
B g (X) Sek(X1Z) siem (X1 Z)
where

1 s s
(n) (n) (n)
Heos = 2 p]k+1|k+1 - Proen o pk+llk+l Ot Pre () (8.109)

2 )
20 Pry(n) pry(nlZ) pk+1lk (nlZ)

1 2 s
Sk+1k+1(X)  Skrtk+1(X) Skrik+1(X)
Orillk+1 = . 5 ) Sk+1|k(x)dx. (8110)

2 (2)
Sk (X)  Serm (X1 Z) Sk+l|k(X 1Z)

8.5.4 PHD Fiter T2F with KNowN DouBLE-COUNTING

The PHD filter version of these equations is

Dk+”k+l(x)_Dk+1\k+l(X) Dk+1|k+1(X) . Dk+1|k+1(3(i)) Den(x). @111

Dk+1|k(X) Dk+l|k(X | Z) Divik(x12)

This update formula is unlikely to offer good performance when the number of tar-
gets is small.
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8.5.5 CPHD Fitter XM FusioN

Clark et al. have considered the special case of Equation 8.93 when the distributions
are i.i.d. cluster processes—that is, when track fusion is based on CPHD or PHD
filters [4—6]. Suppose that multiple targets are being observed by two track sources
equipped with CPHD filters. At time-step k, the first source provides a spatial distri-
bution gklk(X) and cardinality distribution %klk(n); and the second source provides a
spatial distribution Stk (x) and cardinality distribution ;17 ar ().

Given this, the CPHD filter approximation of the multitarget XM fusion formula,
Equation 8.93, is (see Section 8.7.4)

© 1 0 1-o ! ] nw
P M = 5" Proius1 M Pt (07 - Ot (8.112)
Mtk
@ 1 0 1o ! o
Skatik+1(X) = g Sk+1k+1(X)* * Skrtk+1(X) (8.113)
O k+11k+1
where
® 0 1-o 1 [0} nw
Hk+1lk+l:zpk+llk+l(n) Pt (M7 Okt (8.114)
n=0
o 0 -0 ! o
Oktilerl = | Skrtk+1(X) " - Sk+1e41(X)” dX. (8.115)

From a theoretical point of view, optimization of Equations 8.112 and 8.113 would
be obtained via Equation 8.95:

1X1

A ® C X
® =argsupsup f . (X)- 7 = argsupsup py (1X1) (esermsn) - (8.116)
® X . [0) X

However, this formula will usually be computationally problematic, as will be the
multitarget version of the Chernoff information, Equation 8.35. A very approximate
approach would be to first apply Chernoff optimization to the spatial distributions:

0
M, = arg infjsk+1|k+1(x)l“” - Skelleat (x)"dx. (8.117)
Then setting

0 . 3
6= jsk+1|k+1(X)l_ @ ‘;k+1\k+l(x) 1 dx, (8.118)
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one could apply Chernoff optimization once again to the cardinality distributions:

et . 0 -0 1 (0] =n
2 =arg Hul)fz pk+l|k+1(n)l Pran (M) -0 (8.119)

n20

The final distributions would then be

XM o XM @
P i (n) = P2k+1|k+1("), S ketkr1(X) = s ke+k+1(X). (8.120)

Clark et al. have implemented Equations 8.112 through 8.115 and have considered
a broad range of optimization procedures [5,6,44]. They have further demonstrated
that these equations lead to good distributed-fusion performance.

8.5.6 PHD FiLter XM FusioN

The PHD filter approximation of the multitarget XM fusion formula, Equation 8.93,
can be shown to be (see Section 8.7.5)

® 0 1
Di+ik+1(X) = Dicstie1(X)' ™ - D1 (X)°. (8.121)

This formula is an equality, not a proportionality. Thus it does not reduce to the
single-target XM fusion formula, Equation 8.34, in the single-target case. Thus it is
unlikely to perform well when the number of targets is small.

How might we optimize Equation 8.121? Once again, Equation 8.116 will be com-
putationally problematic. One alternative is as follows. It can be shown (see Section
8.7.6) that Chernoff information can be defined for PHDs and has the form

0 1 [0)
C(Drstik+1, Diriks1) = sup (Ko — Niriie+1) (8.122)

0<w<1

where

[0} ® 0 1
N1k = J-Dk+llk+l (x)dx =J. Disties1(X)™° - Dicss1 (X)° dx (8.123)
is the expected number of targets corresponding to ®, and where

0 |
Ky = (1= ®) Nistkr1+ O N stk (8.124)
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is the weighted expected number of targets. Equation 8.122 is, at least in principle,
potentially computationally tractable. Thus one would chose

XM @
D pr1ie+1(X) = Dirie+1(X) (8.125)

where

. o
W =arg sup(Kw - Nk+1|k+1). (8.126)
®

0
As an example, suppose that expected target numbers are identical: N1 =

1
Nisiiest = Nigist. Then K =N, ., 18 constant and it is easily shown that

0 1
C(Di+tk+1, Dicstike1) = Niyqjps1 - SUP (1 _J.gk+1\k+l(x)l_w -;k+1|k+1(X)“’dx). (8.127)

0<m<l

. . . . . . 0
As another example, let the spatial distributions be identical: siip+1(Xx)=

1 . .
Sk+k+1(X) = Se1(X). Then it is easily shown that

0 I 0 ! 0 1
C(Dr+1ik+1, Diris1) = sup [(1 — ) Nistir1+ O Nigis1 — Nisoio N;?HkHJ. (8.128)

0<w=l1

8.6 COMPUTATIONAL ISSUES

In this section, I address the practical computability of the T?F CPHD/PHD filter
formulas derived in the previous sections. There are two general fusion architectures
that can be envisioned. In the first architecture, the track sources use GM-CPHD or
GM-PHD filters, and transmit their Gaussian-mixture PHDs to the T2F site. In the
second architecture, the track sources use particle-CPHD or particle-PHD filters,
and transmit their particle-PHDs to the T°F site. In either case, the most serious
obstacle to practical implementation is the following:

e The exact fusion formulas in Sections 8.5.1 through 8.5.3 involve division
by PHDs.

e The XM fusion formulas in Sections 8.5.5 through 8.5.6 involve fractional
powers of PHDs.

I deal with these two situations in the two sections that follow.

8.6.1 IMPLEMENTATION: EXACT T2F FORMULAS

In what follows, I consider implementation of the exact fusion formulas in Sections
8.5.1 through 8.5.3. I consider two cases: the track sources employ GM-CPHD or
GM-PHD filters; or the track sources employ particle-CPHD or particle-PHD filters.
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8.6.1.1 Case 1: GM-PHD Tracks

Suppose that the track sources send their PHDs to the T?F site in the form of Gaussian
mixtures—or, more precisely, as finite sets of the form {(w,x,,P).,....w,.X,.P,)}
where each triple (w;,X;,P,) is a Gaussian component. Here I sketch the outlines of a
possible implementation approach, using a hybridization of particle and Gaussian-
mixture techniques.

For the sake of clarity, consider the simplest CPHD/PHD filter track-merging
formula, Equation 8.105:

1 s
Disies1(X) = Dicstiest (X) -+ Dicsties1 (X) - Dy (%) (8.129)

If we can devise an implementation solution in this case, it should be possible to
devise solutions for the more complex track-merging formulas in Sections 8.5.1
through 8.5.3. Rewrite Equation 8.129 as

1 s
D11 (X) = Distie+1(X) -+ Dttt (X) - Dy 1 (X) ™ - Dy 1 (X). (8.130)

i
where D, (x) and each Di+m+1(X) is a Gaussian mixture. Then:

1. Use standard GM PHD filter merging and pruning techniques to reduce
the product Dk+llk+l(X) Dk+l|k+l(X) to a new Gaussian-mixture PHD

D krlik+1(X).
2. Draw a statistical sample from the normalized predicted PHD:

Dy (x) (8.131)
Nk+1\k

1 v
X1k oo Xt llk ™

3. Approximate D,,,,,(x) as the Dirac mixture
N v
Dy (x) = 1% zaxi (x). (8.132)
A\ = k+11k
4. Determine the corresponding particle approximation of D,,,,,,(X):
~ _ N O L i i -8 8.133
Dy (x) = T D vt (Xpepae) Dk Ken) ™+ X (x). (8.133)

i=1

For this formula to be effective, there have to be enough particles nearby the

1..s
means of the Gaussian components of D r+1k+1(X).
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5. Employ some particle-resampling technique to convert Equation 8.133 into
distribution-sample form:

- N .
Dy (X) = % 28

i=1

(x) (8.134)

'
Ytk

where y,lﬁnk,. ..,Yxs+1« are the resampled particles and where

~ Y l..s . .
Nisike1 = Nk+1|k2 D et Kiewnne) - Dserie Kern) ™ (8.135)

i=1

6. Use the EM algorithm, or some other particle-regularization procedure, to
approximate D, , ., ,(X) as a Gaussian mixture.
7. Tterate.

8.6.1.2 Case 2: Particle-PHD Tracks

This approach can be modified to address the case in which the track sources send
their PHDs to the T?F site in the f